
BiereArthoSchuppan-FMICS02.pdf

Electronic Notes in Theoretical Computer Science 66 No. 2 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume66.html 18 pages

Liveness Checking as Safety Checking

Armin Biere, Cyrille Artho, Viktor Schuppan

Computer Systems Institute, ETH Zentrum RZ H, CH-8092 Zürich, Switzerland

Abstract

Temporal logic is widely used for specifying hardware and software systems. Typi-
cally two types of properties are distinguished, safety and liveness properties. While
safety can easily be checked by reachability analysis, and many efficient checkers for
safety properties exist, more sophisticated algorithms have always been considered
to be necessary for checking liveness. In this paper we describe an efficient transla-
tion of liveness checking problems into safety checking problems. A counter example
is detected by saving a previously visited state in an additional state recording com-
ponent and checking a loop closing condition. The approach handles fairness and
thus extends to full LTL.

1 Introduction

Model Checking [12] is one of the most successful approaches for verifying
temporal specifications of hardware and software systems. System properties
are specified in temporal logic [13] for which various formalisms exist. Typ-
ically two types of properties are distinguished, safety and liveness [19]. In
practical applications, safety properties are prevalent. Therefore very efficient
algorithms and tools have been devised for checking safety properties. Still the
specification of most systems contains liveness parts. We describe a generic
translation procedure that takes a system with a liveness specification and
translates it into a new system, for which a safety property is valid iff the
liveness property in the original system holds.

The main motivation is to enable existing tools and techniques to check
liveness which were originally supposed to work on safety properties only. For
instance sequential ATPG (automatic test pattern generation) [22] can be used
to check simple classes of temporal formulae [3], but general liveness proper-
ties have been out of reach. The same applies to STE (symbolic trajectory
evaluation) [26,9], though a generalized version of STE has been published
that can handle all ω-regular properties [27]. Both technologies have been in
use in industry for over a decade [22,6] and efficient implementations exist.

For symbolic model checking [21] there is a vast literature on optimiza-
tions which are only applicable to safety. Frontier set simplification [7], dense

c©2002 Published by Elsevier Science B. V.

Biere, Artho, Schuppan

[23] and prioritized [8] reachability analysis all try to speed up BDD-based
reachability calculation, but have not been adapted to handle liveness so far.

Forward model checking [17,15,2] is an attempt to improve on backward
based symbolic model checking by visiting reachable states only and catching
bugs as early as possible. It is motivated by the observation that checking
safety properties amounts to reachability analysis. Forward model checking
tries to use forward image calculations exclusively. Since we are able to trans-
late liveness into safety we expect to have the same benefits without changing
the model checking algorithms.

Kupferman and Vardi have developed an approach to simplify automaton-
based model checking of safety properties by searching for finite violating
prefixes [18]. With our translation we follow a similar goal by reducing liveness
properties to safety properties and thus enabling the application of a much
wider range of verification algorithms.

Our translation is structural. It respects the hierarchy of the system and
can easily be applied, even manually, on the design entry level, eg in a Hard-
ware Description Language. This is particularly useful if a tool does not
include other model checking algorithms beside safety checking, and, as it is
usually the case in a commercial setting, there is no access to the source code.

The basic idea is borrowed from explicit on-the-fly model checking [14] and
bounded model checking [1]: a counter example to a liveness property in a
finite system is lasso-shaped, it consists of a prefix that leads to a loop. As in
[1] the major challenge is how to detect the loop. In our translation a loop
is found by saving a previously visited state and later checking whether the
current state already occurred.

For simple liveness properties, the result of the translation is not much
larger than the original model checking problem. We also show how to handle
more complicated liveness properties, for instance involving the until operator.
By adding fairness constraints the technique can be extended to full LTL.

The next section elaborates on various examples to establish an intuitive
understanding of the translation. In Sect. 3 we introduce the necessary formal
background. We precisely define the translation in Sect. 4, prove its cor-
rectness and compare the complexity of the original and the resulting model
checking problems. In the same section we mention how to extend our trans-
lation to handle fairness and LTL. Preliminary experiments in Sect. 5 show
the feasibility of our approach, and Sect. 6 concludes.

2 Intuition

A counter example trace to a simple liveness property AFp is an infinite path
where the body p of the liveness property holds nowhere, or equivalently ¬p
holds along the whole path. Since we restrict our models to be finite, such
a trace can always be assumed to be lasso-shaped as depicted in Fig. 1. It
consists of a prefix that leads to a loop, starting at the loop state sl. From

2

Biere, Artho, Schuppan

p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

Fig. 1. A generic lasso-shaped counter example trace for AFp.

every infinite trace in a finite model we can construct a lasso-shaped trace by
closing the loop as soon as a state occurs the second time. Note that ¬p still
holds along the constructed path.

This observation is at the core of various model checking algorithms. Ex-
amples are explicit state algorithms for Büchi Automata [14] and unfolding
liveness properties in bounded model checking [1]. With this restriction we
only need to search for lasso-shaped counter examples. This is used in both
translations discussed in this paper. The first translation, shown for illus-
tration only, is called counter based translation. It extends the well known
technique to check for bounded liveness only, but is not of practical value.
Our main contribution is the state recording translation. It produces a state
machine that may save at any time a previously reached state. Both transla-
tions do not only modify the property to be checked but also add additional
checking components to the model while still maintaining bisimulation equiv-
alence [12].

