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Abstract. Increasing interest towards property based design calls for effective
satisfiability procedures for expressive temporal logics, e.g. the IEEE standard
Property Specification Language (PSL).
In this paper, we propose a new approach to the satisfiability of PSL formulae; we
follow recent approaches to decision procedures for Satisfiability Modulo Theory,
typically applied to fragments of First Order Logic. The underlying intuition is
to combine two interacting search mechanisms: on one side, we search for as-
signments that satisfy the Boolean abstraction of the problem; on the other, we
invoke a solver for temporal satisfiability on the conjunction of temporal for-
mulae corresponding to the assignment. Within this framework, we explore two
directions. First, given the fixed polarity of each constraint in the theory solver,
aggressive simplifications can be applied. Second, we analyze the idea of conflict
reconstruction: whenever a satisfying assignment at the level of the Boolean ab-
straction results in a temporally unsatisfiable problem, we identify inconsistent
subsets that can be used to rule out possibly many other assignments. We pro-
pose two methods to extract conflict sets on conjunctions of temporal formulae
(one based on BDD-based Model Checking, and one based on SAT-based Simple
Bounded Model Checking). We analyze the limits and the merits of the approach
with a thorough experimental evaluation.


1 Introduction


The role of properties in the design flow is becoming increasingly important. Properties
can be used to describe design intent, document designs, and enable for earlier valida-
tion steps (e.g. in requirements analysis, realizability, and even in synthesis). Satisfiabil-
ity engines for temporal logic formulae can be important backbones of property-based
design. They can be used to show that a set of requirements is consistent, or entails
some required properties, or is compatible with some desirable behaviors [27].


Given the degree of sophistication of model checking technologies, it would be
tempting to reduce temporal logic satisfiability to model checking algorithms. How-
ever, model checking and requirements analysis are inherently different, and substantial
problems from the user’s perspective are open. For example, providing diagnostic in-
formation in case of inconsistency of a specification can not be solved by searching for
a counterexample trace: the user is working at the level of requirements, and thus the
inconsistency should be identified at the same level, e.g. as a subset of inconsistent re-
quirements. Furthermore, this approach may have some limitations: in fact, techniques
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and tools for temporal logic model checking are focusing on complexity in the model,
and even reductions on the temporal logic formula [30] are oriented to dominating the
complexity in the model.


In this paper we propose a novel approach to the satisfiability of temporal logic.
The intuition is to combine two forms of search: Boolean enumeration and temporal
reasoning. Boolean enumeration is carried out on the propositional abstraction of the
specification, where temporal atoms are abstracted into Boolean atoms; once a satis-
fying assignment is available, temporal reasoning is invoked on the corresponding set
of temporal formulae. If a model is found, then the problem is satisfiable, otherwise
reasoning theory is used to reconstruct a conflict, and the iteration is restarted.


This approach is mutuated by recent work on Satisfiability Modulo Theories
(SMT) [8]. To the best of our knowledge, this is the first time the SMT paradigm,
typically used for decidable fragments of First Order Logics, is applied to temporal sat-
isfiability. This choice provides a clear conceptual framework, and suggests several im-
portant directions. First, don’t cares in the Boolean abstraction of the problem pinpoint
temporal formulae that are irrelevant for satisfiability, and can be safely ignored, thus
reducing the effort to be carried out in temporal reasoning. Second, fixed polarity con-
straints are given in input to the theory solver: this enables more aggressive simplifica-
tions of the input problem (e.g. pure literal rule). Third, the theory solvers for temporal
logic should be extended to provide unsatisfiable cores (or simply unsat cores): these
are explanations for unsatisfiability, i.e. inconsistent subsets of the problem in input.
This information can be used to rule out all those assignments that satisfy the Boolean
abstraction of the problem, but are associated with a superset of an unsatisfiable core.
We extend two satisfiability checking algorithms, one based on BDD-based language
emptiness [12], and one on SAT-based Simple Bounded Model Checking (SBMC) [20],
to return unsat cores. This is in general an interesting aspect, since it enables to provide
explanations for unsatisfiability, and ultimately to generalize the idea of unsatisfiable
core to the case of temporal logic.


