
SEdelkampVSchuppanDBosnackiAWijsAFehnkerHAljazzar-MOCHART-2008.pdf

Survey on Directed Model Checking

Stefan Edelkamp, Viktor Schuppan, Dragan Bosnacki, Anton Wijs,
Ansgar Fehnker, and Husain Aljazzar�

Dortmund University of Technology, Germany
FBK-IRST, Trento, Italy

Eindhoven University of Technology, Netherlands
INRIA/VASY, Montbonnot St Martin, France

National ICT, Sydney, Australia
University of Konstanz, Germany

Abstract. This article surveys and gives historical accounts to the al-
gorithmic essentials of directed model checking, a promising bug-hunting
technique to mitigate the state explosion problem. In the enumeration
process, successor selection is prioritized. We discuss existing guidance
and methods to automatically generate them by exploiting system ab-
stractions. We extend the algorithms to feature partial-order reduction
and show how liveness problems can be adapted by lifting the search
space. For deterministic, finite domains we instantiate the algorithms
to directed symbolic, external and distributed search. For real-time do-
mains we discuss the adaption of the algorithms to timed automata and
for probabilistic domains we show the application to counterexample
generation. Last but not least, we explain how directed model checking
helps to accelerate finding solutions to scheduling problems.

1 Introduction

The presence of a vast number of computing devices in our environment imposes
a challenge for designers to produce reliable software and hardware. Testing if a
system works as intended becomes increasingly difficult. Formal verification aims
to overcome this problem. The process of fully-automatic verification is referred
to as model checking [27,63]. Given a formal model of a system and a property
specification in some form of temporal logic [45], the task is to validate, whether
the specification is satisfied. If not, a model checker returns a counterexample
for the system’s flawed behavior, helping the designer to debug the model.

The major disadvantage of model checking is that it scales poorly. For a com-
plete verification every state has to be looked at. Among the techniques to over-
come the state-explosion problem, directed model checking has been established
as one of the key technologies. It lessens the burden to find short counterex-
amples for design bugs quickly. Driven by the success of directed state-space

� The course of writing the article was initiated by forming a working group at the
Dagstuhl seminar on Directed Model Checking that took place in April 2006.

D. Peled and M. Wooldridge (Eds.): MOCHART 2008, LNAI 5348, pp. 65–89, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

66 S. Edelkamp et al.

exploration in artificial intelligence, model checking algorithms exploit the prop-
erty specifications to orient the search towards their falsification.

In this paper we provide an overview of directed model checking with a focus
on algorithmic aspects. Section 2 presents the development of directed model
checking. In Sect. 3 we introduce notation and basic concepts. Section 4 covers
directed model checking algorithms for safety and Sect. 5 extends the discus-
sion to ω-regular properties. The implications of directed model checking on
partial-order reduction are explained in Sect. 6. Section 7 shows application of
directed model checking in external (disk-based) settings, for real-time systems,
for generation of probabilistic counterexamples, and for scheduling problems.

2 History of Directed Model Checking

Elements of Directed Search in Jan Hajek’s Approver. Some basic ideas of di-
rected model checking have been present since the very first days of the au-
tomated verification of concurrent systems. For instance, Approver, which was
probably the first tool for the automated verification of communication proto-
cols, used a directed search of the state space. Approver, from Algorithmic and
Proven PROtocol VERifier, was written in the second half of the 70’s [54,55,56]
by Jan Hajek from the Eindhoven University of Technology (at that time Tech-
nische Hogeschool Eindhoven). In fact the tool was capable of dealing with a
broader class of concurrent systems than the classical communication protocols,
like, for instance, mutual exclusion algorithms.

One of the most elaborate parts of Approver were the techniques for fast
bug finding. Instead of a depth- or breadth-first search of the state space, that
have been usually applied in model checkers, Approver used a general search
algorithm based on priority queue. For efficiency this queue was implemented
as a heap. Each element of the queue contained a pointer to the state vector in
the hash table and a priority field. The records were ordered and selected based
on this priority field. The value of the priority field was computed according to
the priority function that corresponded to the global invariant that was verified.
Directed search was used for the verification of safety properties.

Validation with Guided Search. Yang and Dill [113] wrote a seminal paper on the
validation with guided search of the state space. The SpotLight system already
applied the basic AI search algorithm A* [79] to combat the state explosion prob-
lem. A general search strategy, called the target enlargement analysis, computed
nodes around the goal by applying some pre-images starting from the target
description before starting the forward search, similar to perimeter search [35].

Symbolic Directed Model Checking. A first study of symbolic directed model
checking algorithm simulating the A* exploration in the symbolic μ-calculus
model checker μcke [17] has been given by Reffel and Edelkamp [88]. As an in-
put, the proposed BDDA* algorithm assumes a heuristic estimate function in
form of a BDD and operates on uniform cost graphs with integer-valued heuris-
tic relations H . This relation partitions the state space in regions of the same

Survey on Directed Model Checking 67

heuristic estimates and exploits the succinctness of BDDs to store large state
sets. The algorithm simulates the working of a bucket-based priority queue [32].
Instead of selecting only one element with best f = g + h value (where g is a
measure of the cost to reach that element from the initial states and h is an
estimation of the cost to reach the target), the BDDA* algorithms selects all
elements with minimal f -value and expands them in common. The successors
are computed in form of a symbolic image operation and evaluated using BDD
arithmetics. The resulting f -ordered state sets are put back into the queue. Later
on, different authors have extended the framework of symbolic heuristic search,
for example SetA* [66] introduces partitioned heuristics, ADDA* [59] employed
ADDs instead of BDDs, and in SA*, [82] studied the strength of symbolic esti-
mates.

While they can represent some sets compactly, BDDs still often grow too
large for reachability analysis to complete. Getting an element of DFS into the
default BFS exploration mode can help to alleviate that problem. When the BDD
holding the current search frontier becomes too large, high-density reachability
analysis [85] prunes away states that require relatively more BDD nodes to
represent than the other states, i.e., to increase the ratio of states per BDD
node. When the search frontier becomes empty the whole set of states reached
so far is used in the next image computation [85] to bring the states back in that
have been pruned away. As this step frequently exhausts the available resources,
[86] suggests some alternatives, e.g., storing the pruned states in a separate BDD.

In [87] user-supplied hints are used to restrict the transition relation such that
parts of the state space are avoided at first that are presumed to lead to a blow-
up and only added towards the end of the traversal. This limits the effect that
in a sequence of BDD operations such as computing the reachable set of states
the intermediate BDDs are often much bigger than the end result. Experimental
results show improved performance for both false and true properties.

Fraer et al. present an algorithm for reachability that employs frontier splitting
to keep BDDs small and selects the part of the frontier to be expanded next based
on BDD size [50].

Explicit-State Directed Model Checking. Edelkamp, Leue, and Lluch-Lafuente
[39] coined the term directed model checking and implemented a guided variant
of the explicit-state model checker SPIN [63]. In HSF-SPIN, safety violation
checking is handled by replacing standard search by A*. Besides some deadlock -
specific estimates, two generic estimates are supported. For liveness properties
an improved nested-DFS algorithm based on the classification of the automata
representation of the property in strongly-connected components has been pro-
posed. Later on, partial-order reduction was added [40]. Directed model checking
has also been applied to guide the search process to obtain a better counterex-
ample for the same error. This is particularly useful if, e.g. due to memory
constraints, suboptimal search algorithms were used to obtain a first counterex-
ample [76].

68 S. Edelkamp et al.

3 Concepts and Notation

State-Space Model. We assume a state-space model M to include S as the set
of states, T as the set of transitions, and I ⊆ S as the set of initial states. The
set S is often not known a priory, but generated on-the-fly. States are mapped
to a set of atomic propositions AP true in that state by a labeling function
L : S → 2AP . The set of transitions T induces a transition relation T on triples
(s, t, s′) where t leads from s to s′. We use the shorthand notation s

t→ s′. When
analyzing safety properties we additionally assume a set of bad states B ⊆ S.