2.1 Counter Based Translation

In model checking applications it is often observed that a liveness property
AFp can further be restricted by adding a bound k on the number of steps
within which the body p has to hold. The bound is either given in the spec-
ification or may be determined by manual inspection. A bounded liveness
property AFkp is defined as

AFkp ≡ A(p ∨Xp ∨ · · · ∨Xkp), with Xip ≡ X · · ·X︸ ︷︷ ︸
i−times

p(1)

and clearly AFkp implies AFp. The reverse direction is also true if the bound
is chosen large enough, in particular as large as the number of states |S| in
the model, since all states are reachable in |S| steps.

A trivial translation would just exchange AFp by AFkp with k the num-
ber of states. However, the expansion of AFkp in (1) results in a very large
formula, especially in the context of symbolic model checking. To avoid this
explicit expansion, our counter based translation adds a counter to the model
which counts the number of states reached so far. Now it only remains to
check, whenever the counter reaches the number of states of the original model,
that p was found to hold in at least one state reached so far. This latter prop-
erty can be checked by attaching a boolean flag to the model that remembers
whether p was satisfied in the past. This last step is property dependent.

As a first example we use a modulo 4 counter with initial state 0. In Fig. 2
an SMV program [21] and a state graph of the counter are shown. While

3

Biere, Artho, Schuppan

MODULE main
VAR state : -1..3;
DEFINE
 found := state = -1;
ASSIGN
 init(state) := 0;
 next(state) :=
 case
 state = 3 : 0;
 1 : state + 1;
 esac;
SPEC AF found

3210−1

Fig. 2. A modulo 4 counter with unreachable state -1.

all states are reachable from -1, that state itself is unreachable because the
counter wraps back to 0.

The state space of the example encompasses five states. After five transi-
tions we check whether found stayed false all the way from the initial state.
In this case a counter example is found. Otherwise, the liveness property is
valid, since every potential lasso-shaped trace of length 5 contains a state in
which found holds.

This allows for a trivial translation of the liveness property into a safety
property. The model is extended with a boolean variable live, which denotes
whether found has already been true. A variable counter counts the number
of states.

The left column of Fig. 3 shows the translated specification. The live-
ness property AF found translates into the safety property AG (finished ->

live). This translation is extremely inefficient, because it always requires
traversing five states.

2.2 State Recording Translation

Instead of conservatively searching as long as required in the worst case, the
search should terminate whenever a previously seen state sl is traversed. Each
time such a loop has been found, the liveness property p has to hold for at least
one state visited before. Otherwise we have a counter example (see Fig. 1).
Because state space traversal is memoryless, there is no way of explicitly ex-
pressing that property p must have been true at an earlier time as soon as we
reach state sl a second time.

The new model needs a way of “saving” a previously seen state for detecting
a loop. Since we do not know beforehand whether we will see the current state
again later, we use an oracle save that tells the model whether the current
state is assumed to be the first state of a loop. To prevent overwriting the
copy, another variable saved is used. After sk, the last state of the loop, sl is
encountered again (see Fig. 4). At that time, the predicate looped becomes

4

Biere, Artho, Schuppan

MODULE main
VAR state : -1..3;
 counter : 0..5;
 live : boolean;

DEFINE
 found := state = -1;
ASSIGN
 init(state) := 0;
 next(state) :=
 case
 state = 3 : 0;
 1 : state + 1;
 esac;

 init(counter) := 0;
 next(counter) :=
 case
 counter < 5 :
 counter + 1;
 1 : counter;
 esac;
 init(live) := 0;
 next(live) :=
 live | found;
DEFINE
 finished := counter = 5;
SPEC AG (finished -> live)

MODULE main
VAR state : -1..3;
 loop : -1..3;
 live : boolean;
 save : boolean;
 saved : boolean;
DEFINE
 found := state = -1;
ASSIGN
 init(state) := 0;
 next(state) :=
 case
 state = 3 : 0;
 1 : state + 1;
 esac;
 init(saved) := 0;
 next(saved) :=
 saved | save;
 next(loop) :=
 case
 !saved & save : state;
 1 : loop;
 esac;
 init(live) := 0;
 next(live) := live | found;
DEFINE
 looped :=
 saved & state = loop;
SPEC AG (looped -> live)

(a) counter (b) safe

Fig. 3. A counter based translation and our new translation of the liveness property.

p¬ p¬ p¬ p¬p¬ p¬
sl

sl

sk

sl

l+1s +1kss10s
=

sl

Fig. 4. Loop checking for AFp counter examples as reachability.

true, and property p must have been fulfilled at least once.

As visualized in Fig. 4, the loop closing condition looped checks, whether
the current state has been visited earlier. Correspondingly Fig. 4 shows one
more state than Fig. 1. Therefore live and saved should not refer to the
current state. Their purpose is to remember whether found and respectively
save were true in the past. In particular their initial value should be false.

5

Biere, Artho, Schuppan

2.3 Translation of fairness into safety

Fairness properties can also be translated using the same methodology. Figure
5 shows an example with two tasks t0 and t1 that count from 0 to 7 each. At
each step, only one task is allowed to take its turn. The liveness property,
stating that each task eventually arrives at state 7, can only be fulfilled if the
turns are taken in a fair manner, i.e. each task eventually gets its turn.

In order to include fairness in our example, we define a new property fair.
It records whether the fairness property is true at least once within each loop.
Because save and saved are global, they are shared with the task modules.

3 Preliminaries

Our notation follows [12]. Let A be a set of atomic propositions. A Kripke
structure K, or simply model, wrt. A is defined as K = (S, I, T, L) with S
a finite set of states, I ⊆ S a set of initial states, T ⊆ S × S its transition
relation, and L : S → 2A a labelling function. We assume that the set of
initial states is non-empty and the transition relation is total, i.e. for every
state s ∈ S there exists a state s′ ∈ S with (s, s′) ∈ T . We write T (s, s′)
whenever (s, s′) ∈ T and similarly I(s).

