
VSchuppan-FSEN-2009-full.pdf

 Fondazione Bruno Kessler

Via Sommarive 18

38123 Trento Povo (TN), Italy

http://www.fbk.eu/

Towards a Notion of Unsatisfiable Cores

for LTL

V. Schuppan

April 2009

Technical Report # FBK-200901000

© Fondazione Bruno Kessler, 2009

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of FBK and will probably be copyrighted if accepted for publication. It

has been issued as a Technical Report for early dissemination of its contents. In view of the transfer of copyright to the

outside publisher, its distribution outside of FBK prior to publication should be limited to peer communications and specific

requests. After outside publication, material will be available only in the form authorized by the copyright owner.

Id: fsen09.tex,v 1.44 2009-04-22 14:20:40 schuppan Exp

Towards a Notion of Unsatisfiable Cores for
LTL?

Viktor Schuppan

FBK-irst, Via Sommarive 18, 38123 Trento Povo (TN), Italy
schuppan@fbk.eu

Abstract. Unsatisfiable cores, i.e., parts of an unsatisfiable formula that
are themselves unsatisfiable, have important uses in debugging specifi-
cations, speeding up search in model checking or SMT, and generating
certificates of unsatisfiability. While unsatisfiable cores have been well in-
vestigated for Boolean SAT and constraint programming, the notion of
unsatisfiable cores for temporal logics such as LTL has not received much
attention. In this paper we investigate notions of unsatisfiable cores for
LTL that arise from the syntax tree of an LTL formula, from converting
it into a conjunctive normal form, and from proofs of its unsatisfiability.
The resulting notions are more fine-granular than existing ones.

1 Introduction

The importance of requirements to delivering high quality hardware and soft-
ware products on time is being increasingly recognized in industry. Temporal
logics such as LTL have become a standard formalism to specify requirements
for reactive systems [Pnu77]. Consequentially, in recent years methodologies for
property-based design based on temporal logics have been developed (e.g., [pro]).

Increasing use of temporal logic requirements in the design process necessi-
tates the availability of efficient validation and debugging methodologies. Vacu-
ity checking [BBDER01, KV03] and coverage [CKV06] are complementary ap-
proaches developed in the context of model checking [CE81,QS82,CGP99,BK08]
for validating requirements given as temporal logic properties. They focus on
the relation between the model and its requirements beyond the simple cor-
rectness relation as established by model checking. However, with the exception
of [CS07,FKSFV08], both vacuity and coverage assume presence of both a model
and its requirements. Particularly in early stages of the design process the former
might not be available. Satisfiability and realizability [PR89,ALW89] checking
are approaches that can handle requirements without a model being avaiable.
Tool support for both is available (e.g., [BCP+07]).

Typically, unsatisfiability of a set of requirements signals presence of a prob-
lem; finding a reason for unsatisfiability can help with the ensuing debugging.
In practice, determining a reason for unsatisfiability of a formula without au-
tomated support is often doomed to fail due to the sheer size of the formula.
? This is the full version of [Sch09].

Consider, e.g., the EURAILCHECK project [eur] that developed a methodology
and a tool for the validation of requirements in the context of railway signal-
ing and control [CRST08b]. Part of the methodology consists of translating the
set of (implicitly conjoined) requirements given by a textual specification into a
variant [CRST08c] of LTL whose atoms are constraints in a first order theory
and subsequent checking for satisfiability; if the requirements turn out to be un-
satisfiable, an unsatisfiable subset of them is returned to the user. The textual
specification that was considered as a feasibility study in the project is a few
hundred pages long.

Another application for determining reasons for unsatisfiability are algo-
rithms that try to find a solution to a problem in an iterative fashion. These
algorithms start with a guess of a solution and check whether that guess is indeed
a solution. If not, rather than ruling out only that guess, they determine a reason
for that guess not being a solution and rule out all guesses that are doomed to
fail for the same reason. Two examples are found in verification algorithms using
counterexample guided abstraction refinement (CEGAR) (e.g., [CTVW03]) and
in SMT (e.g., [WW99]). Here, too, automated support for determining a reason
for unsatisfiability is clearly essential.

Current implementations for satisfiability checking (e.g., [CRST07]) point
out reasons for unsatisfiability by returning a part of an unsatisfiable formula
that is by itself unsatisfiable. This is called an unsatisfiable core (UC). How-
ever, these UCs are coarse-grained in the following sense. The input formula
is a Boolean combination of temporal logic formulas. When extracting an UC
current implementations do not look inside temporal subformulas: when, e.g.,
φ = (Gψ) ∧ (Fψ′) is found to be unsatisfiable, then [CRST07] will return φ
as an UC irrespective of the complexity of ψ and ψ′. Whether the resulting
core is inspected for debugging by a human or used as a filter in a search pro-
cess by a machine: in either case a more fine-granular UC will likely make the
corresponding task easier.

In this paper we take first steps to overcome the restrictions of UCs for
LTL by investigating more fine-grained notions of UCs for LTL. We start with
a notion based on the syntactic structure of the input formula where entire
subformulas are replaced with 1 (true) or 0 (false) depending on the polarity
of the corresponding subformula. We then consider conjunctive normal forms
obtained by structure-preserving clause form translations [PG86]; the resulting
notion of core is one of a subset of conjuncts. That notion is reused when looking
at UCs extracted from resolution proofs from bounded model checking (BMC)
[BCCZ99] runs. We finally show how to extract an UC from a tableau proof
[GPVW95] of unsatisfiability. All 4 notions can express UCs that are as fine-
grained as the one based on the syntactic formula structure. The notion based on
conjunctive normal forms provides more fine-grained resolution in the temporal
dimension, and those based on BMC and on unsatisfied tableau proofs raise the
hope to do even better.

At this point we would like to emphasize the distinction between notions of
UCs and methods to obtain them. While there is some emphasis in this paper

2

on methods for UC extraction, here we see such methods only as a vehicle to
suggest notions of UCs.

We are not aware of similar systematic investigation of the notion of UC for
LTL; for notions of cores for other specification formalisms, for application of
UCs, and for technically related approaches such as vacuity checking see Sect. 9.

The paper is structured as follows. In the next Sect. 2 we state the prelimi-
naries and in Sect. 3 we introduce some general notions. In Sect.s 4, 5, 6, and 7
we investigate UCs obtained by syntactic manipulation of parse trees, by taking
subsets of conjuncts in conjunctive normal forms, by extracting resolution proofs
from BMC runs, and by extraction from closed tableaux nodes. Some aspects
that are not treated in-depth in this paper are mentioned in Sect. 8. Related
work is discussed in Sect. 9 before we conclude in Sect. 10.

2 Preliminaries

In the following we give standard definitions for LTL [Pnu77], see, e.g., [Eme90,
BK08]. Let IB be the set of Booleans, IN the naturals, and AP a finite set of
atomic propositions.

Definition 1 (LTL Syntax). The set of LTL formulas is constructed induc-
tively as follows. The Boolean constants 0 (false), 1 (true) ∈ IB and any atomic
proposition p ∈ AP are LTL formulas. If ψ, ψ′ are LTL formulas, so are ¬ψ
(negation), ψ ∨ ψ′ (or), ψ ∧ ψ′ (and), Xψ (next time), ψUψ′ (until), ψRψ′

(releases), Fψ (finally), and Gψ (globally). We use ψ → ψ′ (implication) as an
abbreviation for ¬ψ ∨ψ′, ψ ← ψ′ (reverse implication) for ψ ∨¬ψ′, and ψ ↔ ψ′

(biimplication) for (ψ → ψ′) ∧ (ψ ← ψ′).

The semantics of LTL formulas is defined on infinite words over the alphabet
2AP . If π is an infinite word in (2AP)ω and i is a position in IN, then π[i] denotes
the letter at the i-th position of π and π[i,∞] denotes the suffix of π starting
at position i (inclusive). We now inductively define the semantics of an LTL
formula on positions i ∈ IN of a word π ∈ (2AP)ω:
Definition 2 (LTL Semantics).

(π, i) |= 1
(π, i) 6|= 0
(π, i) |= p ⇔ p ∈ π[i]
(π, i) |= ¬ψ ⇔ (π, i) 6|= ψ
(π, i) |= ψ ∨ ψ′ ⇔ (π, i) |= ψ or (π, i) |= ψ′

(π, i) |= ψ ∧ ψ′ ⇔ (π, i) |= ψ and (π, i) |= ψ′

(π, i) |= Xψ ⇔ (π, i+ 1) |= ψ
(π, i) |= ψUψ′ ⇔ ∃i′ ≥ i . ((π, i′) |= ψ′ ∧ ∀i ≤ i′′ < i′ . (π, i′′) |= ψ)
(π, i) |= ψRψ′ ⇔ ∀i′ ≥ i . ((π, i′) |= ψ′ ∨ ∃i ≤ i′′ < i′ . (π, i′′) |= ψ)
(π, i) |= Fψ ⇔ ∃i′ ≥ i . (π, i′) |= ψ
(π, i) |= Gψ ⇔ ∀i′ ≥ i . (π, i′) |= ψ

An infinite word π satisfies a formula φ iff the formula holds at the beginning
of that word: π |= φ ⇔ (π, 0) |= φ. In that case we also call π a satisfying
assignment to φ.