Cost algebras. Cost algebras [38] generalize edge weights to more general cost
structures. A cost algebra is defined as 〈A, ×, �,0,1〉, such that 〈A, ×,1〉, is a
monoid, � is a total order, 0 = �A and 1 = �A, and A is isotone1. Intuitively,
A is the domain set of cost values, × is the operation used to cumulate values and
� is the operation used to select the best (the least) amongst values. Consider
for example, the following instances of cost algebras: 〈IR+ ∪{+∞}, +, ≤, +∞, 0〉
(optimization), 〈IR+ ∪{+∞},min, ≥, 0, +∞〉 (max/min), 〈[0, 1], ·, ≥, 0, 1〉 (prob-
abilistic), or 〈[0, 1],min, ≥, 0, 1〉 (fuzzy). Not all algebras are isotone, e.g. take
A ⊆ IR × IR with (a, c) × (b, d) = (min{a, b}, c + d) and (a, c) � (b, d) if a > b
or c < d if a = b. We have (4, 2) × (3, 1) = (3, 3) (3, 2) = (3, 1) × (3, 1)
but (4, 2) ≺ (3, 1). However, the reader may easily verify that the related cost
structure implied by (a, c) × (b, d) = (a + b, min{c, d}) is isotone. For a path

p = (s0
t0→ s1

t1→ . . .
tk−2→ sk−1

tk−1→ sk) we define the cumulated cost c(p) as
c(t0) × c(t1) × . . . × c(tk−1). As there can be many paths between two states s
and s′, with δ(s, s′) we refer to the cost of an optimal one. We will also use the
shorthand notation δ(s, X) for the optimum of δ(s, s′) for any s′ in X .

Heuristics. Cost-algebraic heuristics h map S to A. We assume that h(e) = 1 for
each bad state e ∈ B saying that there is no cost estimated for reaching an error
when having encountered it. A heuristic function h : S → A is admissible, if for
all s ∈ S we have h(s) � δ(s, B), and consistent, if for each s, s′ ∈ S and t ∈ T

s.t. s
t→ s′, we have h(s) � c(t) × h(s′). If h is consistent, then it is admissible.

The formula-based heuristic Hf used is recursively defined on the (safety)
property specification. Let v be a Boolean variable, a some constant value in A,
and g and h logical predicates. The recursive definition of Hf is as follows.

f Hf (s) Hf (s) f Hf (s) Hf (s)
true 1 0 ¬g Hg(s) Hg(s)
false 0 1 g ∨ h �{Hg(s),Hh(s)} Hf (s) × Hg(s)

v if v then 1 else a if v then a else 1 g ∧ h Hg(s) × Hh(s) �{Hg(s),Hh(s)}

1 Isotonicity is the key property of the algebra. It states that the order relation between
the costs of any two paths is preserved if both of them are either prefixed or appended
by a common, third, path. It has been shown that isotonicity is both necessary and
sufficient for a generalized Dijkstra’s algorithm to yield optimal paths [101].

Survey on Directed Model Checking 69

In the definition of Hg∧h and Hg∨h, the use of × suggests that g and h are
independent, which may not be true. When choosing �{H(g), H(f)} instead,
(under some additional conditions on the value of a), the formula-based heuristic
is consistent. The main reason is that the greatest of two consistent estimates is
consistent, while the cumulation might not even be admissible.

The finite state machine (FSM) distance heuristic is based on projecting the
system state to the program counter. The abstract state spaces are analyzed
prior to the search to capture the shortest path distances of all local states to
the set of dangerous states. The distances are cumulated for each running pro-
cess. More formally, we assume that the global state space is generated based on
the asynchronous compositions of processes pi, i ∈ {1, . . . , n}. In other words,
each global system state is partitioned into n local states. The state of a lo-
cal process pi is called its program counter, i ∈ {1, . . . , n}, pci for short. The
FSM distance heuristic is defined as Hm(s, s′) = ×n

i=1δi(pci(s), pci(s
′)), where

δi(pci(s), pci(s
′)) denotes the least-cost path from pci(s) to pci(s

′) in the au-
tomaton representation of pi. The values for δi are computed prior to the search.
The FSM distance heuristic assumes that both states s and s′ are known to the
exploration module. It has mainly been used in trail-directed search. As the
product of different processes is asynchronous, it is not difficult to see [40] that
the FSM distance is consistent.

One option to derive a heuristic automatically is to take the optimal cost from
the current state to the error in an abstract space derived by any homomorphic
abstraction as an admissible estimate, where a homomorphic abstraction is an
over-approximation, for which each path in the concrete space induces a cor-
responding path in the abstract [26,74]. Abstractions may contract states into
one and merge edges accordingly. More precisely, if we contract states s1 and
s2 and there are transitions s1

t1→ s3, s2
t2→ s3 or transitions s3

t1→ s1, s3
t2→ s2,

we merge t1 and t2 to t3 with c(t3) = c(t1) � c(t2). Self-loops usually do not
contribute to an optimal solution and can be omitted. It is not difficult to see
that such abstraction heuristics are consistent. Unfortunately, re-computing the
heuristic estimate from scratch cannot speed-up the search [105]. A solution is to
completely evaluate the abstract space prior to the search in the concrete space.

For a model M with abstraction M̂, an abstraction database [83,41] is a lookup
table indexed by ŝ ∈ Ŝ containing the shortest distance from ŝ to B̂. The size of
an abstraction database is the number of states in Ŝ. For undirected graphs with
uniform edge weights (usually equal to 1) it is easiest to create an abstraction
database by conducting a breadth-first search in backward direction, starting at
B̂. This assumes that for each (abstract) transition t we can devise an inverse

(abstract) transition t−1 such that ŝ
t→ ŝ′ iff ŝ′

t−1

→ ŝ. To construct an abstrac-
tion database for weighted and directed graphs, the shortest path exploration in
abstract space uses inverse transitions and Dijkstra’s algorithm. If inverse opera-
tors are not available, we reverse the state space graph as generated in a forward
chaining search. With each state ŝ′ we attach the list of all predecessor states
ŝ. In case a bad state is encountered, the traversal is not terminated but the
abstract bad states are collected in a (priority) queue. Next, backward traversal

70 S. Edelkamp et al.

Failure

Abstraction

Abstract Model Checking Directed Model Checking

Model Checking Problem

Abstract Model Checking Problem

Success

No Error

Success

Error found

Failure

Abstraction Directed Model Checking

Fig. 1. Abstraction Directed Model Checking

is invoked on the inverse of the state space graph, starting with the queued set
of abstract bad states. The shortest path distances to the abstract bad states
are stored with each state in a hash table. For a better time-space trade-off it is
possible to fully traverse the abstract state space symbolically, yielding symbolic
abstraction databases [36].

Abstraction directed model checking [81] combines model checking based on
abstraction [26,74,29] and directed model checking as follows. An initial model
checking run is performed on the abstract model. If the property holds, then
the model checker returns true. If not, in a directed model checking attempt,
the same abstraction is used to guide the search in the concrete state space to
falsify the property. If the property does not hold there, a counterexample is
returned; if it does, the property has been verified (see Fig. 1). If the abstraction
(heuristic) turns out to be too coarse, it is possible to iterate the process with a
refined abstraction.

4 Directed Model Checking Algorithms

Standard Forward Reachability A pseudo-code implementation of a forward
reachability model checking algorithm (for safety properties) based on sets is
provided in Fig. 2. In Line 1 the structures are initialized while Lines 2–7 per-
form the search for an error in a loop. If terminated without finding an er-
ror, Line 8 returns that the property is verified due to a complete exploration.
Line 3 is a generic selection mechanism that determines the search traversal pol-
icy. Line 4 moves the selected set from Open to Closed, while Line 5 detects and

Survey on Directed Model Checking 71

Procedure ModelCheck
Input: Model M = (S ,T , I, L), set of bad states B, cost algebra A
Output: true if property is satisfied or counterexample if not

1 Closed ← ∅; Open ← I
2 while (Open �= ∅)
3 S ← SelectA(Open)
4 Open ← Open \ S; Closed ← Closed ∪ S
5 if (S ∩ B �= ∅) return GeneratePath(S ∩ B)
6 Succ ← {s′ | s ∈ S, (s, t, s′) ∈ T}
7 Succ ← Succ \ Closed; Open ← Open ∪ Succ
8 return true

Fig. 2. General Model Checking Algorithm

handles bad states. Line 6 generates the successor set from which Line 7 elimi-
nates duplicates. It also inserts the remaining elements into the search frontier.

In SelectA we can incorporate any specialized selection strategy. For BFS, we
select the states with smallest depth, while for DFS we select the one(s) with
the largest depth. For Dijkstra-like search we select one element with the least
cost. Let C be the cost relation that relates a state to a cost-algebraic value. In
such case, SelectA(Open) returns some s′ in Open with (s′, a) ∈ C and for all s
in Open with (s, b) ∈ C we have a � b. In the explicit-state version one candidate
is selected, while in the set-based version all states are selected.

Forward Reachability with Costs. The algorithm in Fig. 2 does not say anything
about updating the cost relation C, which is modified during the execution of the
algorithms. At invocation time, we have (s,1) ∈ C for all s ∈ I, and (s,0) ∈ C for
all s /∈ I. Whenever we reach a new state s′ from s via transition t we perform
cost relaxation, i.e., if a × c(t) ≺ b with (s, a) ∈ C and (s′, b) ∈ C we update
C ← C \ {(s′, b)}∪ {(s′, a× c(t))}. Strictly speaking, full initialization of the cost
relation is not possible for the on-the-fly analysis of the system. Therefore, cost
values are stored together with the states in the list Open and Closed.