As temporal logic we use a subset of CTL* with the next time operator
X, and the eventuality operator F. We do not treat the until operator U
or further operators in detail, since our translation works for full LTL which
includes these operators. We will only consider the universal path quantifier
A. The propositional operators are conjunction (∧) and negation (¬). We
also add the propositional constants {0, 1}.

The set of CTL* formulae is made of two types of formulae, path formulae
Φ and state formulae Ψ. All atomic propositions p ∈ A are state formulae,
which can always be coerced to path formulae. Negation maintains the type of
the argument. The same applies to conjunction if the types of the arguments
match. Otherwise their conjunction is a path formula. Temporal operators
are applied to state formulae. A path formula may be prefixed by a path
quantifier to obtain a state formula.

Semantics for path formulae are defined wrt. paths, where the set Π of
paths of K is the union of all finite and infinite sequences π = (si) with si ∈ S
and T (si, si+1) for 0 ≤ i < |π|. The length |π| of π is defined as the number of
transitions. We only consider non-empty paths. We write π(i) for si and πn

for the sequence (si+n), which is the same as the original path with its first n
states removed. Let p ∈ A, φ, φ1, φ2 ∈ Φ and ψ, ψ1, ψ2 ∈ Ψ. The validity of

6

Biere, Artho, Schuppan

MODULE task(id,turn)
VAR
 state : 0..7;

ASSIGN
 init(state) := 0;
 next(state) :=
 case
 turn = id &
 state < 7
 : state + 1;
 1 : state;
 esac;
DEFINE
 found := state = 7;

FAIRNESS
 turn = id

MODULE main
VAR
 turn : 0..1;
 t0 : task(0,turn);
 t1 : task(1,turn);

DEFINE
 found :=
 t0.found &
 t1.found;

SPEC
 AF found

MODULE task(id,turn,save,saved)
VAR
 state : 0..7;
 loop : 0..7;
 fair : boolean;
ASSIGN
 init(state) := 0;
 next(state) :=
 case
 turn = id &
 state < 7
 : state + 1;
 1 : state;
 esac;
DEFINE
 found := state = 7;
 looped := saved & state = loop;
ASSIGN
 init(fair) := 0;
 next(fair) := fair |
 id = turn & (save | saved);
 next(loop) :=
 case
 save & !saved : state;
 1 : loop;
 esac;

MODULE main
VAR
 turn : 0..1;
 t0 : task(0,turn,save,saved);
 t1 : task(1,turn,save,saved);
 save : boolean;
 saved : boolean;
 live : boolean;
DEFINE
 found := t0.found & t1.found;
 looped := t0.looped & t1.looped;
 fair := t0.fair & t1.fair;
ASSIGN
 init(saved) := 0;
 next(saved) := saved | save;
 init(live) := 0;
 next(live) := live | found;
SPEC
 AG (looped & fair -> live)

(a) live (b) safe

Fig. 5. Hierarchical translation of liveness with fairness into pure safety.

7

Biere, Artho, Schuppan

state and path formulae for s ∈ S and infinite π ∈ Π are defined as follows:

s |= A φ iff π |= φ for all π ∈ Π with π(0) = s s |= p iff p ∈ L(s)

s |= ψ1 ∧ ψ2 iff s |= ψ1 and s |= ψ2 s |= ¬ψ iff s 6|= ψ

π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2 π |= ¬φ iff π 6|= φ

π |= F φ iff there exists i ≥ 0 with πi |= φ π |= X φ iff π1 |= φ

π |= ψ iff π(0) |= ψ

We will also use other boolean operators, such as disjunction (∨) and implica-
tion (→). The temporal operator globally G is defined as G φ ≡ ¬F¬φ and
the existential path quantifier as E φ ≡ ¬A¬φ.

A path π is initialized wrt. a given model K = (S, I, T, L) iff π(0) ∈ I.
Then a CTL* formula f is valid for K iff π |= f for all initialized infinite paths
π. Model checking determines the validity of f for K. Two model checking
problems P = (K, f) and P ′ = (K ′, f ′) are equivalent iff K |= f ⇔ K ′ |= f ′.

The first two steps of our translation in Sect. 4 produce equivalent model
checking problems, proved by bisimulation equivalence. Two models K =
(S, I, T, L) and K ′ = (S ′, I ′, T ′, L′) over the same set of atomic propositions
are bisimulation equivalent iff there exists a relation ∼ ⊆ S × S ′ with the
following properties: Let s ∈ S and s′ ∈ S ′ with s ∼ s′. First the labelling has
to match, that is L(s) = L′(s′). Second for all t ∈ S with T (s, t) there has to
exist t′ ∈ S ′ with T ′(s′, t′) and t ∼ t′. Finally, for all initial states s ∈ I there
has to be an initial state s′ ∈ I ′ with s ∼ s′. The dual properties have to hold
as well.