3

Definition 3 (Satisfiability). An LTL formula φ is satisfiable if there exists
a word π that satisfies it: ∃π ∈ (2AP)ω . π |= φ; it is unsatisfiable otherwise.

Definition 4 (Negation Normal Form). An LTL formula φ is in negation
normal form (NNF) nnf (φ) if negations are applied only to atomic propositions.

Conversion of an LTL formula into NNF can be achieved by pushing nega-
tions inward and dualizing operators (replacing them with their duals), see,
e.g., [BK08].

Definition 5 (Subformula). Let φ be an LTL formula. The set of subformulas
SF (φ) of φ is defined recursively as follows:

ψ = b or ψ = p with b ∈ IB, p ∈ AP : SF (ψ) = {ψ}
ψ = ◦1ψ′ with ◦1 ∈ {¬,X,F,G} : SF (ψ) = {ψ} ∪ SF (ψ′)
ψ = ψ′ ◦2 ψ′′ with ◦2 ∈ {∨,∧,U,R} : SF (ψ) = {ψ} ∪ SF (ψ′) ∪ SF (ψ′′)

Definition 6 (Polarity). Let φ be an LTL formula, let ψ ∈ SF (φ). ψ has
positive polarity (+) in φ if it appears under an even number of negations,
negative polarity (−) otherwise.

We regard LTL formulas as trees, i.e., we don’t take sharing of subformulas into
account. We don’t attempt to simplify formulas before or after UC extraction.

3 Notions and Concepts Related to UCs

In this section we discuss general notions in the context of UCs independently
of the precise notion of UC used. It is not a goal of this paper to formalize
the notions below towards a general framework of UCs; in particular, we do
not specify formal requirements on the set of operations to take an input to a
core. Instead, in the remainder of this paper we focus on the case of LTL where
suitable instantiations are readily available.

The terminology used in the literature for these notions is diverse. We de-
cided to settle for the at least somewhat common term “unsatisfiable core” that
has been used for such notions, e.g., in the context of Boolean satisfiability
(e.g., [GN03, ZM03a, ZM03b]), SMT (e.g., [CGS07]), and declarative specifica-
tions (e.g., [TCJ08]).

UCs, Irreducible UCs, and Least-Cost Irreducible UCs When dealing
with UCs one typically considers an input φ (here: LTL formula) taken from a
set of possible inputs Φ (here: all LTL formulas) and a Boolean-valued function
foo1 : Φ 7→ IB with foo(φ) = 0 (here: LTL satisfiability).

The goal is to derive another input φ′ (the UC) with foo(φ′) = 0 from φ
s.t. 1. the derivation preserves a sufficient set of reasons for foo being 0 without
adding new reasons, 2. the fact that foo(φ′) is 0 is easier to see for the user than

1 Although we write foo we still say “unsatisfiable” core rather than “unfooable” core.

4

the fact that foo(φ) is 0, and 3. the derivation is such that preservance/non-
addition of reasons for foo being 0 on φ and φ′ can be understood by the user.
Typically 1 and 3 are met by limiting the derivation to some set of operations
on inputs that fulfills these criteria (here: syntactic weakening of LTL formulas).
The remaining criterion 2 can be handled by assuming a cost function on inputs
where lower cost provides some reason to hope for easier comprehension by the
user (here: see below).

Assuming a set of inputs and a set of operations we can define the following
notions. An input φ′ is called a core of an input φ if it is derived by a sequence of
such operations. φ′ is an unsatisfiable core if φ′ is a core of φ and foo(φ′) = 0. φ′

is a proper unsatisfiable core if φ′ is an unsatisfiable core of φ and is syntactically
different from φ. Finally, φ′ is an irreducible unsatisfiable core (IUC) if φ′ is an
unsatisfiable core of φ and there is no proper unsatisfiable core of φ′. Often IUCs
are called minimal UCs and least-cost IUCs minimum UCs.

Cost functions often refer to some size measure of an input as suggested by
a specific notion of core. An example is the number of conjuncts when inputs
are conjunctions of formulas and foo is satisfiability. This example hints that
simplistic measures might be suboptimal as the complexity of the conjuncts is
not taken into account. In the remainder of this paper we do not consider specific
cost functions; in most of the notions used some straightforward size measure is
decreased by each of the above mentioned operations.

Granularity of a Notion of UC Clearly, the original input contains at least
as much information as any of its UCs and, in particular, all reasons for being
unsatisfiable. However, our goal when defining notions of UCs is to come up
with derived inputs that make some of these reasons easier to see. Therefore we
use the term granularity of a notion of core as follows. We wish to determine
the relevance of certain aspects of an input to the input being unsatisfiable by
the mere presence or absence of elements in the UC. In other words, we do not
take potential steps of inference by the user into account. Hence, we say that
one notion of core provides finer granularity than another notion if it provides
at least as much information on the relevance of certain aspects of an input as
the other notion.

As an example consider a notion of UC that takes a set of formulas as input
and defines a core to be a subset of this set of formulas without proceeding to
modify the member formulas versus a notion that also modifies the members
of the input set of formulas. Another example is a notion of UC for LTL that
considers relevance of subformulas at certain points in time versus a notion that
only either keeps or discards subformulas.

4 Unsatisfiable Cores via Parse Trees

4.1 Intuition and Example

In this section we consider UCs purely based on the syntactic structure of the
formula. It is easy to see that, as is done, e.g., in some forms of vacuity checking

5

[KV03], replacing an occurrence of a subformula with positive polarity with 1
or replacing an occurrence of a subformula with negative polarity with 0 will
lead to a weaker formula. This naturally leads to a definition of UC based on
parse trees where replacing occurrences of subformulas corresponds to replacing
subtrees.

Consider the following formula φ = (G(p ∧ ψ)) ∧ (F(¬p ∧ ψ′)) whose parse
tree is depicted in Fig. 1 (a). The formula is unsatisfiable independent of the
concrete (and possibly complex) subformulas ψ, ψ′. A corresponding UC with
ψ, ψ′ replaced with 1 is φ′ = (G(p ∧ 1)) ∧ (F(¬p ∧ 1)), shown in Fig. 1 (b).

∧

G

∧

p ψ

F

∧

¬

p

ψ′

∧

G

∧

p 1

F

∧

¬

p

1

(a) A formula given as a parse tree (b) and its UC.

Fig. 1. Example of an UC via parse tree. Modified parts are marked blue boxed.

Hence, by letting the set of operations to derive a core be replacement of
occurrences of subformulas of φ with 1 (for positive polarity occurrences) or 0
(for negative polarity occurrences), we obtain the notions of core, unsatisfiable
core, proper unsatisfiable core, and irreducible unsatisfiable core via parse tree.

In the example above φ′ is both a proper and an IUC of φ. Note that
(G(p ∧ 1))∧ (F(¬p ∧ ψ′)) and (G(p ∧ ψ))∧ (F(¬p ∧ 1)) are UCs of φ, too, as is
φ itself (and possibly many more when ψ and ψ′ are taken into account).

4.2 Formalization

Definition 7 (Parse Tree). Let φ be an LTL formula. The parse tree of φ,
ptφ = (Vptφ , Eptφ), is a tree with a non-empty set of nodes Vptφ , a set of edges
Eptφ , root root(ptφ) ∈ Vptφ , a labeling opptφ

: Vptφ 7→ {¬,∨,∧,X,U,R,F,G} ∪
AP ∪ IB that maps inner nodes V iptφ to operators and leaf nodes V lptφ to Boolean
constants and atomic propositions such that a node v labeled with a unary op-
erator has one child leftptφ(v) and a node labeled with a binary operator has
two children leftptφ(v), rightptφ(v). The father of a non-root node v is given by
fatherptφ

(v). Each node v represents a formula fptφ(v) in the natural fashion.
ptφ represents the formula given by its root node: f(ptφ) = fptφ(root(ptφ)). The
polarity of a node polarityptφ

(v) is the polarity of its subformula fptφ(v) in φ.

Definition 8 (Core of a Parse Tree). Let pt, pt ′ be parse trees. pt ′ is a
core of pt if 1. nodes and edges of pt ′ are a subset of those of pt: Vpt′ ⊆ Vpt ,

6

Ept′ ⊆ Ept , 2. pt and pt ′ have the same root node: root(pt ′) = root(pt), 3. the
labeling of inner nodes of pt ′ agrees with the labeling of the corresponding nodes
in pt: ∀v ∈ V ipt′ . oppt′(v) = oppt(v), and 4. the labeling of leaf nodes of pt ′

either agrees with the labeling of the corresponding nodes in pt or is 1 (resp. 0)
if v has positive (resp. negative) polarity: ∀v ∈ V lpt′ . (oppt′(v) = oppt(v)) ∨
(polaritypt′(v) = + ∧ oppt′(v) = 1) ∨ (polaritypt′(v) = − ∧ oppt′(v) = 0).

pt ′ is a proper core of pt if pt ′ 6= pt.

Definition 9 (UC of a Parse Tree). Let pt, pt ′ be parse trees. pt ′ is an
unsatisfiable core of pt if 1. f(pt) is unsatisfiable, 2. pt ′ is a core of pt, and
3. f(pt ′) is unsatisfiable. pt ′ is an irreducible unsatisfiable core (IUC) of pt if
there does not exist a proper UC of pt ′.