The update of relation C depends on the search algorithm. We call a state
settled, if (s, a) ∈ C and a = δ(I, s). Moreover, a cost relation is called monotone,
if for (s, a) ∈ C and (s′, b) ∈ C and (s, t, s′) ∈ T , we have a � b.

The selection strategy in Dijkstra’s algorithm only considers settled states and
monotone cost relations [34]. If it is not monotone, different approaches have been
suggested. The main observation is that a cost update has to be executed more
than once for a transition. It can be shown that BFS settles at least one unsettled
state on an optimal path π∗ in the Open list, such that after |π∗| iterations of
ModelCheck without re-initializing C the bad state on π∗ is settled [15]. In k-best
first search [49] we select the k least-cost elements from Open and compute their
set of successors in common. The algorithm is complete but the counterexample
might not be optimal. k-beam search [19] additionally prunes away all states
from Open that are not among the k best ones. In this case, completeness is

72 S. Edelkamp et al.

sacrificed to search for errors in larger models. By iteratively performing k-beam
search with larger k we get iterative-broadening [51], by which we gain back
completeness.

Guided Forward Reachability. All exploration variants of the general model
checking algorithm that we have seen so far are blind in the sense, that they
do not incorporate any guidance towards a quicker falsification of the property.
Directed model checking algorithms reorder the states to be expanded in order
to accelerate error-detection in the case of choosing a different selection strategy.

The estimated cost of a counterexample at a given state s is the accumulation
of the costs of reaching s and the heuristic estimate for reaching a bad state
starting from s. For the latter we assume a static estimate relation H(s, b) that
associates a state s with its estimate b ∈ A. A* selects elements with least
estimated counterexample costs. In other words, SelectA(Open) returns some
s in Open with (s, a) ∈ C and (s, b) ∈ H such that for all s′ in Open with
(s′, a′) ∈ C and (s′, b′) ∈ H we have a × b � a′ × b′. The initialization and the
cost updates to the cost relation C remain unchanged. For consistent heuristics
the selection strategy of A* only considers settled states. More precisely, at
each extraction of a state s with (s, a) ∈ C and (s, b) ∈ H from the Open-
List we have a = δ(I, s) × b. At a bad state e ∈ B b is trivial, as H(e,1).
This implies a = δ(I, e). Therefore, A* with H(B,1) returns the cost-optimal
counterexample. Optimality is only granted, if the goal check is performed at
the expanded state. BFS is an exception, which terminates at a generated goal.

For inconsistent heuristics, it can happen that a better path to an already
expanded state is encountered during the search process. For such case a re-
opening strategy has been proposed [79]. It moves states from the set of already
expanded states Closed back to the search frontier Open. Although in theory an
exponential increase in the number of expanded nodes may happen, re-opening
produces optimal counterexamples for admissible heuristics and works well in
practice. The underlying problem of searching with non-consistent heuristics is
equivalent to the search with non-monotone paths in a problem graph.

Bounded Forward Reachability. In Fig. 3 we display a cost-bounded variant of
the general model checking algorithm. It extends the algorithm in Fig. 2 by an
additional pruning condition in Line 8. The algorithm includes cost threshold U
as an additional parameter. In the guided form shown here, it is based on the
relations C and H, as introduced above. There are various reasons for introducing
parameter U . An upper bound prevents the algorithm from searching too deep
e.g. when using depth-first selection strategies. Any generated counterexample
has a quality not worse than U . If U = δ(I, B) then up to tie-breaking and
the choice of H the optimal number of states are expanded [30]. The reason
is that any optimal exploration strategy has to explore all states with costs
smaller than δ(I, B). In some cases U = δ(I, B) is already known, the only task
is to generate a counterexample matching it. If U is not known, one may adjust
U interactively. Automated strategies are iterative-deepening [67] (increasing U
by the smallest amount possible), branch-and-bound [69] (decreasing U to the

Survey on Directed Model Checking 73

Procedure CostBoundedDirectedModelCheck
Input: Model M = (S ,T , I, L), set of bad states B, cost algebra A = 〈A, ×, �,0,1〉,

bound on cost U , cost relation C, estimate relation H
Output: true if property satisfied on U cost-bounded paths or counterexample

1 Closed ← ∅; Open ← I
2 while (Open �= ∅)
3 S ← SelectA(Open)
4 Open ← Open \ S; Closed ← Closed ∪ S
5 if (S ∩ B �= ∅) then return GeneratePath(S ∩ B)
7 Succ ← {s′ | s ∈ S, (s, t, s′) ∈ T}; Succ ← Succ \ Closed
8 Succ ← Succ \ {s ∈ Succ | ∃a, b ∈ A.C(s, a) ∧ H(s, b)∧ U ≺ a × b}
9 Open ← Open ∪ Succ
10 return true

Fig. 3. Cost-Bounded Model Checking Algorithm

largest value smaller than the latest cost value obtained), or refined threshold
determination [107] (an exponential or binary search compromise between the
two). In memory-limited A* search [91], full duplicate elimination in the Closed -
list is sacrificed in order to gain space. U can control the memory needs. If the
cost-updates do not preserve monotonicity, the cost values of some states in
Closed are not optimal on the first visit and some nodes may remain unsettled.

According to the selection mechanism in SelectA we arrive at different branch-
and-bound strategies. Depth-bounded depth-first search imposes an upper bound
on the solution depth, to prevent the algorithms from searching too deep. As our
algorithm, it takes U as an additional input parameter. Admissible depth-first
search guarantees to find an error of cost smaller than the given threshold.

For cost-optimal depth-bounded search with duplicate detection there is a
potential pitfall [40]. It is apparent in depth-first depth-bounded search but
applies to many cost-bounded variants. The problem is that a cached duplicate
may not be reached with optimal cost on the first visit such that on the second
visit it is stored with suboptimal cost. Even worse, if the successor of a such
cached duplicate has a bad state outside the cost threshold as a successor then
this error might not be detected even if its cost are below the cost threshold. A
possible solution is to re-open a state if reached with better costs.

Sparse Memory Forward Reachability. In model checking practice, the limita-
tion of (main) memory is likely to be the most challenging problem. Set Closed
is mainly kept to prevent exploring states twice and it tends to take up most
space. In Fig. 4 we show a pseudo-code implementation of frontier search that
has shown significant improvements in solving action planning and sequence
alignment problems [68]. The assumption here is that not the entire set of states
needs to be stored completely for detecting an error. How many layers are suf-
ficient for full duplicate detection in general is dependent on a property of the
search graph called locality. For uniform weighted problem graphs, it is defined

74 S. Edelkamp et al.

Procedure CostBoundedDirectedFrontierModelCheck
Input: Model M = (S ,T , I, L), set of bad states B, cost algebra A = 〈A, ×, �,0,1〉,

bound on cost U , locality L, cost relation C, estimate relation H
Output: true if property satisfied on U cost-bounded paths or counterexample

1 Succ ← I; for each k = 1, . . . , L Closed(k) ← ∅
2 while (Succ �= ∅)
3 Closed(0) ← Open ← Succ; Succ ← ∅
4 while (Open �= ∅)
5 S ← SelectA(Open)
6 Open ← Open \ S
7 if (S ∩ B �= ∅) then return GeneratePath(S ∩ B)
8 Succ ← Succ ∪ {s′ | s ∈ S, (s, t, s′) ∈ T}
9 Succ ← Succ \

�L
k=0 Closed(k)

10 Succ ← Succ \ {s ∈ Succ | ∃a, b ∈ A.C(s, a) ∧ H(s, b) ∧ U ≺ a × b}
11 for each k = L, . . . , 1 Closed(k) ← Closed(k − 1)
12 return true

Fig. 4. Directed Frontier Search Model Checking Algorithm

as the maximum max{δ(I, s) − δ(I, s′)} + 1 of all states s, s′, with s′ being a
successor of s. It determines the thickness of the boundary slice of the graph
needed to prevent duplicates to occur in the search.

One observation for state selection is that breadth-first branch-and-bound
frontier search often results in a smaller search frontier than best-first branch-
and-bound frontier search. In AI literature, the according search strategy is
called breadth-first heuristic search [114]. In beam-stack-search this strategy has
been extended to feature partial state selection [115]. For such memory-limited
frontier search, (divide-and-conquer) solution reconstruction is needed, for which
certain relay layers are additionally stored in main memory.

5 ω-Regular Properties

The exposition has so far been restricted to checking reachability of a set of states.
We now show how the machinery can be used to check ω-regular properties,
which properly include propositional LTL [45].