The complexity of the original model checking algorithm [11] for simple
properties, such as AFp and AGp, is linear in the size of the model K. Par-
ticularly it is linear in the number of states |S| and the number of transitions
|T |. In the case of on-the-fly model checking [14] the complexity can fur-
ther be restricted to be linear in the number of reachable states |R| with
R = {π(i) | i ≥ 0, π ∈ Π, π initialized}. For symbolic model checking with
BDDs [21] the number of (reachable) states is less important than the number
of fixpoint iterations. This number is bounded by the diameter d which is
defined as the maximal distance δ(s, t) between two states s, t ∈ S with

δ(s, t) = min { k | π ∈ Π, |π| = k, π(0) = s, π(k) = t}

In BFS reachability analysis the number of iterations can further be restricted
to the maximal distance r, called radius, of all reachable states to some pos-
sibly varying initial state. In backward fixpoint computations, which are the
traditional way of checking liveness properties, we can introduce a similar no-
tion of a backward radius which is the number of backward iterations after
which the fixpoint is reached. The backward radius depends not only on the
model but also on the property. Note that backward and forward radius are

8

Biere, Artho, Schuppan

not related. For instance, an inductive invariant p has a backward radius of
one when checking AGp, independent of the size of the model. In practice pure
backward model checking is usually outperformed by forward model checking
[17] or a restricted version of backward model checking in which the approxi-
mations in the fixpoint computation are restricted to the pre-computed set of
reachable states.

4 Translation

In this section we precisely describe our state recording translation on an
abstract level and prove its correctness. The application to a concrete model
description language such as the SMV input language used for the experiments
is left to the reader. We also do not treat the counter based translation
formally. In the second part of the section we discuss the efficiency of our
translation by comparing size and diameter of the original and the translated
model. In the last part we describe the extention to fairness and LTL.

4.1 Correctness

Let K = (S, I, T, L) be a Kripke structure and AFp be the liveness property
we want to check. As a first step we construct K⊥ = (S⊥, I⊥, T⊥, L⊥), with
S⊥ = S× (S∪{⊥}), and I⊥ = I×{⊥}. The new transition relation is defined
as

T⊥((s, t), (s′, t′)) ⇔ T (s, s′) ∧ (t′ = t ∨ (t = ⊥ ∧ t′ = s))(2)

which operates on the first state component like the original transition relation.
In the second state component a previously reached original state may be
recorded, nondeterministically, but at most once (see also Fig. 4). Therefore
T⊥ is monotonic in the second state component for the order ≤⊥ ⊆ (S∪{⊥})2

with s ≤⊥ t iff s = t or s = ⊥. The new labelling is obtained as L⊥ = L ◦ ρ
using the projection function ρ operating on pairs with ρ((s, t)) = s.

We further assume that ⊥ is a new state that does not already occur in
S. In essence our translation simulates the original behavior of K without
introducing dead ends, maintaining the labelling of the states. Therefore we
can prove that K and K⊥ are bisimulation equivalent under the bisimulation
∼ ⊆ S × S⊥, with s ∼ s⊥ ⇔ ρ(s⊥) = s. To prove that ∼ is a bisimulation
we use λ⊥:S → S⊥ defined as λ⊥(s) = (s,⊥) and extend both λ⊥ and the
projection function ρ to paths in the natural way. Then we can easily check
that π ∼ λ⊥(π) and ρ(π⊥) ∼ π⊥ for all paths. These functions provide the
necessary witnesses for the existential quantifiers in the requirements for ∼
being a bisimulation.

Lemma 4.1 K and K⊥ are bisimulation equivalent.

The next step adds a flag that remembers whether p has ever been valid
on the path so far. The result is Kp = (Sp, Ip, Tp, Lp) with Sp = S⊥ × {0, 1},

9

Biere, Artho, Schuppan

Ip = I⊥ × {0}, and Tp((s, x), (s′, x′)) iff

T⊥(s, s′) ∧ (p ∈ L⊥(s) → x′ = 1) ∧ (p 6∈ L⊥(s) → x′ = x)

The rest is defined as in the first step. Again Tp is monotonic in the second
state component, in this case for the order of natural numbers restricted to
{0, 1}. Note, that Kp depends on the property being checked. Similar reason-
ing as before with a slightly more complex λp : S⊥ → Sp and a transitivity
argument gives the following Lemma.

Lemma 4.2 K and Kp are bisimulation equivalent.

Since validity of CTL* formulae is preserved under bisimulation equiva-
lence [4,12], we obtain the equivalence of (K,AFp) and (Kp,AFp). The final
step in our translation consists of adding a new atomic proposition q with

q ∈ Lp (((s, t), x)) ⇔ s = t → x = 1(3)

This definition shows the correctness of our translation.

Theorem 4.3 (K,AFp) and (Kp,AG q) are equivalent.

Proof. What remains to be shown is the equivalence of EG¬p and EF ¬q
in Kp. First assume Kp |= EG¬p. Then there exists an infinite initialized
path π ∈ Πp with p 6∈ Lp(π(i)) for all i ≥ 0. Since the number of states of
Sp is finite, there have to exist indices k ≥ l ≥ 0 with π(k + 1) = π(l). Let
π(i) = ((si, ti), xi) for i ≥ 0 and define π′(i) = ((si, t

′
i), xi) with t′i = ⊥ for

0 ≤ i ≤ l and t′i = sl for l < i ≤ k + 1.

Clearly π′ is an initialized legal path of Kp. By definition we have sk+1 =
t′k+1 = sl and xi = 0 for 0 ≤ i ≤ k+ 1, since p 6∈ Lp(π′(j)) = L(sj) = Lp(π(j))
for 0 ≤ j ≤ k. From (3) we get q 6∈ Lp(π

′(k + 1)) and π′ proves to be a
witness for EF¬q, assuming π′ is extended to an infinite path in the obvious
way. Note that Tp is total since our translation does not introduce dead ends.