We instantiate our approach on the Property Specification Language (PSL) [1], for
its high expressiveness (it captures all ω-regular languages), and its practical interest.
We remark however that the approach is general, and independent of the specific tem-
poral logic at hand. The approach has been implemented within the NUSMV model
checker [9]. A notable feature at the implementation level is that we use Binary De-
cision Diagrams as the top level enumeration mechanism. This is in contrast to the
current trends in SMT, where DPLL-based enumeration is becoming a de facto stan-
dard. A DPLL-based enumeration could have been adopted here, and will be in fact
investigated in the future. The BDD-based approach is justified by the fact that for the
problems at hand the Boolean splitting is dominated by the temporal one, and as such,
BDD-based reasoning turns out not to be a bottleneck. The approach has been experi-
mentally evaluated on a large set of benchmarks, both for BDD-based and SAT-based
techniques, and the results are very promising.


This paper is structured as follows. In Section 2, we shortly present the temporal
logic PSL. In Section 3, we discuss previous approaches to temporal logic satisfiability.
In Section 4, we overview the proposed approach. In Section 5, we discuss the idea
of pure literal simplification, and the algorithms for the extraction of unsat cores. In
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Section 6, we experimentally evaluate our approach. Finally, in Section 7, we draw
some conclusions and outline directions for future work.


2 The Property Specification Language PSL


In this paper, we use PSL [1] as our temporal logic. PSL is a very rich language. Here
we consider a subset, which is mostly used in practice, and provides ω-regular expres-
siveness [3]. The subset combines Linear Temporal Logic [28] (LTL) and Sequential
Extended Regular Expressions (SERE) [1]. (SEREs extend classical regular expres-
sions with language intersection, thus allowing for a greater succinctness at a cost of
a possible exponential blow-up in the conversion to automata. Moreover, the atoms of
SEREs are Boolean expressions enabling efficient determinization of automata.)


In the definition of the PSL syntax, for technical reasons, we introduce the “suffix
conjunction” connective as a dual of the suffix implication. Moreover, we consider only
the strong version of the temporal operators (the weak operators can be rewritten in
terms of the strong ones [1]) and the strong version of the SEREs (though our approach
can be easily extended to deal also with the weak semantics).


Definition 1 (PSL syntax). Assume a set A of atomic propositions. We define the PSL
formulae, as follows:


– if p ∈A , p is a PSL formula;
– if φ1 and φ2 are PSL formulae, then ¬¬¬φ1, φ1∧∧∧φ2, φ1∨∨∨φ2 are PSL formulae;
– if φ1 and φ2 are PSL formulae, then Xφ1, φ1Uφ2 , φ1Rφ2 are PSL formulae;
– if r is a SERE and φ is a PSL formulae, then r 3→3→3→ φ and r |→|→|→ φ are PSL formulae;
– if r is a SERE, then r is a PSL formula.


The X (“next-time”), the U (“until”), and the R (“releases”) operators are called tem-
poral operators. We call the 3→3→3→ (“suffix conjunction”), and the |→|→|→ (“suffix impli-
cation”), suffix operators. Notice that, the r not occurring in the left side of a suffix
operator is the strong version of a SERE (r! in the PSL notation). In the following, we
will consider such r as an abbreviation for r 3→3→3→ True [4]. We also use Gφ as an ab-
breviation for ¬(True U ¬φ). LTL can be seen as a subset of PSL in which the suffix
operators and the SEREs are suppressed.


We refer the reader to [1] for a formal definition of the semantics of PSL, and in
particular of the entailment relation w |= φ for any infinite word w over a given alphabet
Σ (Σ = 2A ) and PSL formula φ . Notice that we can build Boolean expressions by
means of atomic formulae and Boolean connectives. The language of a PSL formula φ


over the alphabet Σ is defined as the set L (φ) := {w ∈ Σ ω | w |= φ}. The satisfiability
problem is to check if L (φ) 6= /0 for a given PSL formula φ .