We assume that the reader is familiar with the automaton-based approach to
model checking of ω-regular properties [106]. We extend our state space model
with a Büchi fairness constraint F ⊆ S to M = (S, T , I, L, F) and restrict the
discussion below to the search of a fair lasso-shaped path in M. See also [63,27].

Nested Depth-First Search. The most popular algorithm to search for fair lasso-
shaped paths in explicit-state model checking is probably nested depth-first
search [28,65]. A first DFS finds all reachable states. When backtracking from
a fair state it starts a second DFS that tries to close a fair cycle by hitting a
state on the stack of the first DFS. When that happens, a counterexample can

Survey on Directed Model Checking 75

be reconstructed easily from both search stacks. States are marked as visited
by either DFS, hence, each state is visited at most twice. Marking can be done
with just two bits per state, which is the main reason for the frequent use of
this algorithm in explicit-state model checking. On the downside, starting the
second DFS in post order tends to produce long counterexamples.

In the inner search it’s obvious that the search should be directed to some
state in the stack of the outer search. Potential heuristics for this case include the
Hamming and the FSM distance heuristic [40]. In the outer search it’s less clear
what a promising direction should look like. Clearly, the likelihood of finding a
fair cycle should be high. If the state space of M is the synchronous product
of smaller state spaces M1, M2, . . ., some Mi can be analyzed beforehand to
obtain approximate information on whether a state s = (s1, s2, . . .) in M can be
part of a strongly connected component with a fair cycle at all. Only if all si are
part of an SCC that includes a fair path in Mi then s can be part of an SCC
with a fair path itself. Hence, if any si is known not to be in such SCC then the
search should be directed to the edge of the current SCC [39].

Liveness Checking as Safety Checking. Transforming a liveness checking problem
into a safety checking problem immediately makes the algorithms in Sect. 4 avail-
able for all ω-regular properties. Here, we consider the state-recording translation
that reformulates the problem of finding a fair lasso as a reachability problem
[18,96,97,95]. The translation extends the original model with a copy for each
state variable and a number of flags. It splits the search for a fair lasso into 3
steps: (1) non-deterministically guess and record a loop start in a copy of the
set of state variables, (2) search a fair state and record its occurrence in a flag,
and (3) return to the guessed and recorded loop start. Shortest fair lassos can
be found when breadth-first search or A* [79] are used.2 Although the refor-
mulation roughly squares the size of the state space, performance of BDD-based
symbolic model checking is improved for some examples [96,95]. The method has
been applied to SAT-based interpolation [78], to external distributed explicit-
state directed model checking [37], and, independently, to regular model checking
[22].

The heuristics should distinguish whether a loop start has been guessed or
not. If not (step 1), we are effectively in the outer part of a nested search and
should seek for promising loop starts. Once a state has been saved, a fair state
(step 2) and, after that (step 3), the loop start are preferred targets. Applicable
heuristics in all phases include Hamming and FSM distance heuristics [39,40].

Other Algorithms. Similar to the case of safety properties trail improvement
can also be used for lasso-shaped counterexamples [40,76]. Assume, that a lasso-
shaped counterexample π = πstem ◦ πω

loop to some ω-regular property is given.
Directed model checking with Hamming or FSM distance heuristics is then used

2 Note that finding a shortest counterexample (as opposed to only a shortest fair cycle
in the product of model and property automaton) requires an appropriate translation
of the property into a Büchi automaton [98,95] or dedicated algorithms [70].

76 S. Edelkamp et al.

to shorten π as follows. Let sl be the first state of πloop . In a first step a potentially
shorter trail π′

stem from the initial states to sl is generated. Then a fair cycle
π′
loop starting and ending in sl is produced. Backtracking is used to guarantee

fairness of π′
loop . As a further optimization, sl can be replaced with any state s′l

that is equivalent to sl in the sense that the sequence of transitions that leads
from sl to sl in π′

loop also lead from s′l to s′l and hits a fair state in between.
Standard algorithms in BDD-based model checking, which are typically vari-

ants of the Emerson-Lei algorithm [46], perform a nested fixed point compu-
tation, which makes application of heuristics difficult. The idea of using hints
has been extended to nested fixed points [20], though with less success than in
[87]. CTL is covered in [21]. In the context of an SCC enumeration algorithm a
prioritization was used based on the distance of states to the origin and on the
number of fairness constraints they fulfill to select a state as the starting point
for further SCC decomposition [108]. The approach by [50] extends to other least
fixed point computations.

6 Partial Order Reduction

Partial order reduction (POR) [104,52,80] is one of the most important state-
space reduction techniques in explicit state model checking. In this section we
discuss how POR can be combined with directed model checking. The only essen-
tial difference with POR for standard model checking (for instance, as presented
in [27]) is in the condition called the cycle proviso. Intuitively, this condition
prevents ignoring parts of the system (state space) because of closing cycles
during the search. The classical versions of the cycle proviso in standard model
checking are closely dependent on the search order - usually DFS [52] or BFS [7].
Because of that they are not applicable in directed model checking. The proviso
that we use to make POR compatible with directed model checking is inspired
by the general search order proviso presented in [23]. In the rest of the section
we introduce some basic terminology along the lines of [7] and state the new
version of the cycle proviso for safety and liveness properties.

Let M = (S, T , I, L, F) be a model of the state space as introduced in Sec-
tion 5. To improve readability, we write s

t→M s′ for (s, t, s′) ∈ T . When the
model M is clear from the context we omit it. Further, we assume that the
transition relation is deterministic in the sense that for each transition t ∈ T
and each state s ∈ S there exists at most one s′ ∈ S such that s

t→ s′. Thus,
each transition can be seen as a partial function t : S → S which is defined if
s′ exists. We also say that s′ is a successor of s. A transition t ∈ T is said to
be M-enabled in state s ∈ S iff t(s) is defined. The set of all transitions t ∈ T
enabled in state s ∈ S is denoted enabledM(s).

The basic idea of state space reduction is to restrict the part of the state space
of a concurrent system that is explored during verification in such a way that
all properties of interest are preserved. To this end we define a function r which
assigns to each state s a set of transitions r(s). During the on-the-fly construction
for each state s already included in the state set Sr of the reduced model Mr,

Survey on Directed Model Checking 77

we add its successors obtained via transitions in r(s). We start with an Sr that
includes only the initial states I of the original model M. Those states become
also the initial states Ir of the reduced model Mr. Then we iterate the above
described extension of Sr (Mr) until a fixed point is reached. The construction
of the reduced model is captured in the following definition:

For any reduction function r : S → 2T , we define the (partial-order) reduc-
tion of M = (S, T , I, L, F) with respect to r as the smallest model Mr =
(Sr, Tr, Ir, Lr, Fr) satisfying the following conditions: Sr ⊆ S, Ir = I; and for
every s, s′ ∈ Sr and t ∈ r(s) if s

t→M s′ then s
t→Mr s′. We say that property φ

is preserved by the reduction iff M |= φ ⇔ Mr |= φ. Depending on the proper-
ties that a reduction must preserve, we define additional restrictions on r. These
sets of restrictions are well known in the POR theory (see [7,27]).

Let M be a model with a reduction function r that is persistent in the sense
of [7,52] and let us first consider POR without DMC. The POR variation of
the general model checking algorithm (GMCAPOR) is obtained by replacing in
the algorithm in Fig. 2 the assignment Succ ← {s′ | s ∈ S, (s, t, s′) ∈ T } with
Succ ← {s′ | s ∈ S, (s, t, s′) ∈ T ∧ t ∈ r(s)} where r(s) satisfies — besides the
well-known conditions C0a, C0b, C1 (see, e.g., [23]) — the condition

– C2c: For each s ∈ Sr there exists a transition t ∈ r(s) such that s′ = t(s)
and s′ �∈ Closed. Otherwise r(s) = enabledM(s).

Thus, we require that at least one new state which is explored via an action
in r(s) must not be in Closed. Otherwise the reduced set r(s) must include
all transitions which are enabled in s. The intuition behind C2c is that each
transition t which is not in r(s), i.e., it is temporarily ignored in s, will be
considered in at least one successor s′ of s. Since s′ is not in Closed, it must be
either in Open or a new unexplored state which will be put in Open. Thus, s′

will be considered in some later iteration of the algorithm. Condition C1 ensures
that t remains enabled also in s′. It could happen that t is ignored in s′ too,
but condition C2c will again ensure that it is considered later in some of its
successors. As the set Sr is finite one can show that this ignoring cannot go
forever and the action will be eventually included in some r(s′′) for some state
s′′ that is reachable in Mr from s′ and therefore also from s.