For the reverse direction assume EF¬q holds. Without loss of generality
we find an initialized path π ∈ Πp with |π| = k + 1 and π(k + 1) |= ¬q. With
π(i) = ((si, ti), xi) we deduce from (3) that sk+1 = tk+1 and xk+1 = 0. From
the monotonicity of T⊥ in its second state component, we obtain an l with
0 < l ≤ k, such that ⊥ = t0 = . . . = tl and sl = tl+1 = . . . = tk+1. Now we
construct an infinite path π′ with π′(i) = ((s′i, t

′
i), xi) as follows: for 0 ≤ i ≤ k

we simply set π′(i) = π(i). If i > k we define t′i = tk+1, x′i = xk+1 and s′i = sl+c
with c = (i − l) mod (k + 1 − l). From the monotonicity of Tp in its second
state component, we have xk+1 = . . . = x0 = 0, which implies si |= ¬p for
0 ≤ i ≤ k. Since these original states determine the non-validity of p for every
π′(i), and π′ is a legal initialized infinite path, it serves as witness for EG¬p.2

4.2 Complexity

Our objective was to enable checking liveness properties with techniques and
tools previously only used for reachability calculation or safety checking. The

10

Biere, Artho, Schuppan

impact of our translations on the complexity for model checking or reachability
calculation is quite reasonable.

As sketched with the example of Fig. 5, the size of a non-canonical symbolic
description in program code, increases only by a small constant factor. The
counter based translation will produce very large counter examples. Therefore
we restrict the discussion to the state recording translation.

In global (explicit) model checking [11] the complexity is governed by the
number of states, which increases quadratically:

|Sp| = 2 · |S⊥| = 2 · |S| · (|S|+ 1) = O(|S|2)

In the case of on-the-fly (explicit) model checking [14] only the size of the
reachable state space Rp is of interest. A reachable state (s, t) ∈ R⊥ of K⊥
either contains ⊥ as second component t, or t is reachable in K since only
reachable states are recorded. Therefore R⊥ is bounded by |R| · (|R| + 1).
This bound is tight: a modulo n counter, like the model in Fig. 2 for n = 4,
has |R⊥| = n · (n + 1) reachable states. If n = 4 then every combination of
{0, . . . , 3} × {⊥, 0, . . . 3} can be reached. Further introducing the p-recording
flag at most doubles the number:

|Rp| ≤ 2 · |R⊥| ≤ 2 · |R| · (|R|+ 1) = O(|R|2)

Regarding symbolic model checking with BDDs [21] we have two results. First
we relate the size of reduced ordered BDDs for the transition relation of K,
K⊥ and Kp. Assuming S is encoded with n = dlog2 |S|e state bits, we can
encode S⊥ with 2n + 1 boolean variables. It is important to interleave the
boolean variables for the first and second component. Otherwise the size of
the BDD for the term (t′ = t∨ (t = ⊥∧ t′ = s)) in (2) may explode. With an
interleaved order it is linear in n with a factor of approx. 11. The factor has
been determined empirically for large state spaces. Thus the size of the BDD
for T⊥ can be bounded by 11 · n the size of the BDD for T by using the fact
from [5] that computing any boolean binary operation on BDDs will produce
a BDD of size that is linear with factor 1 in the size of the argument BDDs.
Finally, the size of the BDD for Tp compared to the size of the BDD for T⊥
may increase by a linear factor in the size of the BDD representing the set of
states in which p holds, which in practice is usually very small.

Similar calculations for the set of initial states show that the size of BDDs
representing Kp can be bound to be linear in the size of the BDDs represent-
ing K, linear in the number of state bits, and linear in the size of the BDD
representing the set of states in which p holds. These static bounds do not say
anything about the size of the BDDs in the fixpoint iterations. To measure the
dynamic complexity we determine bounds on the diameter and radius, which
also serve as bounds on the maximal number of fixpoint iterations. Note that
the counter based translation has a radius at least as large as the number of
states in the original system, which makes traditional symbolic reachability

11

Biere, Artho, Schuppan

analysis impractical even for medium sized problems. One important observa-
tion is that the state recording translation produces a much smaller diameter
dp and radius rp:

Theorem 4.4 dp ≤ 4 · d+ 3 and rp ≤ r + 3 · d+ 3

Proof. Let π ∈ Π⊥ be a finite path with π(i) = (si, ti) and |π| = k. Since
T⊥ is monotonic in the second component we have to distinguish two cases.
If first t0 = . . . = tk, then δ⊥(π(0), π(k)) = δ(s0, sk) ≤ d, since all paths
in K can be extended to legal paths in K⊥ by adding a fixed non changing
second state component. In the second case there exists an l with 0 ≤ l < k
with t0 = . . . = tl = ⊥ and tl+1 = . . . = tk = sl (cf Fig. 4). Now we have
two sub-paths with constant second state component as in the first case and
obtain

δ⊥(π(0), π(k)) ≤ δ(s0, sl) + 1 + δ(sl+1, sk) ≤ 2 · d+ 1

which also subsumes the bound of the first case and thus d⊥ ≤ 2 · d + 1. To
determine the bound for the radius we additionally assume that π is initialized.
Then δ(s0, sl) ≤ r and we obtain r⊥ ≤ r+d+1. With the same reasoning, since
Tp is monotonic in the second state component as well, we derive dp ≤ 2·d⊥+1
and rp ≤ r⊥ + d⊥ + 1. By substitution we derive the desired inequalities. 2

Unfortunately, there are examples where r is much smaller than d and
for reachability analysis in Kp we still have to perform more than d fix point
iterations. A modulo n counter as in Fig. 2 without the -1 state becomes such
an example if we allow all states to be initial states. Then we have d = n− 1,
r = 0, but d⊥ = 2 · n − 1 and r⊥ = n, which is already larger than d. The
number of backward iterations necessary to check a liveness property in the
original model could also be very large.