Formulas in and not in NNF Let φ be an unsatisfiable LTL formula with
parse tree ptφ in which every two subsequent occurrences of Boolean negation
have been eliminated. Assume for the remainder of this section that negations
are not represented as separate nodes in the parse tree of ptφ but rather as an
additional Boolean marking on each node. In that setting conversion of φ to
NNF results in a formula whose parse tree is isomorphic to ptφ up to labeling
of the nodes with operators and negations.

Let Dnnf (φ) denote the set of nodes in the parse tree of φ that are dualized in
the conversion from φ to nnf (φ). It is not hard to see that there exists a reverse
operation nnf −1 that takes nnf (φ) and the set of dualized nodes Dnnf (φ) and
returns the original formula φ.

Now it turns out that the following lead to the same result: 1. Compute an
UC ptφ

uc of ptφ by replacing some subformulas (nodes) V ′ptφ of ptφ with 1 or 0
depending on each node’s polarity. 2. (a) Convert ptφ into NNF yielding ptnnf (φ)

with set of dualized nodes Dnnf (φ). (b) Replace the subformulas (nodes) isomor-
phic to V ′ptφ in ptnnf (φ) with fresh nodes with operator 1, yielding ptnnf (φ)

uc .

(c) Apply nnf −1 to ptnnf (φ)
uc with set of dualized nodes Dnnf (φ). (d) Replace

each fresh node labeled 1 that had its negation flag set in previous step with a
fresh node 0. For sample implementations of nnf and nnf −1 see App. A.

In other words, the set of UCs that can be obtained directly from ptφ is the
same as the one that can be obtained by converting φ to NNF, computing the
set of UCs for φ in NNF, and undoing the conversion to NNF for each of the
resulting cores.

5 Unsatisfiable Cores via Definitional Conjunctive
Normal Form

Structure preserving translations (e.g., [PG86, Boy92, ER00]) of formulas into
conjunctive normal form introduce fresh Boolean propositions for (some) sub-
formulas that are constrained by one or more conjuncts to be 1 (if and) only if the
corresponding subformulas hold in some satisfying assignment. In this paper we

7

use the term definitional conjunctive normal form (dCNF) to make a clear dis-
tinction from the conjunctive normal form used in Boolean satisfiability (SAT),
which we denote CNF. dCNF is often a preferred representation of formulas as
it’s typically easy to convert a formula into dCNF, the expansion in formula size
is moderate, and the result is frequently amenable to resolution. Most important
in the context of this paper, dCNFs yield a straightforward and most commonly
used notion of core in the form of a (possibly constrained) subset of conjuncts.

5.1 Basic Form

Below we define the basic version of dCNF. It makes no attempt to simplify
conjuncts in order to use some restricted set of operators as is done, e.g., in
[Fis91]. The subsequent result on equisatisfiability is standard.

Definition 10 (Definitional Conjunctive Normal Form). Let φ be an LTL
formula over atomic propositions AP, let x, x′, . . . ∈ X be fresh atomic proposi-
tions not in AP. dCNF aux (φ) is a set of conjuncts containing one conjunct for
each occurrence of a subformula ψ in φ as follows:

ψ Conjunct ∈ dCNFaux (φ)

b with b ∈ IB xψ ↔ b

p with p ∈ AP xψ ↔ p

◦1ψ′ with ◦1 ∈ {¬,X,F,G} xψ ↔ ◦1xψ′
ψ′ ◦2 ψ′′ with ◦2 ∈ {∨,∧,U,R} xψ ↔ xψ′ ◦2 xψ′′

Then the definitional conjunctive normal form of φ is defined as

dCNF (φ) ≡ xφ ∧G
∧

c∈dCNFaux (φ)

c

xφ is called the root of the dCNF. An occurrence of x on the left-hand side of a
biimplication is a definition of x, an occurrence on the right-hand side a use.

Fact 1 (Equisatisfiability of φ and dCNF (φ)) Let φ be an LTL formula.
Then φ and dCNF (φ) are equisatisfiable such that 1. satisfying assignments agree
on AP and 2. xψ ∈ X is 1 at some time point i of a satisfying assignment π to
dCNF (φ) iff the subformula ψ holds in π[i,∞].

Note that as we only consider formulas given as parse trees, i.e., without
sharing of subformulas, the dCNF of φ according to Def. 10 contains exactly
one definition and one use for each occurrence of a non-root subformula.

By letting the operations to derive a core from an input be the removal of
elements of dCNF aux (φ) we obtain the notions of core, unsatisfiable core, proper
unsatisfiable core, and irreducible unsatisfiable core via dCNF. We additionally
require that all conjuncts are discarded that contain definitions for which no
(more) conjunct with a corresponding use exists. Clearly that does not impact
equisatisfiability with the original formula and makes comparison with cores via
parse trees (where entire subformulas are removed) easier.

The formal definitions now can be stated as follows:

8

Definition 11 (Core of a dCNF). Let φ be an LTL formula with dCNF
dCNF (φ). Let dCNF ′ ≡ x′ ∧ G

∧
c′∈dCNF ′aux

c′ be such that 1. x′ = xφ,
2. dCNF ′aux ⊆ dCNF aux (φ), and 3. for each x 6= xφ if a definition of x is
contained in dCNF ′aux , then a use of x is contained in dCNF ′aux . dCNF ′ is a
proper core if dCNF ′aux ⊂ dCNF aux (φ).

Definition 12 (UC of a dCNF). Let dCNF ′ be a core of dCNF. dCNF ′ is an
unsatisfiable core of dCNF if both dCNF and dCNF ′ are unsatisfiable. dCNF ′

is an irreducible unsatisfiable core of dCNF if there does not exist a proper UC
of dCNF ′.

Example We continue the example from Fig. 1 in Fig. 2. In the figure we identify
an UC with its set of conjuncts. In Fig. 2 (b) the definitions for both ψ and ψ′

and all dependent definitions are removed. As in Sect. 4 the UC shown in Fig. 2
(b) is an IUC with more UCs existing.

x(G(p∧ψ))∧(F(¬p∧ψ′)) ↔ xG(p∧ψ) ∧ xF(¬p∧ψ′)
xG(p∧ψ) ↔ Gxp∧ψ
xp∧ψ ↔ xp ∧ xψ
xp ↔ p

xψ ↔ . . .

. . . ↔ . . .

x
F(¬p∧ψ′) ↔ Fx¬p∧ψ′
x¬p∧ψ′ ↔ x¬p ∧ xψ′
x¬p ↔ ¬x′p
x′p ↔ p

x
ψ′ ↔ . . .

. . . ↔ . . .

x(G(p∧ψ))∧(F(¬p∧ψ′)) ↔ xG(p∧ψ) ∧ xF(¬p∧ψ′)
xG(p∧ψ) ↔ Gxp∧ψ
xp∧ψ ↔ xp ∧ xψ
xp ↔ p

x
F(¬p∧ψ′) ↔ Fx¬p∧ψ′
x¬p∧ψ′ ↔ x¬p ∧ xψ′
x¬p ↔ ¬x′p
x′p ↔ p

(a) A formula given as a dCNF (b) and its UC.

Fig. 2. Example of an UC via dCNF for φ = (G(p ∧ ψ)) ∧ (F(¬p ∧ ψ′)). The
“. . .” stand for the definitions of ψ, ψ′, and their subformulas. Modified parts
are marked blue boxed.

Translating Back to LTL In Tab. 1 we indicate how to translate an IUC obtained
by Def. 12 back to an LTL formula.2 The first column states the subformula ψ,
the second column indicates the polarity of the occurrence of ψ in φ, the third
column lists the conjuncts found in the IUC (where xψ′ ↔ without a right-hand
side stands for the definition of ψ′), and the last column shows the formula to
replace ψ in the IUC as an LTL formula. The cases where none of the conjuncts
is part of the IUC are omitted. All other cases cannot occur in an IUC.

To see correctness of replacing the set of conjuncts in the third column with
the formulas in the fourth column it is sufficient to replace propositions used
2 Here the translation essentially performs simplification — a translation without sim-

plification could easily be obtained by replacing atomic propositions used but not
defined with 0 or 1 depending on polarity. However, this will not be possible without
loss of information for the variants of dCNF we will investigate later.

9

but not defined in the IUC with 1 for positive polarity occurrences and with 0
otherwise.

The argument that a certain case cannot occur in an IUC is via contradiction.
Consider the example of a negative polarity occurrence of ψ = ψ′Rψ′′. Assume
xψ ↔ xψ′Rxψ′′ , xψ′ ↔ are present in an IUC while xψ′′ ↔ is not. Hence,
removing xψ ↔ xψ′Rxψ′′ (and, consequentially, xψ′ ↔) leads to a satisfiable
dCNF. A satisfying assignment for that dCNF can be modified to obtain a
satisfying assignment for the dCNF including xψ ↔ xψ′Rxψ′′ , xψ′ ↔ by setting
xψ′′ (which is unconstrained) and xψ to 0 at all time points. This contradicts
the assumption of the latter dCNF being unsatisfiable.

Correspondence Between Cores via Parse Trees and via dCNF Let φ
be an LTL formula. From Def. 10 it is clear that there is a one-to-one correspon-
dence between the nodes in the parse tree of φ and the conjuncts in its dCNF.
Therefore, the conversion between the representation of φ as a parse tree and as
a dCNF is straightforward.