3 Previous Approaches to PSL Satisfiability


Satisfiability of temporal logics [15] has been widely studied. The seminal work of [32]
established the PSPACE-completeness of the satisfiability problem for LTL. Since then,
many techniques have been proposed to solve the problem. The first decision procedures
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are based on tableau systems [34,24,23]. The tableau rules exploit the connection be-
tween the syntax of formulae and the tableau structures. The expansion is terminated
by some criteria based either on the recurrence of nodes or on maximal strongly con-
nected components. Temporal resolution has been devoted some attention [16] and has
been used as a basis for works based on theorem proving, as well as inspiration for
SNF-based LTL bounded model checking. Satisfiability of LTL can also be reduced to
check language emptiness of Nondeterministic Büchi automata (NBA) [33] or to check
the existence of a winning strategy for focus games [22].


In particular, if we reduce the satisfiability problem to checking the emptiness of
the language of an NBA, we can exploit model checking engines: it is possible to check
the satisfiability of formula φ by model checking the validity of the negation of φ on a
completely nondeterministic Kripke Structure. This way we can exploit symbolic tech-
niques both for the translation of the formula into Büchi automata and for the emptiness
checking [12]. Alternatively, it is possible to use SAT based bounded model checking
techniques as in [5].


The satisfiability problem has been extended also to other temporal logics. In par-
ticular, [2] studied the satisfiability of richer languages that combine LTL with regular
expressions, such as ForSpec [2] and PSL [1]. The satisfiability of subsets of ITL [18]
has also been studied in [26].


We now concentrate on recent approaches to dealing with satisfiability of PSL,
namely [19,7,10,29,11]. The first step in the so-called monolithic approaches is to con-
vert the PSL problem in a monolithic alternating Büchi automaton (ABA); during the
conversion, semantic simplification steps (such as the elimination of unreachable states,
and restricted forms of minimization by observational equivalence) are applied. The
ABA is then converted into a symbolically represented NBA. In [7], this is done by
means of a symbolic encoding of Miyano and Hayashi [25], and can be applied both
to BDD-based and SAT-based approaches. In [19], an encoding of the ABA that is spe-
cialized for bounded model checking is proposed.


The conversion proposed in [10] is based on the so called Suffix Operator Nor-
mal Form (SONF). The idea is to partition the translation, by first converting a PSL
formula φ into an equi-satisfiable formula in SONF, structured as


∧
i φi∧∧∧


∧
j G(p j


I →→→
(r j ?→?→?→ p j


F)), where φi are LTL formulae, r j are SEREs, p j
I and p j


F are propositional
atoms, and ?→?→?→ is either |→|→|→ or 3→3→3→ . Formulae of the form G(p j


I →→→ (r j ?→?→?→ p j
F))


are called Suffix Operator Subformulae (SOS’s). The translation first converts the for-
mula in NNF, and then “lifts out” the occurrences of suffix operators, by introducing
fresh variables (intuitively, the p j in the formula above), together with the correspond-
ing SOS. For lack of space, we omit the details regarding the conversion of SOS into
NBA; we only mention that the translation is specialized to exploit the structure of SOS
(see [10] for details).


The translation presented in [29] introduces a new variable for every subformula.
A difference is that the testers of [29] set the new variable to true if and only if the
subformula is satisfied, while in SONF the subformula is triggered by an implication,
and is, as such, more amenable to the exploitation of don’t cares.


In [10], a substantial experimental evaluation is carried out on PSL satisfiability. The
SONF based approach results in dramatic improvements in PSL automata compilation
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Fig. 1. Satisfiability modulo theory schema
for PSL.


1: function PSLSAT(Φ)
2: φ ← ABSTRACT(φ )
3: INIT(ImpIter,φ )
4: while (HASNEXT(ImpIter)) do
5: µ ← GETNEXT(ImpIter)
6: Φµ ← CONCRETIZE(µ)
7: (res,reason)← ISPSLSAT(Φµ )
8: if (res = “sat”) then
9: return “sat”


10: else
11: PRUNE(ImpIter,reason)
12: end if
13: end while
14: return “unsat”
15: end function


Fig. 2. The PSL satisfiability algorithm.


time. However, on those problems where the ABA construction succeed to build an au-
tomaton within the time limit, the search time is typically in favor of the monolithic
approach. This is mainly due to the fact that in certain examples the semantic simplifi-
cations are extremely effective. In [11], additional improvements over [10] are obtained
by applying cheap syntactic simplification rules, that result in additional savings not
only in search but also in construction time.