Similarly as in [23], one can show that condition C2c implies the general ig-
noring prevention condition given by Lemma 2.2 of [7]. Although a stronger
condition usually implies less reduction, in practice the advantage of C2c over
Lemma 2.2 of [7] is that the former can be efficiently checked based only on
local information, i.e., considering only state s and its successors. The correct-
ness of the GMCAPOR algorithm does not depend on the order in which states
are removed from Open, i.e., it is independent of the selection strategy imple-
mented by SelectA. Therefore, the correctness of the combination of POR with
the directed model checking algorithm follows immediately. By requiring that S
is a singleton we obtain the explicit state version of the general (directed) state
exploring algorithm with POR in [23], while by putting S = Open we get the
POR algorithm for symbolic (breadth-first) search in [7].

78 S. Edelkamp et al.

To preserve liveness properties (LTL−X , CTL∗
−X) with GMCAPOR one has

to ensure that function r satisfies the liveness variant of the transition ignoring
condition which requires that along each cycle c in the reduced model in at
least one state s of c it holds r(s) = enabledM(s). Intuitively, this condition
ensures that a transition cannot be indefinitely postponed along c since it will
be eventually included in r(s). The drawback of this condition is that it is defined
globally on the reduced state space. Like for safety properties, we give a stronger
condition that might produce less reduction but it is locally checkable in an
efficient manner:

– C2cl: For each s ∈ Sr for all transitions t ∈ r(s) such that s′ = t(s) it holds
s′ �∈ Closed. Otherwise r(s) = enabledM(s).

7 Applications

To explore complex systems, the above algorithms have to be adapted.

Discrete Model Checking. Discrete edge costs are very common in model checking
practice. In fact, most problem graphs considered are uniform, i.e., every edge has
cost 1. As in this case the heuristic evaluation function estimates the remaining
path length to the error, it is bounded by an upper-bound maxh on the optimal
counterexample length. This allows to split the relation H into sets of states Hj ,
j = 0, . . . , maxh, that share the same heuristic value,

In Fig. 5 we have depicted the matrix implementation of the general directed
model checking algorithm for uniform costs. Before expanding a state set (a.k.a.
bucket) from the matrix, we eliminate possible duplicates by state set subtrac-
tion. Next we check for bad states, generate the successor set and distribute it
according to the heuristic relation. For the sake of simplicity, we have assumed
consistent estimates, for which each state is expanded at most once. For admis-
sible but non-consistent estimates, we have to re-expand buckets and enlarge the
range of j to [0, . . . , maxh].

For disk-based (graph) search [94], the changes to the algorithm Discrete-
DirectedModelCheck are moderate. For detecting duplicates in one bucket, it is
sorted beforehand, and, instead of intersecting two sets internally, we scan the
corresponding files (assuming they are already sorted). In external frontier search
relay layers are not needed; the exploration fully resides on disk. There is one
subtle problem: predecessor pointers are not available on disk. This is resolved
by saving the predecessor together with every state, by scanning with decreasing
depth the stored files, and by looking for matching predecessors. Any reached
node that is a predecessor of the current node is its predecessor on an optimal
solution path. This results in an I/O complexity that corresponds to a linear
scan of at most all nodes visited.

To organize the communication between the processors in a parallel environ-
ment a working queue is maintained on disk [37]. The working queue contains
the requests for exploring parts of a (g, h) bucket together with the part of the

Survey on Directed Model Checking 79

Procedure DiscreteDirectedModelCheck
Input: Model M = (S ,T , I, L), set of bad states B, estimate sets Hj , 0 ≤ j ≤ maxh

Output: true if property is satisfied or counterexample if not

1 for each i = 1, . . . , L for each j = 0, . . . , maxh

2 Open(−i, j) ← ∅
3 for each j = 0, . . . , maxh

4 Open(0, j) ← I ∩ Hj

5 fmin ← min{j ≥ 0 | Open(0, j) �= ∅}
6 while (fmin �= ∞)
7 gmin ← min{i | Open(i, fmin − i) �= ∅}
8 while (gmin ≤ fmin)
9 Min ← Open(gmin, fmin − gmin)
10 Min ← Min\

�L
k=1 Open(gmin − k, fmin − gmin)

11 if (Min ∩ B �= ∅) then return GeneratePath(Min ∩ B)
12 Succ ← {s′ | s ∈ Min, (s, t, s′) ∈ T}
13 for each j = fmin − gmin − 1, . . . , maxh

14 Open(gmin + 1, j) ← Open(gmin + 1, j) ∪ (Succ ∩ Hj)
15 gmin ← gmin + 1
16 fmin ← min({i + j > fmin | Open(i, j) �= ∅} ∪ {∞})

Fig. 5. Directed Model Checking Algorithm for Uniform Costs

file that has to be considered. As processors may have different computational
power and processes can dynamically join and leave the exploration, the number
of state space parts does not necessarily have to match the number of processors.

Real-Time Model Checking. Timed automata (TA) extend finite labelled transi-
tion systems with real-valued variables called clocks to capture delays and timing
constraints. Directed model checking for TAs was developed parallel to directed
model checking for finite systems, and was coined guided model checking [13].
These techniques have been successfully applied to several case studies and were
implemented in the directed model checker for timed automata MCTA [71,73]
and added to the existing model checker UPPAAL [13,33,84].

TA distinguish between delay and discrete edge transitions. Delay transitions
increment all clock variables with the same amount, while the finite part of the
state remains unchanged. Discrete edge transitions may change the finite part
of the state and reset clock variables to zero. Guards and invariant conditions
over clock variables are defined using clock constraints Ψ(Cl), defined by ψ :=
x � c | x − y � c | ψ ∧ ψ | ¬ψ with x, y ∈ Cl, c ∈ ZZ, and � ∈ {<, ≤}. This
restriction to simple constraints on clocks, and constraints on differences between
clocks is used in [8] to show that model checking TAs is decidable.

Common model checkers use symbolic semantics based on zones. A zone Z
is a maximal set of clock valuations satisfying a constraint from Ψ(Cl). A sym-
bolic state s is a pair (l, Z) of a location and a zone. Symbolic state s = (l, Z)
represents a subset of s′ = (l′, Z ′), denoted s ⊆ s′, if l = l′ and v |= Z ⇒ v |= Z ′.

80 S. Edelkamp et al.

Procedure ModelCheck
Input: Model M = (S ,T , I, L), set of bad states B, cost algebra A
Output: true if property is satisfied or counterexample if not

1 Closed ← ∅; Open ← I
2 while (Open �= ∅)
3 S ← SelectA(Open)
4 Open ← Open \ S; Closed ← Closed ∪ S
5 if (S ∩ B �= ∅) return GeneratePath(S ∩ B)
6 Succ ← {s′ | s ∈ S, (s, t, s′) ∈ T}
7 Succ ← {s ∈ Succ| ∀s′ ∈ Closed. s � s′}
8 Open ← {s ∈ Open| ∀s′ ∈ Succ. s � s′} ∪ {s ∈ Succ| ∀s′ ∈ Open.s � s′}
9 return true

Fig. 6. General Model Checking Algorithm for Timed Automata

Necessary operations can be effectively realized, using a canonical representation
of zones as weighted graph, known as Difference Bound Matrices [16].

Due to the nature of delay, it is possible to reach any reachable state by an
alternation of delays and edge transitions (by inserting zero delays or merg-
ing successive delays). The length of a counterexample can and is in practice
expressed in the number of discrete edge transitions. Cost and heuristic are
typically defined over cost algebra A = (IN0 ∪ ∞, +, ≤, ∞, 0). If the goal is to
minimize the length of the error trace, we assume for the cost that c(t) = 0 for
delay transitions, and c(t) = 1 otherwise. The forward reachability algorithm
presented in Fig. 2 can then be extended, as depicted in Fig. 6, to deal with
TAs. We assume that set of bad states B is a pair of a location and zone (lb, Zb).

A consequence of the zone-semantics is that a symbolic state s′ may represent
a subset of another symbolic state s. Model checking algorithms for TAs differ
therefore in one important aspect from the general algorithm in Fig. 2. Rather
than checking for equality between sets of states, they typically check for set
inclusion. If symbolic state s ∈ Closed, then we can discard exploration of any
subset s′ of s. Duplicate detection in Line 8 in Fig. 6 reflects the deletion of
subsets. Similarly, a symbolic state will not be added to Open if it is the subset
of some symbolic state in Open.

Although guided model checking as presented in [13] was aimed at cost optimal
reachability, it also explored briefly heuristics for simple reachability. Heuristics
in this area have traditionally been problem dependent, but Kupferschmid et al.
introduced generic heuristics based on monotonicity relaxations and automata-
theoretic abstractions [71,72]. The monotonicity relaxation assumes that once a
value of a variable is attained, it may keep this value forever. The semantics
of a transition system under the monotonicity relaxation is set based, and the
successors increase monotonously with respect to set inclusion. The automata-
theoretic abstraction repeatedly replaces a pair of automata with an abstraction
of their product. The size of these abstraction is limited by a given N ; to reach
this bound bisimilar states and states with a large heuristic value are merged.