4.3 Fairness and LTL

Our translation is able to incorporate fairness. A fairness constraint is simply
a subset of S. A path π is called fair wrt. one fairness constraint F i ⊆ S iff
some state in F i occurs infinitely often on π. If π is fair, then π is infinite,
written |π| =∞. Formally we add a fifth component F to a model, where F
is a possibly empty list of fairness constraints F = (F 1, . . . , Fm). Then a path
is fair for K iff it is fair wrt. every F i. The semantics of models with fairness
constraints is defined as in the unfair case, except that all paths are required
to be fair. Bisimulation with fairness is defined by expanding the transition
based definition stated above to whole fair paths as in [12]: the additional
requirement is that for all fair paths π ∈ Π there exists a fair path π′ ∈ Π′

with π ∼ π′, where π ∼ π′ iff π(i) ∼ π′(i) for all i ≥ 0. To handle a fair Kripke
structure K(S, I, T, L, F) we construct Kp(Sp, Ip, Tp, Lp, Fp) where Sp, Ip, Tp,
and Lp are defined as above and F is extended to

Fp = (F 1 × (S ∪ {⊥})× {0, 1}, . . . , Fm × (S ∪ {⊥})× {0, 1}).
12

Biere, Artho, Schuppan

We define KF
p = (SFp , I

F
p , T

F
p , L

F
p) with SFp = Sp × {0, 1}m and IFp = Ip ×

{(0, . . . , 0)} by replacing each fairness constraint F i with a state bit that
remembers whether a loop state in F i has been reached. Let LFp be the
natural extension of Lp as before. Let (s, t, x, v), (s′, t′, x′, v′) ∈ SFp with
s, s′ ∈ S, t, t′ ∈ S ∪ {⊥}, x, x′ ∈ {0, 1} and v, v′ ∈ {0, 1}m. The transition
relation T Fp is satisfied for (s, t, x, v) and (s′, t′, x′, v′) as current and next state
iff

Tp(((s, t), x) , ((s′, t′), x′)) ∧∧m
i=1 (v′(i) = v(i) ∨ (t′ 6= ⊥ ∧ s ∈ F i ∧ v′(i) = 1))

which is again monotonic in the new fairness components of the state space.
We further add a new atomic proposition qF with

qF ∈ LFp (((s, t, x, v)) ⇔ (v(1) = . . . = v(m) = 1) → q ∈ Lp((s, t), x)

where q is defined as for Kp. We can prove a correctness result like before,
now including fairness.

Theorem 4.5 (K,AFp) and (KF
p ,AG qF) are equivalent.

The number of added state bits grows linearly in the number m of fairness
constraints. This directly corresponds to the increase in size of the input for
symbolic model checking. The state space KF

p itself grows exponentially. So
does the diameter and the radius. The approach seems to be feasible, at least
for explicit model checking, only for a small number of fairness constraints.
However, checking AG qF will always find shortest counter examples.

An alternative approach counts the number of fairness constraints satisfied
sofar, similar to the well known translation of generalized Büchi automata
into ordinary Büchi automata. It produces a liveness property with a single
fairness constraint, which in turn is translated into a safety property. This
approach is more space efficient. It requires only logarithmic additional state
bits. However it fails to generate counter example traces of minimal length.
In addition, it is not clear how this binary encoding performs for symbolic
model checking versus the one-hot encoding discussed before.

Since generalized Büchi automata and thus LTL [14] can be translated into
fair Kripke structures, our translation also applies to LTL model checking in
general. Additionally it is possible to derive special translation rules for other
standard LTL operators. For example to handle p1U p2 we use

p1U p2 ≡ (p1 Uweak p2) ∧ Fp2

where the weak until operator p1 Uweak p2 is defined to be valid for a path
iff p1 does not stop to hold before p2 holds or p1 holds along the whole path.
By adding a state bit that remembers whether p2 was fulfilled already, the
weak until can easily be transformed into a simple safety property. Then the

13

Biere, Artho, Schuppan

check true check false counterexample false

n live count safe live count safe live count safe

4 8 (4+ 4) 9 (9+0) 8 (8+0) 5 (4+1) 5 (5+0) 4 (4+0) 7 (3+ 4) 5 (0+5) 4 (0+4)

8 16 (8+ 8) 17(17+0) 16(16+0) 9 (8+1) 9 (9+0) 8 (8+0) 15 (7+ 8) 9 (0+9) 8 (0+8)

12 24(12+12) 25(25+0) 24(24+0) 13(12+1) 13(13+0) 12(12+0) 23(11+12) 13(0+13) 12(0+12)

16 32(16+16) 33(33+0) 32(32+0) 17(16+1) 17(17+0) 16(16+0) 31(15+16) 17(0+17) 16(0+16)

Table 1
Counters

eventuality Fp2 is translated into a safety property as well, with our original
translation. Finally, we check both safety properties simultaneously.

5 Experiments

In this section, we show the results of our translation applied to various exam-
ples, both theoretical and “real world” ones. Each table is divided into three
main parts: the left part, with the iterations needed for the correct model, the
middle part, where the model is incorrect, and the right part, which shows
the iterations needed to compute a counter example for the incorrect model.
The three main parts are further split up into one column for each different
approach: live for the conventional liveness approach, count for the counter
based approach (not used in the FireWire example), and safe for our state
recording translation. For each version, the number of overall, forward, and
reverse iterations is shown.

5.1 Simple Counters

In the case of a simple counter in Table 1 all approaches perform linearly in the
number of iterations wrt. the model size. Computing the counter example,
however, requires nearly twice as many iterations with the live version as
opposed to our method.