4 Boolean Abstraction for Temporal Satisfiability


Consider the temporal satisfiability problem Φ
.= (φ1 ↔ (φ2 ∨φ3)). If it is possible to


show that the set {φ1,φ3} is temporally satisfied by a word w, then φ2 is irrelevant:
intuitively, the truth value of φ2 over w can not affect the truth of Φ . However, all
the automata-based approaches presented in the previous section are going to compile
the formula statically: this means, for instance, that they will generate and search an
automaton taking into account each φi. Information could be potentially disregarded
because of the Boolean structure of the formula is in fact taken into account.


In this paper we propose a new approach that tries to overcome this problem. The
idea, depicted in Fig. 1, is to decouple the search for a temporal model in two interact-
ing, hierarchically connected phases: in the first, we look for a propositionally satisfying
assignment (an implicant) to the Boolean abstraction of the problem; in the second, we
check whether the set of temporal formulae corresponding to the implicant is tempo-
rally satisfiable.


We see a temporal property Φ as a Boolean combination BoolComb(φ1, . . . ,φn),
where φi are distinct temporal formulae. The Boolean abstraction of Φ is φ


.=
BoolComb(A1, . . . ,An), where the Ai are distinct Boolean variables (called the Boolean
abstraction of φi); in the example above, φ is (A1 ↔ (A2 ∨A3)). We define an assign-
ment µ for φ as a mapping from each Ai to {True,False,X}. We call µt the atoms
assigned to True, µ f the atoms assigned to False, and µx the atoms assigned to X(for
don’t care). We say that µ propositionally satisfies φ iff the formula obtained by re-
placing each occurrence of Ai ∈ µt with True, and each Ai ∈ µ f with False, evaluates
to True. A temporal model for Φ can be seen as an assignment µ satisfying φ , plus a
temporal model for the conjunction of the required temporal formulae.
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Theorem 1. Φ is satisfiable iff there exists a truth assignment µ for φ such that Φµ is
satisfiable, where


Φµ


.=
∧


i.Ai∈µt


φi ∧
∧


j.A j∈µ f


¬φ j


This theorem suggests an algorithm to check the satisfiability of a PSL formula
Φ , and in general of any temporal formula. The (disjunctive) Boolean structure of Φ ,
expressible as a disjunction of Φµ , can be used to obtain several (hopefully) smaller
automata, that can then be analyzed individually, with standard language emptiness
checks (or other techniques).


Figure 2 reports the algorithm. The function PSLSAT( ) takes in input a PSL prop-
erty Φ and returns “sat” iff Φ is satisfiable, otherwise it returns “unsat”. ABSTRACT( )
builds the Boolean abstraction for Φ . ImpIter enables enumeration of the implicants
(satisfying assignments) of φ . HASNEXT( ) returns True iff there is at least one (yet un-
explored) implicant left. GETNEXT( ) returns the next such implicant. If there is none,
then the PSL formula is unsatisfiable and “unsat” is returned (line 14). Otherwise, we
iterate for each implicant (lines 4–13). From µ the function CONCRETIZE(µ) builds the
formula Φµ corresponding to the implicant µ . ISPSLSAT( ) is a function that takes a
PSL property and returns “sat” if the property is unsatisfiable, otherwise it possibly re-
turns a reason for the unsatisfiability. This function can simply be any of the functions
reported in Sect. 3. If the Φµ is temporally satisfiable, then we are done and the top
level function returns “sat”. Otherwise, at line 11, the result is analyzed by PRUNE( ),
removing all remaining prime implicants that can be inferred to be unsatisfiable from
the obtained reason. In our implementation reason is a set of implicants corresponding
to a set of unsatisfiable cores of Φµ . Note that the unsatisfiability of Φµ establishes Φµ


itself as an unsatisfiable core.