Survey on Directed Model Checking 81

This ensures that close to the error state, the abstraction is nevertheless accurate.
For given benchmarks both heuristics reduced time and memory requirements,
and furthermore found shorter error traces than Uppaal’s random DFS [71,73].

Stochastic Model Checking. integrates quantitative dependability analysis with
model checking. In this context, systems are usually described as Markov models.
The mostly used models are discrete-time Markov chains (DTMCs), continuous-
time Markov chains (CTMCs) and Markov Decision Processes (MDPs) [102].
These models can be considered as a labelled transition system extended by
transition probabilities. More concretely, in each state a probability distribution
describes the probability of firing a particular transition as the next step of the
system. Dependability requirements on such models are usually formulated in a
stochastic temporal logic like PCTL [60] in the discrete-time case or CSL [9,10]
in the continuous-time case. Model checking of PCTL or CSL formulae relies
mainly on numerical methods to solve linear equation systems [102,60,9,10]. A
weakness of these methods is their inability to provide counterexamples. This
problem has been studied in the literature for a particular type of dependability
properties, namely probabilistic reachability, [3,4,57,58,5]. A probabilistic reach-
ability property is a claim that the probability to run into a bad state, i.e., a
state from B, does not exceed a particular probability bound p. Such a property
is violated in the case that the accumulated probability of all offending paths,
i.e., paths from an initial state to a state in B, is higher than p. A counterex-
ample in this context is then a set of offending paths such that its accumulated
probability is higher than p. Since paths with high probability represent high
probable system executions, we expect the human user to be more interested in
counterexamples which include most probable offending paths.

In [3,4], an approach based on directed model checking has been proposed to
address this problem. The basic idea of that approach is to select the most prob-
able offending path. This can be done by using the algorithm in Fig. 3 combined
with the probabilistic cost algebra 〈[0, 1], ·, ≥, 0, 1〉. The cost of a transition is its
probability. This means that the cost of a path, i.e., the product of the costs of
each transition along the path, is just the probability of that path. This setting
results in selecting the offending path with the maximal probability. In [3,4] the
basic algorithm is extended to construct a whole counterexample by not only se-
lecting one most probable offending path but a sufficient set of such paths. Since
counterexamples in this context can contain a large number of paths, analysing
them is a chellange for a human user. In [6], a method based on interactive vi-
sualization is proposed which makes analysing complex counterexamples easier.

Search for Schedules. The following is an overview of techniques to approach
scheduling problems. [112] provides a more detailed discussion, comparing the
tools Spin, Cadp and Uppaal Cora. In recent years, model checkers have been
applied to solving combinatorial optimization problems. In particular, scheduling
problems have been considered often, e.g. [1,13,14,24,25,48,92,103,110,111,112].
The approach here is to interpret the problem as a reachability problem, where
the question is, in a system where transitions have costs, what the minimal

82 S. Edelkamp et al.

necessary cost is to reach a state in B, where B ⊆ S is a set of goal states
(i.e. ‘good’ states where a complete schedule for the given problem has been
achieved). A trace providing this minimal cost then represents a schedule for the
problem at hand.

A scheduling problem is about processing a certain number of entities, e.g.
products. The processing is usually done by a one or more resource, which can
perform tasks, provided, that the accompanying constraints are met. Further-
more, each task has an execution time ([24] consider uncertain execution times).
A certain goal should be reached, usually having completely processed a finite
batch of entities. The question asked in scheduling is not mainly if this goal
can be reached, but how efficiently. Using model checking tools, we are able to
deal with complex industrial problems. We model tasks as transitions, meaning
that performing task ti in an execution appears as si

ti−−→ si+1 in a state space
model M, where si and si+1 are two states in the trace corresponding with the
execution. In such state spaces, we can observe the following.

A function progress : S → � can be constructed, which accesses the state vari-
ables, using the specification of M, and quantifies the progress made to reaching
some predetermined goal, e.g. having completely processed a given batch of en-
tities. In general, say we have c0, cend ∈ �, ∀s ∈ S.c0 ≤ progress(s) ≤ cend and
progress(I) = c0, i.e. c0 is the initial (no) progress and cend represents having
reached the goal. Tasks may also lead a schedule further away from the goal.

For most scheduling problems, e.g. [1,13,14,25,48,92,112], typically B = {s ∈
S | progress(s) = cend}. One technique is to iteratively search M using a set of
formulas, written in a temporal logic, such as LTL or μ-calculus. Placed in the
context of DMC, cost-bounded model checking algorithm (Fig. 3) can be used
to search M for a schedule, cheaper than the provided cost upper bound U .
Using this approach, one can iteratively search for increasingly good schedules.
This has been done e.g. in Spin [92] and Cadp [112]. In the latter case, costs are
modelled in μCRL by means of additional actions. Iterative searching can be very
inefficient, though, depending on the number of iterations needed. Depth-first
branch-and-bound is based on the iterative search. Here, the upper bound in the
formula is updated on-the-fly. The benefit of using this technique is that M only
needs to be searched once, although it can still take a lot of resources. In Spin

4.0, this technique can be used by using C primitives [92]. An update section
in the model, written in C, is fired each time a counterexample is found, which
updates the (hidden) minimal cost variable, changing the property to check.

In state spaces of the most basic scheduling problems, a liveness property φ
that always a state e ∈ B can be reached holds. In other words, every schedule,
i.e. trace, eventually leads to a successful finish. This fact means that DMC
algorithms which aggressively prune and are therefore usually less effective for
functional model checking can be very useful for finding schedules. Examples
of such algorithms are nearest neighbour heuristic, which follows a single trace
based on cumulated costs, and beam search [77,89], which follows up to β traces,
using cumulated costs and estimations. In functional model checking, if such

Survey on Directed Model Checking 83

searches do not return a counterexample, it is no guarantee that the property
holds. In ‘basic’ scheduling, the worst we get are near-optimal solutions.

In a more general setting, we consider the presence of unsuccessful termina-
tion, i.e. deadlocks e for which progress(e) �= cend . See e.g. [103,111] for exam-
ples in this setting. Now, the aforementioned liveness property still holds, but
B = {s ∈ S | progress(s) = cend ∨ enabledM(s) = ∅}. Here, let us call the goal
states G = {s ∈ S | progress(s) = cend}. The BnB technique for Spin can be
adapted to this setting by incorporating a secondary check in the C code, to
ensure that a goal state has been found [110]. Pruning algorithms may lead to
no solution at all, depending on the ratio | G |:| B \ G | and how promising the
traces leading to states in B \ G initially appear to be, based on the guiding
function. Besides improving the guiding function, with beam search, we can also
counter this problem by increasing β, but of course, the penalty of this is less
pruning.

Beam search (BS) has been applied to a whole range of scheduling prob-
lems [31,93,100,103,111,112]. Two variants of BS are considered most classic:
detailed and priority BS. Both versions use a beam width, to indicate the maxi-
mum number of states which may be expanded in each level of M. Detailed BS
uses an evaluation function f(s) = a × b, where C(s, a) and H(s, b), to select up
to β states. In priority BS adapted for general state spaces [103], outgoing tran-
sitions of each state are ordered by means of a priority function prio : T → �.
The beam width is represented by β = αl, where α is the maximum number
of outgoing transitions explored per state in the first l levels of the search. In
subsequent levels, only one transition is explored per state. One extension of BS
is called flexible BS [103,112], where the beam width is not strongly fixed. In
flexible detailed BS, tie-breaking is avoided in cases where there are not clearly
β best states, and all competent candidates are explored. In arbitrary state space
structures, this can improve the search a lot, since selections beyond the influ-
ence of the guiding function are avoided [103,110,111,112]. Another extension
is a combination of Dijkstra’s search and BS. The advantage of this extension
over regular BS is that once a goal state has been found, the search can safely
terminate [112].

Other settings which still largely remain to be investigated are multi-cost
problems [14,110], infinite scheduling problems with or without nondeterministic
product input, where the main difficulty is to determine what we are looking for,
e.g. a single cycle, and what actually constitutes a ‘best’ schedule, and parallel
scheduling problems where concurrent executions of tasks cannot be represented
in an interleaved fashion ([112] contains an example dealing with this).

8 Conclusion

In the survey we have illustrated the algorithmic essentials of direct model check-
ing, a recently proposed bug-finding paradigm for mitigating the state explosion
problem. We have shown that it applies in a wide number of verification areas,

84 S. Edelkamp et al.

and pointed to recent advances in AI search. Algorithms were presented in a
general set-theoretic manner and instantiated to specific needs.