Remember that an UC of a parse tree is obtained by replacing an occurrence
of a subformula ψ with 1 or 0 depending on polarity, while an UC of a dCNF
is obtained by removing the definition of ψ and all dependent definitions. Both
ways to obtain an UC do not destroy the correspondence between parse trees and
dCNFs; specifically, the only detail that is added when converting cores between
parse trees and dCNFs is turning Boolean constants that originate from replacing
subformulas in a parse tree into fresh propositions from X in a dCNF and vice
versa. Hence, the notions of UC obtained by Def. 9 and by Def. 12 are equivalent.

5.2 Variants

We now examine some variants of Def. 10 w.r.t. the information contained in
the UCs that they can yield. Each variant is built on top of the previous one.
Definitions 11 and 12 apply correspondingly.

Replacing Biimplications with Implications

Intuition and Example Definition 10 uses biimplication rather than implication
in order to cover the case of both positive and negative polarity occurrences
of subformulas in a uniform way. A seemingly refined variant is to consider
both directions of that biimplication separately.3 However, it is easy to see that
in our setting of formulas as parse trees, i.e., without sharing of subformulas,
each subformula has a unique polarity and, hence, only one direction of the
biimplication will be present in an IUC. In other words, using an implication
and a reverse implication rather than a biimplication has no benefit in terms of
granularity of the obtained cores.

3 While we defined biimplication as an abbreviation in Sect. 2, we treat it in this
discussion as if it were available as an atomic operator for conjuncts of this form.

10

ψ P Conjuncts in IUC of φ via dCNF Replacement for ψ in φ

b ∈ IB +/− xψ ↔ b b

p ∈ AP +/− xψ ↔ p p

◦1 ∈ {¬,X,F,G} +/− xψ ↔ ◦1xψ′
xψ′ ↔

◦1ψ′

ψ′ ∨ ψ′′ + xψ ↔ xψ′ ∨ xψ′′
xψ′ ↔
xψ′′ ↔

ψ′ ∨ ψ′′

ψ′ ∨ ψ′′ − xψ ↔ xψ′ ∨ xψ′′
xψ′ ↔

ψ′

xψ ↔ xψ′ ∨ xψ′′
xψ′′ ↔

ψ′′

xψ ↔ xψ′ ∨ xψ′′
xψ′ ↔
xψ′′ ↔

ψ′ ∨ ψ′′

ψ′ ∧ ψ′′ + xψ ↔ xψ′ ∧ xψ′′
xψ′ ↔

ψ′

xψ ↔ xψ′ ∧ xψ′′
xψ′′ ↔

ψ′′

xψ ↔ xψ′ ∧ xψ′′
xψ′ ↔
xψ′′ ↔

ψ′ ∧ ψ′′

ψ′ ∧ ψ′′ − xψ ↔ xψ′ ∧ xψ′′
xψ′ ↔
xψ′′ ↔

ψ′ ∧ ψ′′

ψ′Uψ′′ + xψ ↔ xψ′Uxψ′′
xψ′′ ↔

Fψ′′

xψ ↔ xψ′Uxψ′′
xψ′ ↔
xψ′′ ↔

ψ′Uψ′′

ψ′Uψ′′ − xψ ↔ xψ′Uxψ′′
xψ′′ ↔

ψ′′

xψ ↔ xψ′Uxψ′′
xψ′ ↔
xψ′′ ↔

ψ′Uψ′′

ψ′Rψ′′ + xψ ↔ xψ′Rxψ′′
xψ′′ ↔

ψ′′

xψ ↔ xψ′Rxψ′′
xψ′ ↔
xψ′′ ↔

ψ′Rψ′′

ψ′Rψ′′ − xψ ↔ xψ′Rxψ′′
xψ′′ ↔

Gψ′′

xψ ↔ xψ′Rxψ′′
xψ′ ↔
xψ′′ ↔

ψ′Rψ′′

Table 1. Translating an IUC based on Def. 12 back to an LTL formula.

11

Formalization The formal definition is given below.

Definition 13 (Definitional Conjunctive Normal Form with Implica-
tions). dCNFimpl(φ) is defined as dCNF (φ) except that the biimplication ↔ is
replaced with ⇀↽, which is defined as → if the occurrence of ψ is positive in φ
and with ← otherwise:

ψ Conjunct ∈ dCNFaux (φ)

b with b ∈ IB xψ ⇀↽ b

p with p ∈ AP xψ ⇀↽ p

◦1ψ′ with ◦1 ∈ {¬,X,F,G} xψ ⇀↽ ◦1xψ′
ψ′ ◦2 ψ′′ with ◦2 ∈ {∨,∧,U,R} xψ ⇀↽ xψ′ ◦2 xψ′′

The translation back into an LTL formula can be achieved via Tab. 1 by
replacing biimplications with (reverse) implications.

Splitting Implications for Binary Operators

Intuition and Example We now consider left-hand and right-hand operands
of the ∧ and ∨ operators separately by splitting the implications for ∧ and
the reverse implications for ∨ into two (reverse) implications. For example,
xψ′∧ψ′′ → xψ′ ∧ xψ′′ is split into xψ′∧ψ′′ → xψ′ and xψ′∧ψ′′ → xψ′′ . That variant
can be seen not to yield finer granularity as follows. Assume an IUC dCNF ′

contains a conjunct xψ′∧ψ′′ → xψ′ but not xψ′∧ψ′′ → xψ′′ . The corresponding
IUC dCNF based on Def. 10 must contain the conjunct xψ′∧ψ′′ → xψ′ ∧ xψ′′ but
will not contain a definition of xψ′′ . Hence, also in the IUC based on Def. 10, the
subformula occurrence ψ′′ can be seen to be irrelevant to that core. The case for
∨ is similar.

Formalization

Definition 14 (Definitional Conjunctive Normal Form with Split Im-
plications). dCNFsplitimpl(φ) is defined as dCNFimpl(φ) except in the follow-
ing cases:

ψ Polarity of ψ in φ Conjuncts ∈ dCNFaux (φ)

ψ′ ∧ ψ′′ + xψ → xψ′ , xψ → xψ′′

ψ′ ∨ ψ′′ − xψ ← xψ′ , xψ ← xψ′′

The translation back into an LTL formula is given in Tab. 2. Only cases
different from Tab. 1 (modulo (reverse) implications vs. biimplications) are listed.

Temporal Unfolding

Intuition and Example Here we rewrite a conjunct for a positive polarity occur-
rence of an U subformula as its one-step temporal unfolding and an additional
conjunct to enforce the desired fixed point. I.e., we replace a conjunct xψ′Uψ′′ →
xψ′Uxψ′′ with xψ′Uψ′′ → xψ′′ ∨ (xψ′ ∧Xxψ′Uψ′′) and xψ′Uψ′′ → Fxψ′′ .

12

ψ P Conjuncts in IUC of φ via dCNF Replacement for ψ in φ

ψ′ ∨ ψ′′ − xψ ← xψ′
xψ′ ←

ψ′

xψ ← xψ′′
xψ′′ ←

ψ′′

xψ ← xψ′
xψ ← xψ′′
xψ′ ←
xψ′′ ←

ψ′ ∨ ψ′′

ψ′ ∧ ψ′′ + xψ → xψ′
xψ′ →

ψ′

xψ → xψ′′
xψ′′ →

ψ′′

xψ → xψ′
xψ → xψ′′
xψ′ →
xψ′′ →

ψ′ ∧ ψ′′

Table 2. Translating an IUC based on Def. 14 back to an LTL formula.

This can be seen to provide improved information for positive polarity oc-
currences of U subformulas in an IUC compared to Def. 14 as follows. A dCNF
for a positive occurrence of an U subformula ψ′Uψ′′ obtained by Def. 14 re-
sults (among others) in the following conjuncts: c = xψ′Uψ′′ → xψ′Uxψ′′ ,
C ′′′ = {xψ′ → . . .}, and C ′′′′ = {xψ′′ → . . .}. An IUC based on that dCNF
contains either 1. none of c, c′′′ ∈ C ′′′, c′′′′ ∈ C ′′′′, 2. c, c′′′′ ∈ C ′′′′, or 3. c,
c′′′ ∈ C ′′′, c′′′′ ∈ C ′′′′. On the other hand, a dCNF with temporal unfolding
as suggested results in the conjuncts: c′ = xψ′Uψ′′ → xψ′′ ∨ (xψ′ ∧Xxψ′Uψ′′),
c′′ = xψ′Uψ′′ → Fxψ′′ , and C ′′′, C ′′′′ as before. An IUC based on that dCNF
contains either 1. none of c′, c′′, c′′′ ∈ C ′′′, c′′′′ ∈ C ′′′′, 2. c′, c′′′ ∈ C ′′′,
c′′′′ ∈ C ′′′ ∈ C ′′′′, 3. c′′, c′′′′ ∈ C ′′′′, or 4. c′, c′′, c′′′ ∈ C ′′′, c′′′′ ∈ C ′′′′. For
some U subformulas the additional case allows to distinguish between a situa-
tion where unsatisfiability arises based on impossibility of some finite unfolding
of the U formula alone (the IUC contains c′, c′′′ ∈ C ′′′, c′′′′ ∈ C ′′′′) and a situa-
tion where either some finite unfolding of that formula or meeting its eventuality
are possible but not both (the IUC contains c′, c′′, c′′′ ∈ C ′′′, c′′′′ ∈ C ′′′′). See
also Tab. 1 and Tab. 3.