Relations to Satisfiability Modulo Theories. The high level schema presented above
is largely inspired by the standard approaches to decision procedures for Satisfiability
Modulo Theories (SMT), implemented in a number of systems and for a number of
theories. In SMT, the enumeration of satisfying assignments is often carried out by a
DPLL-based solver, that incrementally constructs an assignment for the Boolean ab-
straction of the formula. A typical technique is early pruning, where the theory solvers
are called on the concretization of the assignment while this is being constructed. The
advantage of early pruning is that it can prune a partial assignment as soon as its con-
cretization becomes theory-unsatisfiable.


Some SMT solvers do attempt to extract don’t care information on the Boolean
abstraction; the combination with early pruning, however, appears to be nontrivial. Here
we take a different perspective: we do not rely on early pruning, and try to exploit the
presence of don’t cares as much as possible, by enumerating prime implicants. This
enables us to limit the number of theory constraints (PSL properties) sent to the theory
solver. We base our Boolean enumeration on a BDD package, that provides primitives
for on-the-fly extraction of one prime implicant. This choice is mostly motivated by
the fact that the complexity of the temporal reasoning often dominates the problem,
and thus BDD-based enumeration of prime implicants is not a bottleneck; in the future
we also plan to experiment with DPLL-based enumeration. Another interesting feature
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is that “essential literals”, i.e. literals that are common to all prime implicants, can be
extracted at a reasonable cost. Notice that the set of essential literals includes all literals
that can be obtained by standard SAT-based unit propagation and potentially more.


A key issue with SMT is the ability to avoid the same mistake in theory reason-
ing: more precisely, we don’t want to try a prime implicant, if its intersection with a
previously disproved one concretizes to an inconsistent set of temporal formulae. This
problem is addressed by requiring that theory solvers should return a conflict set, i.e. an
inconsistent subset of the problem it was given in input. In DPLL-based SMT, theory
solvers are able to express conflicts in form of conflict clauses, that can be easily inte-
grated with the conflict analysis and back-jumping mechanism. In the next section, we
discuss how to address this problem in the setting of temporal satisfiability.


5 A Theory Solver for Temporal Logic


We now discuss how to design a theory solver. First, we exploit the fact that the input
problem is a conjunction of temporal constraints with fixed polarity. This opens up to
many optimizations. A particularly interesting simplification, given the fixed polarity
of the constraints, is based on the notion of pure literal for PSL (Sect. 5.1). Then, we
propose two new methods for the extraction of unsatisfiable cores (conflict sets) from
the standard PSL satisfiability algorithms, one based on the use of BDD techniques
(Sect. 5.2), and the second based on the use of SAT techniques (Sect. 5.3).


5.1 Pure Literal Simplification for PSL


First, we extend the notion of positive/negative occurrence of a proposition (the notion
of positive/negative occurrence of a proposition in a Boolean expression is assumed to
be known), and then we extend the notion to PSL formulae.


Definition 2. If an occurrence of p in a Boolean expression b is positive [resp., nega-
tive] and b occurs in a SERE r, then that occurrence of p is positive [resp., negative] in
r too.


Let φ be a PSL formula and p a proposition. We define if an occurrence of p in φ is
positive [resp., negative] recursively on the syntax of PSL formulae:


– p is a positive occurrence of p in p
– every positive [resp., negative] occurrence of p in φ is a negative [resp., positive]


occurrence in ¬φ


– every positive [resp., negative] occurrence of p in φ is a positive [resp., negative]
occurrence in Xφ , ψ ∧φ , φ ∧ψ , ψUφ , φUψ , φRψ , ψRφ , r |→|→|→ φ , and r 3→3→3→ φ


– every positive [resp., negative] occurrence of p in r is a positive [resp., negative]
occurrence in r 3→3→3→ φ


– every positive [resp., negative] occurrence of p in r is a negative [resp., positive]
occurrence in r |→|→|→ φ


We now define when a proposition is pure. Intuitively, if the proposition is pure,
we can substitute every occurrence with either true or false, depending on the polarity,
without affecting the satisfiability.
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Definition 3. Let φ be a PSL formula and p a proposition. p is pure positive [pure
negative, resp.] in φ iff all the occurrences of p are positive [negative, resp.].