Meanwhile, directed model checking has become major branch of the tech-
niques to cope with very large state spaces. The survey thus fills the gap left
open by directed model checking not being mentioned in the most visible books
like “Model Checking” [27] and surveys like “25 Years of Model Checking” [53].

The currently envisioned future of directed model checking includes the de-
sign of refined heuristics [62,61], relevance analysis to detect helpful and useless
transitions [109], local search alternatives such as randomized guided search [90].
large-scale disk-based search with refined delayed duplicate elimination strate-
gies [12,75,47], semi-external search incorporating space-efficient perfect hash
function for a better time-space trade-off [42,43], exploiting edges of current
hardware technology such as addressing flash memory instead of magnetic de-
vices [2,11,43], and parallel computation, especially the integration of multi-core
processing [64] and GPU computation [44].

References

1. Abdeddäım, Y., Asarin, E., Maler, O.: Scheduling With Timed Automata. The-
oretical Computer Science 354(2), 272–300 (2006)

2. Ajwani, D., Malinger, I., Meyer, U., Toledo, S.: Characterizing the performance of
flash memory storage devices and its impact on algorithm design. In: McGeoch,
C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 208–219. Springer, Heidelberg (2008)

3. Aljazzar, H., Hermanns, H., Leue, S.: Counterexamples for timed probabilistic
reachability. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829,
pp. 177–195. Springer, Heidelberg (2005)

4. Aljazzar, H., Leue, S.: Extended directed search for probabilistic timed reacha-
bility. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp.
33–51. Springer, Heidelberg (2006)

5. Aljazzar, H., Leue, S.: Counterexamples for model checking of markov decision
processes. Technical Report soft-08-01, Chair for Software Engineering, University
of Konstanz, Gemany (December 2007) (submitted for publication)

6. Aljazzar, H., Leue, S.: Debugging of dependability models using interactive visu-
alization of counterexamples. In: QEST 2008. IEEE Computer Society Press, Los
Alamitos (2008)

7. Alur, R., Brayton, R., Henzinger, T., Qadeer, S., Rajamani, S.: Partial-order re-
duction in symbolic state-space exploration. Formal Methods in System Design 18,
97–116 (2001)

8. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

9. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time
Markov chains. ACM Trans. Comput. Logic 1(1), 162–170 (2000)

10. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Software Eng. 29(7) (2003)

11. Barnat, J., Brim, L., Edelkamp, S., Šimeček, P., Sulewski, D.: Can flash memory
help in model checking? In: FMICS, pp. 159–174 (2008)

12. Barnat, J., Brim, L., Šimeček, P., Weber, M.: Revisiting resistance speeds up I/O-
efficient LTL model checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 48–62. Springer, Heidelberg (2008)

Survey on Directed Model Checking 85

13. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn,
J.M.T.: Efficient guiding towards cost-optimality in UPPAAL. In: Margaria, T.,
Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, p. 174. Springer, Heidelberg (2001)

14. Behrmann, G., Larsen, K., Rasmussen, J.: Optimal scheduling using priced timed
automata. SIGMETRICS Performance Evaluation Review 32(4), 34–40 (2005)

15. Bellman, R.: On a routing problem. Quaterly of Applied Mathematics 16(1), 87–
90 (1958)

16. Bengtsson, J.E., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In:
Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri
Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)

17. Biere, A.: μcke — efficient μ-calculus model checking. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254. Springer, Heidelberg (1997)

18. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. In:
FMICS (2002)

19. Bisiani, R.: Beam search. In: Shapiro [99], pp. 1467–1568
20. Bloem, R., Ravi, K., Somenzi, F.: Efficient decision procedures for model checking

of linear time logic properties. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999.
LNCS, vol. 1633, pp. 222–235. Springer, Heidelberg (1999)

21. Bloem, R., Ravi, K., Somenzi, F.: Symbolic guided search for CTL model checking.
In: DAC, pp. 29–34 (2000)

22. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer,
Heidelberg (2004)

23. Bošnački, D., Leue, S., Lluch-Lafuente, A.: Partial-order reduction for general
state exploring algorithms. In: SPIN (2006)

24. Bozga, M., Kerbaa, A., Maler, O.: Scheduling Acyclic Branching Programs on
Parallel Machines. In: RTSS, pp. 208–215. IEEE Computer Society Press, Los
Alamitos (2004)

25. Brinksma, E., Mader, A.: Verification and Optimization of a PLC Control Sched-
ule. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885.
Springer, Heidelberg (2000)

26. Clarke, E., Grumberg, O., Long, D.: Model checking and abstraction. ACM Trans.
Program. Lang. Syst. 16(5), 1512–1542 (1994)

27. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

28. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory efficient al-
gorithms for the verification of temporal properties. Formal Methods in System
Design 1, 275–288 (1992)

29. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

30. Dechter, R., Pearl, J.: The optimality of A* revisited. In: AAAI (1983)
31. Della Croce, F., T’kindt, V.: A recovering beam search algorithm for the one-

machine dynamic total completion time scheduling problem. J. of the Operational
Research Society 53, 1275–1280 (2002)

32. Dial, R.: Shortest-path forest with topological ordering. Communications of the
ACM 12(11), 632–633 (1969)

33. Dierks, H.: Time, abstraction and heuristics – automatic verification and planning
of timed systems using abstraction and heuristics. Habilitation thesis (July 2005)

34. Dijkstra, E.: A note on two problems in connection with graphs. Numerische
Mathematik 1, 269–271 (1959)

86 S. Edelkamp et al.

35. Dillenburg, J., Nelson, P.: Perimeter search. Artificial Intelligence 65(1), 165–178
(1994)

36. Edelkamp, S.: Symbolic pattern databases in heuristic search planning. In: AIPS
(2002)

37. Edelkamp, S., Jabbar, S.: Large-scale directed model checking LTL. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg (2006)

38. Edelkamp, S., Jabbar, S., Lluch-Lafuente, A.: Cost-algebraic heuristic search. In:
AAAI (2005)

39. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking
in the validation of communication protocols. STTT 5, 247–267 (2004)

40. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Partial order reduction and trail im-
provement in directed model checking. STTT 6, 277–301 (2004)

41. Edelkamp, S., Lluch-Lafuente, A.: Abstraction in directed model checking. In:
ICAPS-Workshop on Connecting Planning Theory with Practice (2004)

42. Edelkamp, S., Sanders, P., Šimeček, P.: Semi-external LTL model checking. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 530–542. Springer,
Heidelberg (2008)

43. Edelkamp, S., Sulewski, D.: Flash-efficient LTL model checking with minimal
counterexamples. In: SEFM (2008)

44. Edelkamp, S., Sulewski, D.: Model checking via delayed duplicate detection on
the GPU. Technical Report 821, Dortmund University of Technology (2008)

45. Emerson, A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science, Volume B: Formal Models and Sematics, pp.
995–1072. Elsevier and MIT Press (1990)

46. Emerson, E., Lei, C.: Efficient model checking in fragments of the propositional
mu-calculus (extended abstract). In: LICS, pp. 267–278 (1986)

47. Evangelista, S.: Dynamic delayed duplicate detection for external memory model
checking. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.) SPIN 2008. LNCS,
vol. 5156, pp. 77–94. Springer, Heidelberg (2008)

48. Fehnker, A.: Scheduling a Steel Plant with Timed Automata. In: Proc. RTCSA
1999, IEEE Computer Society Press, Los Alamitos (1999)

49. Felner, A.: Improving Search Techniques and using them in Different Environ-
ments. PhD thesis, Bar-Ilan University (2001)

50. Fraer, R., Kamhi, G., Ziv, B., Vardi, M., Fix, L.: Prioritized traversal: Efficient
reachability analysis for verification and falsification. In: Emerson, E.A., Sistla,
A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)

51. Ginsberg, M., Harvey, W.: Iterative broadening. Artificial Intelligence 55, 367–383
(1992)

52. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent
Systems. LNCS, vol. 1032. Springer, Heidelberg (1996)

53. Grumberg, O., Veith, H. (eds.): 25 Years of Model Checking. LNCS, vol. 5000.
Springer, Heidelberg (2008)

54. Hajek, J.: Self-synchronization and blocking in data transfer protocols. Technical
Report THE-RC29286 (1977)

55. Hajek, J.: Automatically verified data transfer protocols. In: Proceedings 4th
International Computer Communications Conference (1978)

56. Hajek, J. (2002), http://www.humintel.com/hajek/
57. Han, T., Katoen, J.-P.: Counterexamples in probabilistic model checking. In:

Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 72–86.
Springer, Heidelberg (2007)

http://www.humintel.com/hajek/

Survey on Directed Model Checking 87

58. Han, T., Katoen, J.-P.: Providing evidence of likely being on time: Counterex-
ample generation for CTMC model checking. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 331–346.
Springer, Heidelberg (2007)