As an illustration consider the following two formulas: 1. (ψ′Uψ′′) ∧
(¬ψ′ ∧ ¬ψ′′) and 2. (ψ′Uψ′′)∧((¬ψ′ ∧ ¬ψ′′) ∨ (G¬ψ′′)) An IUC based on Def. 14
will contain c, c′′′ ∈ C ′′′, and c′′′′ ∈ C ′′′′ in both cases while one based on Def. 15
below will contain c′, c′′′ ∈ C ′′′, and c′′′′ ∈ C ′′′′ in the first case and additionally
c′′ in the second case.

Temporal unfolding leading to more fine-granular IUCs can also be applied
to negative polarity occurrences of R formulas in a similar fashion. Here a
corresponding example is 1. (¬(ψ′Rψ′′)) ∧ (ψ′ ∧ ψ′′) versus 2. (¬(ψ′Rψ′′)) ∧
((ψ′ ∧ ψ′′) ∨Gψ′′). In the formal definition below we also include the opposite
polarity occurrences for U and R as well as negative polarity occurrences of F

13

and positive polarity occurrences of G subformulas.4 However, these cases do
not lead to more fine-granular IUCs.

Formalization

Definition 15 (Definitional Conjunctive Normal Form with Temporal
Unfolding). dCNFtempunf (φ) is defined as dCNFsplitimpl(φ) except in the
following cases:

ψ Polarity of ψ in φ Conjuncts ∈ dCNFaux (φ)

ψ′Uψ′′ + xψ′Uψ′′ → xψ′′ ∨ (xψ′ ∧Xxψ′Uψ′′), xψ′Uψ′′ → Fxψ′′

ψ′Uψ′′ − xψ′Uψ′′ ← xψ′′ ∨ (xψ′ ∧Xxψ′Uψ′′)

ψ′Rψ′′ + xψ′Rψ′′ → xψ′′ ∧ (xψ′ ∨Xxψ′Rψ′′)

ψ′Rψ′′ − xψ′Rψ′′ ← xψ′′ ∧ (xψ′ ∨Xxψ′Rψ′′), xψ′Rψ′′ ← Gxψ′′

Fψ′ − xFψ′ ← xψ′ ∨XxFψ′

Gψ′ + xGψ′ → xψ′ ∧XxGψ′

The translation back into an LTL formula is given in Tab. 3. Only cases
different from Tab. 2 are listed. In order to handle some of the additional cases
provided by temporal unfolding one can either introduce a weak U and a strong
R operator, which do not (U) or do (R) enforce the eventuality, or rewrite the
additional case.

Splitting Conjunctions from Temporal Unfolding

Intuition and Example Our final variant splits the conjunctions that arise from
temporal unfolding in Def. 15. In 4 of the 6 cases where temporal unfolding is
possible this allows to distinguish the case where unsatisfiability is due to failure
of unfolding in only the first time step that a U, R, F, or G formula is supposed
(not) to hold in versus in the first and/or some later step.5 Examples where this
distinction comes into play are:

U (+ pol.): (ψ′Uψ′′) ∧ (¬ψ′ ∧ ¬ψ′′) and (ψ′Uψ′′) ∧ (¬ψ′′ ∧X(¬ψ′ ∧ ¬ψ′′))
R (− pol.): (¬(ψ′Rψ′′)) ∧ (ψ′ ∧ ψ′′) and (¬(ψ′Rψ′′)) ∧ (ψ′′ ∧X(ψ′ ∧ ψ′′))
F (− pol.): (¬Fψ′) ∧ ψ′ and (¬Fψ′) ∧Xψ′

G (+ pol.): (Gψ′) ∧ ¬ψ′ and (Gψ′) ∧X¬ψ′

Formalization The formal definition is as follows:

Definition 16 (Definitional Conjunctive Normal Form with Split Tem-
poral Unfolding). dCNFsplittempunf (φ) is defined as dCNFtempunf (φ) except
in the following cases:
4 Unfolding the opposite polarities for F and G subformulas would require the original

conjunct as without unfolding to ensure the correct fixed point and, therefore, does
not make sense.

5 Note that for the remaining 2 cases of negative polarity occurrences of U formulas
and positive polarity occurrences of R formulas that level of granularity is already
provided by Def. 10: either a definition of ψ′ is present in an IUC or not. See also
Tab. 1.

14

ψ P Conjuncts in IUC of φ via dCNF Replacement for ψ in φ

ψ′Uψ′′ + xψ′Uψ′′ → xψ′′ ∨ (xψ′ ∧Xxψ′Uψ′′)
xψ′ →
xψ′′ →

(ψ′Uψ′′) ∨Gψ′ (weak until)

xψ′Uψ′′ → Fxψ′′
xψ′′ →

Fψ′′

xψ′Uψ′′ → xψ′′ ∨ (xψ′ ∧Xxψ′Uψ′′)
xψ′Uψ′′ → Fxψ′′
xψ′ →
xψ′′ →

ψ′Uψ′′

ψ′Uψ′′ − xψ′Uψ′′ ← xψ′′ ∨ (xψ′ ∧Xxψ′Uψ′′)
xψ′′ ←

ψ′′

xψ′Uψ′′ ← xψ′′ ∨ (xψ′ ∧Xxψ′Uψ′′)
xψ′ ←
xψ′′ ←

ψ′Uψ′′

ψ′Rψ′′ + xψ′Rψ′′ → xψ′′ ∧ (xψ′ ∨Xxψ′Rψ′′)
xψ′′ →

ψ′′

xψ′Rψ′′ → xψ′′ ∧ (xψ′ ∨Xxψ′Rψ′′)
xψ′ →
xψ′′ →

ψ′Rψ′′

ψ′Rψ′′ − xψ′Rψ′′ ← xψ′′ ∧ (xψ′ ∨Xxψ′Rψ′′)
xψ′ ←
xψ′′ ←

(ψ′Rψ′′) ∧ Fψ′ (strong releases)

xψ′Rψ′′ ← Gxψ′′
xψ′′ ←

Gψ′′

xψ′Rψ′′ ← xψ′′ ∧ (xψ′ ∨Xxψ′Rψ′′)
xψ′Rψ′′ ← Gxψ′′
xψ′ ←
xψ′′ ←

ψ′Rψ′′

Fψ′ − xFψ′ ← xψ′ ∨XxFψ′
xψ′ ←

Fψ′

Gψ′ + xGψ′ → xψ′ ∧XxGψ′
xψ′ →

Gψ′

Table 3. Translating an IUC based on Def. 15 back to an LTL formula.

15

ψ Polarity of ψ in φ Conjuncts ∈ dCNFaux (φ)

ψ′Uψ′′ + xψ′Uψ′′ → xψ′′ ∨ xψ′ , xψ′Uψ′′ → xψ′′ ∨Xxψ′Uψ′′ , xψ′Uψ′′ → Fxψ′′

ψ′Uψ′′ − xψ′Uψ′′ ← xψ′′ , xψ′Uψ′′ ← xψ′ ∧Xxψ′Uψ′′

ψ′Rψ′′ + xψ′Rψ′′ → xψ′′ , xψ′Rψ′′ → xψ′ ∨Xxψ′Rψ′′

ψ′Rψ′′ − xψ′Rψ′′ ← xψ′′ ∧ xψ′ , xψ′Rψ′′ ← xψ′′ ∧Xxψ′Rψ′′ , xψ′Rψ′′ ← Gxψ′′

Fψ′ − xFψ′ ← xψ′ , xFψ′ ← XxFψ′

Gψ′ + xGψ′ → xψ′ , xGψ′ → XxGψ′

As before we indicate in Tab. 4 how to translate an IUC based on Def. 16
back to an LTL formula. Only cases different from Tab. 3 are listed.

5.3 Comparison with Separated Normal Form

Separated Normal Form (SNF) [Fis91, FN92, FDP01] is a conjunctive normal
form for LTL originally proposed by Fisher to develop a resolution method for
LTL. The method was implemented by Hustadt and Konev [HK02,HK03]; later
applications of SNF include encodings for BMC [BCCZ99] without [FSW02] and
with [CRS04] past time operators.6

The original SNF [Fis91,FN92] separates past and future time operators by
having a strict past time operator at the top level of the left-hand side of the
implication in each conjunct and only Boolean disjunction and F operators on
the right-hand side. We therefore restrict the comparison to two later variants
[FDP01,CRS04] that allow propositions (present time formulas) on the left-hand
side of the implications.

While the main contribution of [FDP01] is a full completeness result for
the temporal resolution method, it also contains a simpler future time variant
of SNF. It handles formulas not in NNF and uses a weak U operator instead
of R. [FDP01] further refines Def. 16 in two ways. First, it applies temporal
unfolding twice to U, weak U, and G formulas. This allows to distinguish failure
of unfolding in the first, second, or some later step relative to the time when a
formula is supposed to hold. Second, in some cases it has separate conjuncts
for the absolute first and for later time steps. In the example (pU(q ∧ r)) ∧
((¬q) ∧XG¬r) this allows to see that from the eventuality q∧r the first operand
is only needed in the absolute first time step, while the second operand leads
to a contradiction in the second and later time steps. A minor difference is that
atomic propositions are not defined using separate fresh propositions but remain
unchanged at their place of occurrence.