Theorem 2. If p is pure positive [pure negative, resp.] in φ , then φ is satisfiable iff
φ [>/p] [resp., φ [⊥/p]] is satisfiable.


5.2 BDD-based Inconsistency Analysis
The first inconsistency analysis technique exploits a BDD-based computation of the
fair states, i.e. those states that are the starting point of an accepting path. The standard
symbolic procedure to check language emptiness (LE) [12] builds an automaton for the
input formula Φ , computes the set of fair states and intersects it with the initial states:
the resulting set (denoted with [[Φ ]]) contains all states that are the starting point of
some path that accepts Φ .


Let φ0, . . . ,φn be temporal formulae with a top-level temporal operator over a set
of atomic propositions AP. For each temporal formula φi, we introduce an activation
variable. Let A0, . . . ,An be atomic propositions not in AP. We define a formula Ψ as


Ψ =
∧


i


Ai→ φi(x)


The set [[Ψ ]] resulting from applying LE to Ψ is conditioned by the activation vari-
ables: it contains tuples of state variables from the automata of the φi together with
the activation variables Ai. In order to obtain the sets of temporal formulae φi which
are inconsistent, we look at those tuples of activation variables that do not have any
corresponding state in [[Ψ ]].


Formally, suppose that MΨ is an automaton represented with a set V of state vari-
ables and that MΨ encodes the formula Ψ so that a set [[Ψ ]] of states is defined in such
a way that:
1. all states in [[Ψ ]] are the starting point of some path accepting Ψ ;
2. all words satisfying Ψ are accepted by some path starting from [[Ψ ]].


Suppose that V contains a variable vAi for every activation variable Ai such that a state
s assigns vAi to true iff all paths starting from s accept the propositional formula Ai. Let
VA = {vA0 . . .vAn} and V ′ = Vψ \VA. 3


Theorem 3. Let UC be a subset of {0, . . . ,k}. Then, there exists a state s in [[Ψ ]] such
that s |=


∧
i∈UC vAi iff


∧
i∈UC φi is satisfiable.


Corollary 1. ∃V ′([[Ψ ]]) = {s ∈ 2VA |
∧


i.s|=vAi
φi is sat}


¬∃V ′([[Ψ ]]) = {s ∈ 2VA |
∧


i.s|=vAi
φi is unsat}


Thus, the set ¬∃V ′([[Ψ ]]) encodes all the possible subset of the implicant φ0, . . . ,φn
that are inconsistent. When using SAT-based enumeration of implicants, we should not
add all the clauses corresponding to the above set as blocking clauses. Instead, tech-
niques to minimize the configurations should be employed. In our BDD-based setting,
the information can be directly fed back to the main search (by a simple conjunction
within the prime implicants enumeration routine) in order to prevent the next iterations
of Boolean enumeration from producing PSL-unsatisfiable configurations.


3 Note that the LTL compilation of [12] and the PSL compilation discussed in Section 3 satisfy
all these assumptions.
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5.3 SAT-based Inconsistency Analysis


Standard incremental SAT-based bounded model checkers with completeness, such as
[19], can be used off-the-shelf to determine language emptiness for LTL formulae.
These approaches can be extended to extract an unsatisfiable core from a conjunction
of temporal constraints.


Intuitively, the extraction relies on the ability of a Boolean SAT solver such as Mini-
Sat [14] to check satisfiability of a Boolean formula f under a set of assumed literals
{li}, i.e., (


∧
i li)∧ f . If that turns out to be unsatisfiable, the SAT solver returns a subset


UC ⊆ {li} such that UC∧ f is still unsatisfiable. Given a prime implicant Φµ we prefix
the formulae φi with activation variables Ai as in the previous section. We then supply
the literals corresponding to the value True for the activation variables at the initial
time step as assumptions to the SAT solver. When a subset of these literals is reported
to cause a conflict, it is straightforward to obtain the corresponding unsatisfiable core
of Φµ . This SAT approach, differently from the BDD-based approach, computes only a
single rather than the set of all unsatisfiable cores for Φµ . In the following we formalize
that intuition.