For the counters used in Table 2 the desired state n can be reached from
any state in one step. There are only two iterations needed to complete a loop,
and n backward iterations to reach all possible predecessors. With the counter
based approach, n + 1 iterations are required to enumerate enough states,
and another iteration to reach state n. Our approach requires a constant
number of five iterations for a correct model: One iteration to reach all possible
successor states; from those states, a second iteration to reach state n. The
third iteration reaches the initial state 0 again, from which two more iterations
are required to prove the liveness within the loop.

The false example requires two iterations for the loop, and with the live
version, another backward iteration for the initial state as a predecessor. The
counter based approach is very inefficient. The counter example analysis shows
a similar behavior.

14

Biere, Artho, Schuppan

check true check false counterexample false

n live count safe live count safe live count safe

4 6 (2+ 4) 6 (6+0) 5 (5+0) 3 (2+1) 5 (5+0) 2 (2+0) 3 (1+2) 5 (0+5) 2 (0+2)

8 10 (2+ 8) 10 (10+0) 5 (5+0) 3 (2+1) 9 (9+0) 2 (2+0) 3 (1+2) 9 (0+9) 2 (0+2)

12 14 (2+12) 14 (14+0) 5 (5+0) 3 (2+1) 13 (13+0) 2 (2+0) 3 (1+2) 13 (0+13) 2 (0+2)

16 18 (2+16) 18 (18+0) 5 (5+0) 3 (2+1) 17 (17+0) 2 (2+0) 3 (1+2) 17 (0+17) 2 (0+2)

Table 2
Skipping Counters

5.2 IEEE 1394 FireWire – Tree Identify Protocol

IEEE 1394 (FireWire) [16] is a protocol for a serial high-speed bus widely used
to interconnect multimedia devices and PCs. To ensure correct functioning of
the protocol the nodes connected to an IEEE 1394 bus are required to form a
tree. The Tree Identify Protocol is executed each time the bus configuration
changes to verify this condition and to elect a unique leader who has extended
responsibilities in later phases of the protocol. In previous work [25,24] we
have verified several properties of the Tree Identify Protocol with SMV.

The single most important property to be verified in the tree identify
phase is the designation of a leader before the next phase of the protocol is
reached. This property was checked in our experiments for both the original
(correct) version of the model from [24] and a version with a bug preventing
the successful completion of the protocol. In the SMV input language it is
formulated for 2 nodes as follows

AF (node[0].root | node[1].root | timeout | known_problems)

where root, timeout and known problems are state properties. Separate
safety properties are used to ensure that neither timeout nor known problems

have occurred. Once verified these conditions could be removed from the
model and are not included in the performance figures given here.

During the run of the protocol two nodes might be left competing to be-
come root. In this case a sub-protocol is invoked to resolve this situation,
called root contention. Both contending nodes non-deterministically choose
to wait for either a short or a long time before continuing. If the nodes chose
differently one of them will become root. Otherwise the sub-protocol is re-
peated. A fairness condition ensures that the two nodes will make a different
choice at some point.

Most of the steps in the translation process described in Sect. 4 have been
automated. For the translation a flat model is generated with NuSMV [10].
Additional variables are introduced to record the saved state, to represent
the oracle, and to keep track whether each fairness condition has been true
on the loop. Simple liveness properties of the form AF p are also translated
automatically. More complicated properties need to be reformulated by the
user either by using the automata based approach or by simple transformations

15

Biere, Artho, Schuppan

check true check false cex false

n p live safe live safe live safe

2 2 74 (19 + 55) 24 (24 + 0) 34 (19 + 15) 13 (13 + 0) 132 (13 + 119) 13 (0 + 13)

2 3 74 (19 + 55) 24 (24 + 0) 35 (19 + 16) 13 (13 + 0) 132 (13 + 119) 13 (0 + 13)

2 4 78 (19 + 59) 24 (24 + 0) 36 (19 + 17) 13 (13 + 0) 132 (13 + 119) 13 (0 + 13)

3 2 76 (21 + 55) 23 (23 + 0) 36 (21 + 15) 11 (11 + 0) 67 (10 + 57) 11 (0 + 11)

3 3 77 (21 + 56) 23 (23 + 0) 37 (21 + 16) 11 (11 + 0) 67 (10 + 57) 11 (0 + 11)

3 4 77 (21 + 56) 23 (23 + 0) 37 (21 + 16) 11 (11 + 0) 67 (10 + 57) 11 (0 + 11)

4 2 129 (31 + 98) 36 (36 + 0) 52 (31 + 21) 19 (19 + 0) 215 (19 + 196) 19 (0 + 19)

Table 3
Leader election in the Tree Identify Protocol - iterations

check true check + cex false

live safe live safe

n p time memory time memory time memory time memory

2 2 0.85 66941 4.19 397030 1.12 103299 2.64 282859

2 3 1.93 201680 11.07 782574 2.65 215169 6.82 595756

2 4 4.71 443947 28.22 1296088 5.45 402535 16.00 944482

3 2 11.33 699222 39.45 1946866 7.59 718910 12.09 772508

3 3 76.05 3777278 283.07 9578242 53.60 3678676 86.82 4217925

3 4 450.72 29220542 1567.67 31759998 259.51 19588279 554.39 14364650

4 2 357.30 14001693 1376.18 35547502 204.82 12500473 644.18 24864717

Table 4
Leader election in the Tree Identify Protocol

similar to the one we presented for the until operator in Sect. 4.3. Finally, an
improved variable order is generated. To allow for a fair comparison the live
model was also flattened before checking.

We used Cadence SMV [20] on a Pentium III-800 running Linux 2.2.19.
Execution time and memory usage were limited to 1 hour and 1 GB respec-
tively. Since an optimized variable order was provided explicitly, dynamic
reordering had been disabled. In separate runs we checked that dynamic re-
ordering produces comparable orders. Note that, enabling dynamic reordering
would have increased runtimes dramatically.