59. Hansen, E., Zhou, R., Feng, Z.: Symbolic heuristic search using decision diagrams.
In: Koenig, S., Holte, R.C. (eds.) SARA 2002. LNCS, vol. 2371, p. 83. Springer,
Heidelberg (2002)

60. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Asp. Comput. 6(5), 512–535 (1994)

61. Helmert, M., Geffner, H.: Unifying the causal graph and additive heuristic. In:
ICAPS, pp. 140–147 (2008)

62. Helmert, M., Haslum, P., Hoffmann, J.: Flexible abstraction heuristics in optimal
sequential planning. In: ICAPS, pp. 176–183 (2007)

63. Holzmann, G.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Reading (2004)

64. Holzmann, G., Bosnacki, D.: The design of a multicore extension of the SPIN
model checker. IEEE Trans. Software Eng. 33(10), 659–674 (2007)

65. Holzmann, G., Peled, D., Yannakakis, M.: On nested depth first search. In: SPIN
(1996)

66. Jensen, R., Bryant, R., Veloso, M.: SetA*: An efficient BDD-based heuristic search
algorithm. In: AAAI (2002)

67. Korf, R.: Depth-first iterative-deepening: An optimal admissible tree search. Ar-
tificial Intelligence 27(1), 97–109 (1985)

68. Korf, R., Zhang, W., Thayer, I., Hohwald, H.: Frontier search. Journal of the
ACM 52(5), 715–748 (2005)

69. Kumar, V.: Branch-and-bound search. In: Shapiro [99], pp. 1468–1472
70. Kupferman, O., Sheinvald-Faragy, S.: Finding shortest witnesses to the nonempti-

ness of automata on infinite words. In: Baier, C., Hermanns, H. (eds.) CONCUR
2006. LNCS, vol. 4137, pp. 492–508. Springer, Heidelberg (2006)

71. Kupferschmid, S., Dräger, K., Hoffmann, J., Finkbeiner, B., Dierks, H., Podel-
ski, A., Behrmann, G.: uppaal/DMC – abstraction-based heuristics for directed
model checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 679–682. Springer, Heidelberg (2007)

72. Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI plan-
ning heuristic for directed model checking. In: Valmari, A. (ed.) SPIN 2006. LNCS,
vol. 3925, pp. 35–52. Springer, Heidelberg (2006)

73. Kupferschmid, S., Wehrle, M., Nebel, B., Podelski, A.: Faster than uppaal? In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 552–555. Springer,
Heidelberg (2008)

74. Kurshan, R.: Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press, Princeton (1994)

75. Lamborn, P., Hansen, E.A.: Layered duplicate detection in external-memory
model checking. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.) SPIN 2008.
LNCS, vol. 5156, pp. 160–175. Springer, Heidelberg (2008)

76. Lluch-Lafuente, A.: Directed Search for the Verification of Communication Pro-
tocols. PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau (2003)

77. Lowerre, B.T.: The HARPY speech recognition system. PhD thesis, CMU (1976)
78. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,

Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

88 S. Edelkamp et al.

79. Pearl, J.: Heuristics. Addison-Wesley, Reading (1985)
80. Peled, D.: Combining partial order reductions with on-the-fly model-checking.

Formal Methods in System Design 8, 39–64 (1996)
81. Qian, K.: Formal Symbolic Verification Using Heuristic Search and Abstraction

Techniques. PhD thesis, University of New South Wales (2006)
82. Qian, K., Nymeyer, A.: Heuristic search algorithms based on symbolic data struc-

tures. In: ACAI (2003)
83. Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction

and symbolic pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004.
LNCS, vol. 2988, pp. 497–511. Springer, Heidelberg (2004)

84. Rasmussen, J.I., Larsen, K.G., Subramani, K.: Resource-optimal scheduling using
priced timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 220–235. Springer, Heidelberg (2004)

85. Ravi, K., Somenzi, F.: High-density reachability analysis. In: ICCAD (1995)
86. Ravi, K., Somenzi, F.: Efficient fixpoint computation for invariant checking. In:

ICCD (1999)
87. Ravi, K., Somenzi, F.: Hints to accelerate symbolic traversal. In: Pierre, L., Kropf,

T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 250–266. Springer, Heidelberg
(1999)

88. Reffel, F., Edelkamp, S.: Error detection with directed symbolic model checking.
In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708,
p. 195. Springer, Heidelberg (1999)

89. Rubin, S.: The ARGOS Image Understanding System. PhD thesis, CMU (1978)
90. Rungta, N., Mercer, E.G.: Generating counter-examples through randomized

guided search. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595,
pp. 39–57. Springer, Heidelberg (2007)

91. Russell, S.: Efficient memory-bounded search methods. In: European Conference
on Artificial Intelligence (ECAI). Wiley, Chichester (1992)

92. Ruys, T.C.: Optimal scheduling using branch and bound with SPIN 4.0. In: Ball,
T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 1–17. Springer, Hei-
delberg (2003)

93. Sabuncuoglu, I., Bayiz, M.: Job shop scheduling with beam search. European
Journal of Operational Research 118, 390–412 (1999)

94. Sanders, P., Meyer, U., Sibeyn, J.F.: Algorithms for Memory Hierarchies.
Springer, Heidelberg (2002)

95. Schuppan, V.: Liveness Checking as Safety Checking to Find Shortest Counterex-
amples to Linear Time Properties. PhD thesis, ETH Zürich (2006)

96. Schuppan, V., Biere, A.: Efficient reduction of finite state model checking to reach-
ability analysis. STTT 5(2-3), 185–204 (2004)

97. Schuppan, V., Biere, A.: Liveness checking as safety checking for infinite state
spaces. In: INFINITY (2005)

98. Schuppan, V., Biere, A.: Shortest counterexamples for symbolic model checking
of LTL with past. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 493–509. Springer, Heidelberg (2005)

99. Shapiro, S. (ed.): Encyclopedia of Artificial Intelligence. Wiley Interscience, Hobo-
ken (1992)

100. Si Ow, P., Smith, S.F.: Viewing scheduling as an opportunistic problem-solving
process. Annals of Operations Research 12(1-4), 85–108 (1988)

101. Sobrinho, J.L.: Algebra and algorithms for QoS path computation and hop-by-
hop routing in the internet. IEEE/ACM Transactions on Networking 10, 541–550
(2002)

Survey on Directed Model Checking 89

102. Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, New Jersey (1994)

103. Torabi Dashti, M., Wijs, A.J.: Pruning State Spaces with Extended Beam Search.
In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA 2007.
LNCS, vol. 4762, pp. 543–552. Springer, Heidelberg (2007)

104. Valmari, A.: Eliminating redundant interleavings during concurrent program ver-
ification. In: Odijk, E., Rem, M., Syre, J.-C. (eds.) PARLE 1989. LNCS, vol. 366,
pp. 89–103. Springer, Heidelberg (1989)

105. Valtorta, M.: A result on the computational complexity of heuristic estimates for
the A* algorithm. Information Sciences 34, 48–59 (1984)

106. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS (1986)

107. Wah, B., Shang, Y.: Study of IDA*-style searches. Artificial Intelligence 3(4),
493–523 (1995)

108. Wang, C., Bloem, R., Hachtel, G., Ravi, K., Somenzi, F.: Compositional SCC
analysis for language emptiness. Formal Methods in System Design 28(1), 5–36
(2006)

109. Wehrle, M., Kupferschmidt, S., Podelski, A.: Useful actions are useful. In: ICAPS,
pp. 388–395 (2008)

110. Wijs, A.J.: What to Do Next: Analysing and Optimising System Behaviour in
Time. PhD thesis, Vrije Universiteit Amsterdam (2007)

111. Wijs, A.J., Lisser, B.: Distributed Extended Beam Search for Quantitative Model
Checking. In: Edelkamp, S., Lomuscio, A. (eds.) MoChArt IV. LNCS (LNAI),
vol. 4428, pp. 165–182. Springer, Heidelberg (2007)

112. Wijs, A.J., van de Pol, J.C., Bortnik, E.: Solving Scheduling Problems by Untimed
Model Checking. In: STTT (to appear, 2008)

113. Yang, C., Dill, D.: Validation with guided search of the state space. In: DAC
(1998)

114. Zhou, R., Hansen, E.: Breadth-first heuristic search. In: ICAPS (2004)
115. Zhou, R., Hansen, E.: Beam-stack search: Integrating backtracking with beam

search. In: ICAPS (2005)

		Introduction

		History of Directed Model Checking

		Concepts and Notation

		Directed Model Checking Algorithms

		-Regular Properties

		Partial Order Reduction

		Applications

		Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