SAT-based bounded model checking [5] represents a finite path π of length k over
a set of variables V as the valuations of a set of variables V [0,k], where V [0,k] contains
one variable v[i] for each v ∈V and 0≤ i≤ k.


Given a set of variables V , a linear temporal logic formula φ , and a natural number
k, a SAT-based bounded model checker following the approach [6] in Fig. 3 generates
the following Boolean formulae:4


1. a witness formula |[V,φ ,k]| over (a superset of) V [0,k]. The set of satisfying as-
signments of |[V,φ ,k]| corresponds exactly to the set of paths π[0,k] such that π


represents a lasso-shaped path that satisfies φ .
2. a completeness formula 〈〈V,φ ,k〉〉 over (a superset of) V [0,k]. If 〈〈V,φ ,k〉〉 is un-


satisfiable, then φ is unsatisfiable.


Let Φµ be a prime implicant with atoms {φ0, . . . ,φn} and activation variables
{A0, . . . ,An}, and let ψ be Φµ prefixed with activation variables as in the previous sec-
tion. Then we have


Lemma 1. (
∧


i vAi [0])∧ |[V ∪VA,ψ,k]| is satisfiable iff there is a lasso-shaped witness
π[0, l−1]◦π[l,k]ω of Φµ .


Lemma 2. Let UC ⊆ {0, . . . ,n}. If 〈〈V ∪VA,ψ,k〉〉 is unsatisfiable under assumptions
{vAi [0] | i ∈ UC} then


∧
i∈UC φi is unsatisfiable.


Theorem 4. The algorithm in Fig. 3 returns Sat iff Φµ is satisfiable. If it returns
(Unsat,UC), then UC is an unsatisfiable core of Φµ .


4 Model checking typically involves both, a model and a temporal logic formula. As we are only
concerned with satisfiability of linear temporal logic formulae, we disregard the model part.
To simplify the presentation we also disregard that (1) the witness formula typically allows
to detect finite violating prefixes of safety properties [21] and (2) guaranteeing termination
requires additional constraints [31,6]. Our implementation handles both.
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1: function LE SAT(Φµ )
2: k← 0
3: while (True) do
4: (res,UC)← SAT ASSUME(〈〈V ∪VA,ψ,k〉〉, {vA[0] | vA ∈VA})
5: if (res = Unsat) then return (Unsat,{φi | vAi [0] ∈ UC})
6: res← SAT((


∧
vA∈VA


vA[0])∧|[V ∪VA,ψ,k]|)
7: if (res = Sat) then return Sat
8: k← k +1
9: end while


10: end function


Fig. 3. SAT-based language emptiness with unsatisfiable cores.


6 Experiments


The algorithms described in previous sections have been implemented within the
NUSMV model checker [9]. To show the effectiveness of the proposed approach, we
carried out an experimental evaluation, based on the benchmarks proposed in [10,11],
in [17], and also on some benchmarks collected from the web. The benchmarks
from [10,11] are random properties obtained by applying to randomly generated
SEREs typical patterns extracted from industrial case studies [13]. The benchmarks
are either randomly generated Boolean combinations of such typical properties, or
implications/bi-implications between large conjunctions of such typical properties. The
latter cases model refinement and equivalence among specifications, as is often seen
in requirements engineering. The benchmarks from [17] are properties coming from a
requirements engineering domain, and model whether a given property is implied by a
big conjunction of other properties.


We evaluate the Boolean abstraction approach using BDD-based theory solving,
and SAT-based SBMC theory solving, both based on the SONF algorithm for PSL sat-
isfiability presented in [11]. The same approach was also chosen as a base line for
the evaluation of performance improvements. (We also considered the possibility to
include in our comparison other tools, e.g. [22,26], at least for pure LTL problems.
However, some preliminary experiments on moderate-sized problems clearly indicated
that the satisfiability based on model checking is vastly superior, at least in terms of
the currently available implementations.) In the experiments, we evaluate the impact
of Boolean abstraction, pure literal simplification, and feedback.