[CRS04] uses a less constrained version of [FDP01]: right-hand sides of im-
plications and bodies of X and F operators may now contain positive Boolean
combinations of literals. This makes both above mentioned refinements of Def. 16
unnecessary. It uses R rather than weak U operators. The resulting normal form
differs from Def. 15 in 4 respects: 1. It works on NNF. 2. Positive Boolean combi-
nations are not split into several conjuncts. 3. Fresh propositions are introduced
for U, R, and G formulas representing truth in the next rather than in the
current time step. Because of that, temporal unfolding is performed at the place

6 For the notion of past time operators see Sect. 8.

16

ψ P Conjuncts in IUC of φ via dCNF Replacement for ψ in φ

ψ′Uψ′′ + xψ′Uψ′′ → xψ′′ ∨ xψ′
xψ′ →
xψ′′ →

ψ′ ∨ ψ′′

xψ′Uψ′′ → xψ′′ ∨ xψ′
xψ′Uψ′′ → xψ′′ ∨Xxψ′Uψ′′
xψ′ →
xψ′′ →

(ψ′Uψ′′) ∨Gψ′ (weak until)

xψ′Uψ′′ → Fxψ′′
xψ′′ →

Fψ′′

xψ′Uψ′′ → xψ′′ ∨ xψ′
xψ′Uψ′′ → Fxψ′′
xψ′ →
xψ′′ →

(ψ′ ∨ ψ′′) ∧ (Fψ′′)

xψ′Uψ′′ → xψ′′ ∨ xψ′
xψ′Uψ′′ → xψ′′ ∨Xxψ′Uψ′′
xψ′Uψ′′ → Fxψ′′
xψ′ →
xψ′′ →

ψ′Uψ′′

ψ′Uψ′′ − xψ′Uψ′′ ← xψ′′
xψ′′ ←

ψ′′

xψ′Uψ′′ ← xψ′′
xψ′Uψ′′ ← xψ′ ∧Xxψ′Uψ′′
xψ′ ←
xψ′′ ←

ψ′Uψ′′

ψ′Rψ′′ + xψ′Rψ′′ → xψ′′
xψ′′ →

ψ′′

xψ′Rψ′′ → xψ′′
xψ′Rψ′′ → xψ′ ∨Xxψ′Rψ′′
xψ′ →
xψ′′ →

ψ′Rψ′′

ψ′Rψ′′ − xψ′Rψ′′ ← xψ′′ ∧ xψ′
xψ′ ←
xψ′′ ←

ψ′ ∧ ψ′′

xψ′Rψ′′ ← xψ′′ ∧ xψ′
xψ′Rψ′′ ← xψ′′ ∧Xxψ′Rψ′′
xψ′ ←
xψ′′ ←

(ψ′Rψ′′) ∧ Fψ′ (strong releases)

xψ′Rψ′′ ← Gxψ′′
xψ′′ ←

Gψ′′

xψ′Rψ′′ ← xψ′′ ∧ xψ′
xψ′Rψ′′ ← Gxψ′′
xψ′ ←
xψ′′ ←

(ψ′ ∧ ψ′′) ∨ (Gψ′′)

xψ′Rψ′′ ← xψ′′ ∧ xψ′
xψ′Rψ′′ ← xψ′′ ∧Xxψ′Rψ′′
xψ′Rψ′′ ← Gxψ′′
xψ′ ←
xψ′′ ←

ψ′Rψ′′

Fψ′ − xFψ′ ← xψ′
xψ′ ←

ψ′

xFψ′ ← xψ′
xFψ′ ← XxFψ′
xψ′′ ←

Fψ′

Gψ′ + xGψ′ → xψ′
xψ′ →

ψ′

xGψ′ → xψ′
xGψ′ → XxGψ′
xψ′ →

Gψ′

Table 4. Translating an IUC based on Def. 16 back to an LTL formula.

17

of occurrence of the respective U, R, or G formula. 4. As in [FDP01] atomic
propositions remain unchanged at their place of occurrence. The combination of
2 and 4 leads to this variant of SNF yielding less information than Def. 15 in the
following example: (F(p ∧ q))∧G¬p. An IUC resulting from this variant of SNF
will contain the conjunct x→ F(p ∧ q), not making it clear that q is irrelevant
for unsatisfiability. On the other hand, unsatisfiability due to failure of temporal
unfolding at the first time point only can in some cases be distinguished from
that at the first and/or or later time points, thus yielding more information than
Def. 15; (Gp) ∧ ¬p is an example for that.

6 Unsatisfiable Cores via Bounded Model Checking

6.1 Intuition and Example

By encoding existence of counterexamples of bounded length into a set of CNF
clauses SAT-based Bounded Model Checking (BMC) (e.g., [BCCZ99,BCC+99,
BCRZ99]) reduces model checking of LTL to SAT. Utilizing performance in-
creases in SAT solving technology (for an overview see, e.g., [KS08]) SAT-based
methods have become an established standard that complement BDD-based
methods in verification; a survey on SAT-based verification methods is available
in [PBG05]. Details and references on BMC can be found, e.g., in [BHJ+06].

To prove correctness of properties (rather than existence of a counterex-
ample) BMC needs to determine when to stop searching for longer and longer
counterexamples. The original works (e.g., [BCCZ99]) imposed an upper bound
derived from the graph structure of the model (see also [CKOS05]). A more re-
fined method (e.g., [SSS00]) takes a two-step approach: For the current bound on
the length of counterexamples k, check whether there exists a path that 1. could
possibly be extended to form a counterexample to the property and 2. contains
no redundant part. If either of the two checks fails and no counterexample of
length ≤ k has been found, then declare correctness of the property. As there are
only finitely many states, step 2 guarantees termination. Often, bounds are tight-
ened using some form of induction [SSS00]. For a discussion of other methods to
prove properties in BMC see, e.g., [BHJ+06].

By assuming a universal model BMC provides a way to determine LTL satis-
fiability (used, e.g., in [CRST07]) and so is a natural choice to investigate notions
of UCs. Note that in BMC, as soon as properties are not just simple invariants of
the form Gp, already the first part of the above check for termination might fail.
That observation yields an incomplete method to determine LTL satisfiability.
We first sketch the method and then the UCs that can be extracted.

The method essentially employs Def. 16 to generate a SAT problem in CNF
as follows: 1. Pick some bound k. 2. To obtain the set of variables instantiate
the members of X for each time step 0 ≤ i ≤ k + 1 and of AP for 0 ≤ i ≤ k.
We indicate the time step by using superscripts. 3. For the set of CNF clauses
instantiate each conjunct in dCNF aux not containing a F or G operator once
for each 0 ≤ i ≤ k. Add the time 0 instance of the root of the dCNF, x0

φ, to

18

the set of clauses. 4. Replace each occurrence of Xxiψ with xi+1
ψ . Note that at

this point all temporal operators have been removed and we indeed have a CNF.
Now if for any such k the resulting CNF is unsatisfiable, then so is the original
LTL formula. The resulting method is very similar to BMC in [HJL05] when
checking for termination by using the completeness formula only rather than
completeness and simplepath formula together (only presence of the latter can
ensure termination).

Assume that for an LTL formula φ the above method yields an unsatisfiable
CNF for some k and that we are provided with a (preferably irreducible) UC of
that CNF as a subset of clauses. It is easy to see that we can extract an UC of the
granularity of Def. 16 by considering any dCNF conjunct to be part of the UC
iff for any time step the corresponding CNF clause is present in the CNF IUC.
Note that the CNF IUC provides potentially finer granularity in the temporal
dimension: the CNF IUC contains information about the relevance of parts of
the LTL formula to unsatisfiability at each time step. Contrary to the notions
of UC in the previous section we currently have no translation back to LTL for
this finer level of detail. Once such translation has been obtained it makes sense
to define removal of clauses from the CNF as the operation to derive a core
thus giving the notions of core, unsatisfiable core, proper unsatisfiable core, and
irreducible unsatisfiable core via BMC.

As an example consider φ = ((p ∨XXp) ∧ (G¬q)) ∧ (G((¬p) ∨XXq)). The
translation into a set of CNF clauses and the CNF IUC are depicted in Fig. 3.
Extracting an UC at the granularity of Def. 16 results in φ itself. However, the
CNF IUC shows that, e.g., the occurrence of p in the last conjunct is relevant
only at time steps 0 and 2 and the occurrence of q in the middle conjunct matters
at time steps 2 and 4.

6.2 Formalization

In the following definition we spell out the translation of φ into a CNF for a
given bound k.

Definition 17. Let φ be an LTL formula over atomic propositions AP, let k ∈
IN. For all 0 ≤ i ≤ k + 1 let yi, y′i, . . . ∈ Y be fresh atomic propositions not in
AP and let pi, q i, . . . be fresh atomic propositions — neither in AP nor in Y —
denoting the values of p, q , . . . ∈ AP for each time step. CNFsplittempunf (φ, k)
is a set of clauses, i.e., a CNF, containing (y0

φ) and one or more clauses for each
occurrence of a subformula ψ in φ according to Tab. 5.