Configurations with 2 – 4 nodes and 2 – 4 ports were checked. Table 3
shows the number of iterations. Table 4 lists execution time in seconds and
memory usage in peak number of BDD nodes. Combinations of nodes and
ports not shown could not be handled within the given time and memory
bounds.

In each case, the safe version requires much fewer overall iterations than the
live version. Only for the correct model the safe version needs more forward
iterations than the live version. While run time and memory usage for the safe
version of the correct model is up to 6 times higher than for the live version,
the relation improves in the buggy case.

16

Biere, Artho, Schuppan

6 Conclusion

In this paper we presented a translation that allows to check liveness properties
by checking safety properties. Our main contributions can be summarized as
follows:

(i) For commercial or proprietary safety checking tools it may not be feasible
for the user to change the algorithms. Our technique allows to apply such
tools to liveness, which were supposed to check safety properties only.

(ii) The experiments indicate that our technique is comparable with special-
ized algorithms. Additionally we are able to find counter example traces
of minimal length.

(iii) With our translation theoretical results on safety checking can be lifted
to liveness checking. Therefore special treatment of liveness properties
can only be justified by experiments or additional complexity results.

The main open question is how the number of state bits introduced by our
translation can further be reduced. We also want to apply the method to
liveness checking with sequential ATPG and STE.

References

[1] Biere, A., A. Cimatti, E. Clarke and Y. Zhu, Symbolic model checking without
BDDs, in: TACAS, 99.

[2] Biere, A., E. Clarke and Y. Zhu, Multiple state and single state tableaux for
combining local and global model checking, in: Correct System Design (Recent
Insights and Advances), number 1710 in LNCS, 2000.

[3] Boppana, V., S. Rajan, K. Takayama and M. Fujita, Model checking based on
sequential ATPG, in: CAV, 99.

[4] Browne, M., E. Clarke and O. Grumberg, Characterizing finite Kripke structures
in propositional logic, Theoretical Computer Science 59 (1988).

[5] Bryant, R., Graph-based algorithms for boolean function manipulation, IEEE
Transactions on Computers 35 (1986).

[6] Bryant, R. and C.-J. Seger, Formal verification of digital circuits using symbolic
ternary system models, in: CAV, 1990.

[7] Burch, J., E. Clarke, D. Long, K. McMillan and D. Dill, Symbolic model
checking for sequential circuit verification, IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems 13 (1994).

[8] Cabodi, G., P. Camurati and S. Quer, Improved reachability analysis of large
finite state machines, in: ICCAD, 1996.

[9] Chou, C.-T., The mathematical foundation of symbolic trajectory evaluation, in:
CAV, 1999.

17

Biere, Artho, Schuppan

[10] Cimatti, A., E. Clarke, F. Giunchiglia and M. Roveri, NuSMV: a new symbolic
model verifier, in: CAV, 99.

[11] Clarke, E. and A. Emerson, Design and synthesis of synchronization skeletons
using branching time temporal logic, in: IBM Workshop on Logics of Programs,
1981.

[12] Clarke, E., O. Grumberg and D. Peled, “Model Checking,” MIT Press, 1999.

[13] Emerson, A., Temporal and modal logic, in: Handbook Theoretical Computer
Science: Volume B, Formal Methods and Semantics (1995).

[14] Gerth, R., D. Peled, M. Vardi and P. Wolper, Simple on-the-fly automatic
verification of linear temporal logic, in: 15th Workshop on Protocol Specification,
Testing, and Verification (1995).

[15] Henzinger, T., O. Kupferman and S. Qadeer, From pre-historic to post-modern
symbolic model checking, in: CAV, 1998.

[16] IEEE, “IEEE Standard for a High Performance Serial Bus. Std 1394-1995, and
Supplement 1394a-2000,” (1995, 2000).

[17] Iwashita, H. and T. Nakata, CTL model checking based on forward state
traversal, in: ICCAD, 1996.

[18] Kupferman, O. and M. Vardi, Model checking of safety properties, in: CAV,
1999.

[19] Lamport, L., Proving the correctness of multiprocess programs, IEEE
Transactions on Software Engineering 3 (1977).

[20] McMillan, K., Cadence SMV,
http://www-cad.eecs.berkeley.edu/~kenmcmil/smv.

[21] McMillan, K., “Symbolic Model Checking: An Approach to the State Explosion
Problem,” Kluwer Academic Publishers, 1993.

[22] Niermann, T. and J. Patel, Hitec: A test generation package for sequential
circuits, in: EURODAC, 1991.

[23] Ravi, K. and F. Somenzi, High density reachability analysis, in: ICCAD, 1995.

[24] Schuppan, V. and A. Biere, Verifying the IEEE 1394 FireWire Tree Identify
Protocol with SMV Submitted.

[25] Schuppan, V. and A. Biere, A simple verification of the Tree Identify Protocol
with SMV, in: IEEE 1394 (FireWire) Workshop, 2001.

[26] Seger, C.-J. and R. Bryant, Formal verification by symbolic evaluation of
partially-ordered trajectories, Formal Methods in System Design 6 (1995).

[27] Yang, J. and C.-J. Seger, Introduction to generalized symbolic trajectory
evaluation, in: ICCD, 2001.

18

		Introduction

		Intuition

		Counter Based Translation

		State Recording Translation

		Translation of fairness into safety

		Preliminaries

		Translation

		Correctness

		Complexity

		Fairness and LTL

		Experiments

		Simple Counters

		IEEE 1394 FireWire -- Tree Identify Protocol

		Conclusion