All experiments were run on a 3 GHz Intel CPU equipped with 4 GB of memory
running Linux; for each run, we used a timeout of 120 seconds and a memory limit
of 768 MB. For all methods, we used the settings that turned out to provide better
results in [10,11]. For BDD-based methods, dynamic variable reordering was used, and
forward reachability simplification was enabled on the tableau automata. For SAT-based
methods, we used MiniSAT [14], and we enabled the completeness check based on the
simple path constraint. The complete test suite and an extended version of this paper
can be found at http://sra.itc.it/people/roveri/cav07-bapsl/.


In the following we use method descriptors consisting of up to five parts to describe
an approach. (1) If ba is present, Boolean abstraction is used. (2) sbmc or bdd indi-
cates whether SAT- or BDD-based solvers are used. (3) Presence of fb indicates that
feedback is used. Finally, (4) pt and (5) ppi stand for pure literal simplification applied
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Fig. 4. Solving time of approaches with and without Boolean abstraction.


at the top and prime-implicant levels, respectively. As an example, babddptppi stands
for BDD-based solver with Boolean abstraction and with the pure literal simplification
applied both to the the top-level formula and to each prime implicant, but without using
feedback. bdd and sbmc mark the respective base line approaches.


In Fig. 4, we report the scatter plots comparing the Boolean abstraction approaches
(no pure literal simplification and no feedback) against the corresponding base line
without Boolean abstraction. The plots show that the Boolean enumeration approach
may lead to advantages in the case of SAT, and is vastly superior in the case of BDDs.


In Fig. 5, we compare Boolean abstraction with and without pure literal simplifi-
cation. The plots show that the pure literal simplification dramatically reduces search
time, both when applied at the prime implicant (row 1) and at the top level (row 2).
Row 3 demonstrates that the application on the prime implicant level can gain an ad-
ditional advantage even after the application on the top level. For our set of examples,
the reverse is not true, see row 4. Rather, there seems to be a small penalty induced
by the overhead of pure literal simplification at the top. In all cases the impact with
BDD-based solvers turns out to be much stronger than with SAT-based solvers.


We now analyze the impact of feedback. In Fig. 6, upper row, we compare basbmc
and babdd with the corresponding configurations with feedback activated. The plots
show that enabling conflict extraction sometimes pays off, but most often it degrades
the overall performance. However, the degraded performance can be explained with
the fact that the current implementation of the feedback is rather naı̈ve, and uses the
theory solvers as off-the-shelf. Interestingly enough, the generation of conflicts sets
can dramatically reduce the search space, by avoiding to reconsider implicants that
proved to be inconsistent in previous calls. This is clear if we plot the number of prime
implicants analyzed by the algorithms with and without feedback before determining a
result (see plots of the second row).


For more results see the extended version of this paper, including pure literal sim-
plification for sbmc and bdd, a comparison between SAT- and BDD-based approaches,
and splitting some results of Figs. 4, 6 by the number of prime implicants examined.


7 Conclusion and Future Work
We proposed a novel paradigm for satisfiability of temporal logics, where model enu-
meration applied to the propositional abstraction of the problem interacts with a solver
able to decide conjunctions of temporal formulae. A thorough experimental evaluation
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Fig. 5. Solving time of approaches with Boolean abstraction and combinations of pure literal
simplification at the top- and/or prime implicant levels.


shows that the approach may result in substantial advantages, especially in the case of
BDD-based reasoning, and the advantage mostly leverages on a generalization of the
pure literal simplification rule to PSL. We also defined ways for computing unsatisfi-
able cores from the temporal solvers, and showed that their use may indeed reduce the
search space, currently at the price of a penalty in performance.


In the future, a short term activity is to optimize the computation of conflict sets. In
the longer term, the adoption of an SMT framework for temporal satisfiability suggests
different research directions. First, we will investigate how to enable early pruning by
means of incremental theory reasoning. Second, we will work on ways to combine
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Fig. 6. The impact of feedback.


BDD-based and SAT-based techniques: in fact, a comparison of the two technologies
(see the extended version of this paper), clearly highlights their complementarity. This
includes not only identifying conditions that will suggest which one to use for which
implicant, but also trying to let each method benefit from results obtained with the
other. Finally, we will consider to exploit the temporal hierarchy to identify sufficient
conditions for temporal satisfiability.
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