It is easy to see that CNFsplittempunf (φ, k) essentially contains a subset of
the conjuncts of a dCNF according to Def. 16 and enforces each of them only for
the time steps from 0 to k. Hence, the equisatisfiability of dCNFsplittempunf (φ)
and φ implies:

Fact 2 Let φ be an LTL formula over atomic propositions AP. If for some
k ∈ IN CNFsplittempunf (φ, k) is unsatisfiable, then so is φ. The converse does
not hold.

19

x0φ

(x0φ → x0
ψ∧ψ′) (x1φ → x1

ψ∧ψ′) (x2φ → x2
ψ∧ψ′) (x3φ → x3

ψ∧ψ′) (x4φ → x4
ψ∧ψ′)

(x0
ψ∧ψ′ → x0ψ) (x1

ψ∧ψ′ → x1ψ) (x2
ψ∧ψ′ → x2ψ) (x3

ψ∧ψ′ → x3ψ) (x4
ψ∧ψ′ → x4ψ)

(x0ψ → x0p ∨ x
0
XXp) (x1ψ → x1p ∨ x

1
XXp) (x2ψ → x2p ∨ x

2
XXp) (x3ψ → x3p ∨ x

3
XXp) (x4ψ → x4p ∨ x

4
XXp)

(x0p → p) (x1p → p) (x2p → p) (x3p → p) (x4p → p)

(x0XXp → x1Xp) (x1XXp → x2Xp) (x2XXp → x3Xp) (x3XXp → x4Xp) (x4XXp → x5Xp)

(x0Xp → x1p,2) (x1Xp → x2p,2) (x2Xp → x3p,2) (x3Xp → x4p,2) (x4Xp → x5p,2)

(x0p,2 → p) (x1p,2 → p) (x2p,2 → p) (x3p,2 → p) (x4p,2 → p)

(x0
ψ∧ψ′ → x0

ψ′) (x1
ψ∧ψ′ → x1

ψ′) (x2
ψ∧ψ′ → x2

ψ′) (x3
ψ∧ψ′ → x3

ψ′) (x4
ψ∧ψ′ → x4

ψ′)

(x0
ψ′ → x0¬q) (x1

ψ′ → x1¬q) (x2
ψ′ → x2¬q) (x3

ψ′ → x3¬q) (x4
ψ′ → x4¬q)

(x0¬q → ¬x
0
q) (x1¬q → ¬x

1
q) (x2¬q → ¬x

2
q) (x3¬q → ¬x

3
q) (x4¬q → ¬x

4
q)

(x0q ← q) (x1q ← q) (x2q ← q) (x3q ← q) (x4q ← q)

(x0
ψ′ → x1

ψ′) (x1
ψ′ → x2

ψ′) (x2
ψ′ → x3

ψ′) (x3
ψ′ → x4

ψ′) (x4
ψ′ → x5

ψ′)

(x0φ → x0
ψ′′) (x1φ → x1

ψ′′) (x2φ → x2
ψ′′) (x3φ → x3

ψ′′) (x4φ → x4
ψ′′)

(x0
ψ′′ → x0χ) (x1

ψ′′ → x1χ) (x2
ψ′′ → x2χ) (x3

ψ′′ → x3χ) (x4
ψ′′ → x4χ)

(x0χ → x0¬p ∨ x
0
XXq) (x1χ → x1¬p ∨ x

1
XXq) (x2χ → x2¬p ∨ x

2
XXq) (x3χ → x3¬p ∨ x

3
XXq) (x4χ → x4¬p ∨ x

4
XXq)

(x0¬p → ¬x
0
p,3) (x1¬p → ¬x

1
p,3) (x2¬p → ¬x

2
p,3) (x3¬p → ¬x

3
p,3) (x4¬p → ¬x

4
p,3)

(x0p,3 ← p) (x1p,3 ← p) (x2p,3 ← p) (x3p,3 ← p) (x4p,3 ← p)

(x0XXq → x1Xq) (x1XXq → x2Xq) (x2XXq → x3Xq) (x3XXq → x4Xq) (x4XXq → x5Xq)

(x0Xq → x1q,2) (x1Xq → x2q,2) (x2Xq → x3q,2) (x3Xq → x4q,2) (x4Xq → x5q,2)

(x0q,2 → q) (x1q,2 → q) (x2q,2 → q) (x3q,2 → q) (x4q,2 → q)

(x0
ψ′′ → x1

ψ′′) (x1
ψ′′ → x2

ψ′′) (x2
ψ′′ → x3

ψ′′) (x3
ψ′′ → x4

ψ′′) (x4
ψ′′ → x5

ψ′′)

time step 0 time step 1 time step 2 time step 3 time step 4

Fig. 3. Example of an UC via BMC. Clauses that form the SAT IUC are marked
blue boxed. The input formula is φ = ((p ∨XXp) ∧ (G¬q)) ∧ (G(p → XXq)).
We abbreviate: ψ = p ∨XXp, ψ′ = G¬q , ψ′′ = G(p → XXq), and χ = p →
XXq .

20

ψ Polarity of ψ in φ Clauses for each 0 ≤ i ≤ k ∈ CNFsplittempunf (φ, k)

b ∈ IB + (¬yiψ ∨ b)

b ∈ IB − (yiψ ∨ ¬b)

p ∈ AP + (¬yiψ ∨ pi)

p ∈ AP − (yiψ ∨ ¬p
i)

¬ψ′ + (¬yiψ ∨ ¬y
i
ψ′)

¬ψ′ − (yiψ ∨ y
i
ψ′)

ψ′ ∧ ψ′′ + (¬yiψ ∨ y
i
ψ′), (¬y

i
ψ ∨ y

i
ψ′′)

ψ′ ∧ ψ′′ − (yiψ ∨ ¬y
i
ψ′ ∨ ¬y

i
ψ′′)

ψ′ ∨ ψ′′ + (¬yiψ ∨ y
i
ψ′ ∨ y

i
ψ′′)

ψ′ ∨ ψ′′ − (yiψ ∨ ¬y
i
ψ′), (y

i
ψ ∨ ¬y

i
ψ′′)

Xψ′ + (¬yiψ ∨ y
i+1
ψ′)

Xψ′ − (yiψ ∨ ¬y
i+1
ψ′)

ψ′Uψ′′ + (¬yi
ψ′Uψ′′ ∨ y

i
ψ′′ ∨ y

i
ψ′), (¬y

i
ψ′Uψ′′ ∨ y

i
ψ′′ ∨ y

i+1
ψ′Uψ′′)

ψ′Uψ′′ − (yi
ψ′Uψ′′ ∨ ¬y

i
ψ′′), (y

i
ψ′Uψ′′ ∨ ¬y

i
ψ′ ∨ ¬y

i+1
ψ′Uψ′′)

ψ′Rψ′′ + (¬yi
ψ′Rψ′′ ∨ y

i
ψ′′), (¬y

i
ψ′Rψ′′ ∨ y

i
ψ′ ∨ y

i+1
ψ′Rψ′′)

ψ′Rψ′′ − (yi
ψ′Rψ′′ ∨ ¬y

i
ψ′′ ∨ ¬y

i
ψ′), (y

i
ψ′Rψ′′ ∨ ¬y

i
ψ′′ ∨ ¬y

i+1
ψ′Rψ′′)

Fψ′ + ∅
Fψ′ − (yi

Fψ′ ∨ ¬y
i
ψ′), (y

i
Fψ′ ∨ ¬y

i+1
Fψ′)

Gψ′ + (¬yi
Gψ′ ∨ y

i
ψ′), (¬y

i
Gψ′ ∨ y

i+1
Gψ′)

Gψ′ − ∅

Table 5. Clauses in CNFsplittempunf for formula φ and bound k. The ∅ indi-
cates that no clause is generated.

21

Let CNF ′ be an IUC of CNFsplittempunf (φ, k). To translate that back to an
LTL formula proceed as follows. Let ci denote the instantiation of some conjunct
c ∈ dCNFsplittempunf (φ) for time step i. 1. Construct a dCNF UC based on
Def. 16 as follows by setting dCNF ′aux such that it contains c iff ci is part of
the CNF IUC for some 0 ≤ i ≤ k: ∀c ∈ dCNFsplittempunf (φ) . ((∃0 ≤ i ≤
k . ci ∈ CNF ′)⇔ c ∈ dCNF ′aux) 2. Translate the resulting dCNF UC to LTL as
described in Sect. 5. If for some subformula the corresponding set of conjuncts
cannot be found in Tab. 4, then extend the set of conjuncts in the UC as needed.

Note that a CNF IUC does not guarantee a dCNF IUC. As an example con-
sider (G(p → (q ∧ r))) ∧ ((¬q ∧ ¬r) ∧ (X(¬q ∧ ¬r))) ∧ (p ∨Xp). At the CNF
level an UC can use, e.g., q in time step 0 and r in time step 1 and still be
irreducible. Clearly such CNF IUC does not yield a dCNF IUC.

7 Unsatisfiable Cores via Tableaux

7.1 Intuition and Example

Tableaux are widely used for temporal logics. Most common methods in BDD-
based symbolic model checking (e.g., [BCM+92,CGH97]) and in explicit state
model checking (e.g., [GPVW95]) of LTL rely on tableaux. Therefore tableaux
seem to be a natural candidate for investigating notions of UCs.

In this section we only consider formulas in NNF. We assume that the reader
is familiar with standard tableaux constructions for LTL such as [GPVW95].
We differ from, e.g., [GPVW95] in that we retain and continue to expand closed
(i.e., contradictory) nodes during tableau construction and only take them into
account when searching for satisfied paths in the tableau. We fix some terminol-
ogy. A node in a tableau is called 1. initial if it is a potential start, 2. closed if
it contains a pair of contradicting literals or the Boolean constant 0, 3. terminal
if it contains no obligations left for the next time step, and 4. accepting (for
some U or F formula), if it either contains both the formula and its eventuality
or none of the two. A path in the tableau is initialized if it starts in an initial
node and fair if it contains infinitely many occurrences of accepting nodes for
each U and F formula. A path is satisfied if 1. it is initialized, 2. it contains no
closed node, and 3. it is finite and ends in a terminal node or infinite and fair. A
tableau is satisfied iff it contains a satisfied path. Satisfied paths yield satisfying
assignments for the LTL formula for which the tableau is constructed.

Intuitively, closed nodes are what prevents satisfied paths. For an initialized
path to a terminal node it is obvious that a closed node on that path is a
reason for that path not being satisfied. A similar statement holds for initialized
infinite fair paths that contain closed nodes. That leaves initialized infinite unfair
paths that do not contain a closed node. Still, also in that case closed nodes
hold information w.r.t. non-satisfaction: an unfair path contains at least one
occurrence of an U or F formula whose eventuality is not fulfilled. The tableau
construction ensures that for each node containing such an occurrence there
will also be a branch that attempts to make the eventuality 1 but fails to do

22

so or runs into another contradiction. That implies that the reason for failure
of fulfilling eventualities is not to be found on the infinite unfair path, but on
its unsuccessful branches. Hence, we focus on closed nodes to extract sufficient
information why a formula in unsatisfiable.

The procedure to extract an UC now works as follows. It first chooses a subset
of closed nodes that act as a barrier in that at least one of these nodes is in the
way of each potentially satisfied path in the tableau. Next it chooses a set of
occurrences of contradicting literals and 0 s.t. this set represents a contradiction
for each of the selected closed tableau nodes. As these occurrences of subformulas
make up the reason for non-satisfaction, they and, transitively, their fathers in
the parse tree of the formula are marked and retained while all non-marked
occurrences of subformulas in the parse tree are discarded and dangling edges
are rerouted to fresh nodes representing 1. A step-by-step description is given in
the next subsection.

As an example consider the tableau in Fig. 4 for φ =

X(((G(p ∧ q ∧ r)) ∧ (F(¬p ∧ ¬q))) ∨ (p ∧ (Xp) ∧ ¬p ∧X(¬p))). Choosing {n1, n3}
as the subset of closed nodes and the occurrences of q , ¬q in n1 and p, ¬p in
n3 leads to X(((G(1 ∧ q ∧ 1)) ∧ (F(1 ∧ ¬q))) ∨ (p ∧ 1 ∧ ¬p ∧ 1)) as UC. Choosing p
and ¬p also in n1 leads to X(((G(p ∧ 1 ∧ 1)) ∧ (F(p ∧ ¬1))) ∨ (p ∧ 1 ∧ ¬p ∧ 1))
and selecting n5 instead of n3 leads to two more possibilities with Xp and X¬p
rather than p and ¬p being preserved in the second disjunct.

The latter two possibilities show that it is not sufficient to stop the tableau
construction once a closed node has been reached when it is desired that all
IUCs of a formula can be extracted from an unsatisfied tableau.

Below we show that the set of UCs that can be extracted in that way is
equivalent to the set of UCs obtained by Def. 9. However, we conjecture that the
procedure can be extended to extract UCs that indicate relevance of subformulas
not only at finitely many time steps as in Sect. 6 but at semilinearly many.
Given, e.g., φ = p ∧ (G(p → XXp)) ∧ (F(¬p ∧X¬p)), we would like to see that
some subformulas are only relevant at every second time step.

7.2 Formalization

Below we first give our formal definition of a tableau for LTL and then explain
differences w.r.t. the standard construction. The exposition is closer to construc-
tions that are not geared towards on-the-fly expansion, e.g., [LP85].

Definition 18 (Tableau). Let φ be an LTL formula in NNF with parse tree
ptφ. A tableau for φ is a directed graph tφ = (Wtφ , Ftφ) whose nodes Wtφ rep-
resent sets of formulas expected to hold at a certain time point and whose edges
Ftφ represent transitions from one time point to the next.

The closure CLφ of φ is the smallest set that contains all nodes in the parse
tree of φ, Vptφ , and, for any node v ∈ Vptφ whose operator is U, R, F, or G,
also contains a fresh node v′ 6∈ Vptφ s.t. op(v′) = X and left (v′) = v. Given a
node v representing a U, R, F, or G formula, we denote the corresponding fresh
node with Xv.

23

n0
X(((G(p ∧ q ∧ r)) ∧ (F(¬p ∧ ¬q))) ∨

(p ∧ (Xp) ∧ ¬p ∧X(¬p)))

n2

((G(p ∧ q ∧ r)) ∧ (F(¬p ∧ ¬q))) ∨
(p ∧ (Xp) ∧ ¬p ∧X(¬p))

((G(p ∧ q ∧ r)) ∧ (F(¬p ∧ ¬q)))
G(p ∧ q ∧ r)
F(¬p ∧ ¬q)
p ∧ q ∧ r
p
q
r
XG(p ∧ q ∧ r)
XF(¬p ∧ ¬q)

n1

((G(p ∧ q ∧ r)) ∧ (F(¬p ∧ ¬q))) ∨
(p ∧ (Xp) ∧ ¬p ∧X(¬p))

((G(p ∧ q ∧ r)) ∧ (F(¬p ∧ ¬q)))
G(p ∧ q ∧ r)
F(¬p ∧ ¬q)
p ∧ q ∧ r
p
q
r
XG(p ∧ q ∧ r)
¬p
¬q

n3

((G(p ∧ q ∧ r)) ∧ (F(¬p ∧ ¬q))) ∨
(p ∧ (Xp) ∧ ¬p ∧X(¬p))

p ∧ (Xp) ∧ ¬p ∧X(¬p)
p
Xp
¬p
X¬p

n4

G(p ∧ q ∧ r)
p ∧ q ∧ r
p
q
r
XG(p ∧ q ∧ r)

n5
p
¬p

Fig. 4. Example of an unsatisfied tableau along the lines of [GPVW95]
but with closed nodes still expanded further. The formula is φ =
X(((G(p ∧ q ∧ r)) ∧ (F(¬p ∧ ¬q))) ∨ (p ∧ (Xp) ∧ ¬p ∧X(¬p))). The initial
node n0 has an incoming arrow, closed nodes n1, n3, n5 are filled red, accepting
nodes (all but n2) are drawn with thick double lines, and the terminal node n5

has no outgoing arrow.

24

Nodes in Wtφ are subsets of CLφ; Wtφ contains all nodes w s.t. ∀v ∈ CLφ
1. if v represents a disjunction, then w contains v iff it contains one of its
children: op(v) = ∨ ⇒ (v ∈ w ⇔ left (v) ∈ w ∨ right (v) ∈ w), 2. if v represents
a conjunction, then w contains v iff it contains both children: op(v) = ∧ ⇒ (v ∈
w ⇔ left (v), right (v) ∈ w), 3. if v represents an U formula, then w contains v iff
it contains either the right-hand (eventuality) child or the left-hand child and the
node representing the obligation for f(v) to hold in the next step: op(v) = U⇒
(v ∈ w ⇔ right (v) ∈ w∨(left (v) ∈ w ∧Xv ∈ w)), 4. if v represents a R formula,
then w contains v iff it contains both left-hand and right-hand children or the
right-hand child and the obligation for f(v) to hold in the next step: op(v) = R⇒
(v ∈ w ⇔ right (v) ∈ w∧(left (v) ∈ w ∨Xv ∈ w)), 5. if v represents a F formula,
then w contains v iff it contains its left-hand (eventuality) child or the obligation
for f(v) to hold in the next step: op(v) = F⇒ (v ∈ w ⇔ left (v) ∈ w ∨Xv ∈ w),
and 6. if v represents a G formula, then w contains v iff it contains the left-hand
(body) child of v and the obligation for f(v) to hold in the next step: op(v) =
G⇒ (v ∈ w ⇔ left (v),Xv ∈ w).

A node w is 1. initial iff it contains the root node root(ptφ): root(ptφ) ∈ w,
2. closed iff it contains node(s) representing 0 or a pair of contradicting liter-
als: (∃v ∈ w . f(v) = 0) or (∃v, v′ ∈ w . ∃p ∈ AP . f(v) = p ∧ f(v′) = ¬p),
and 3. terminal iff it contains no obligations for the next time step: ∀v ∈
w . (op(v) 6= X) ∧ (v 6= Xv′)

There is an edge (w,w′) in tφ iff, for each node v ∈ w with either op(v) = X
or v = Xv′ in the source node w, v is contained in the target node w′: (w,w′) ∈
Ftφ ⇔ ∀v ∈ w . ((op(v) = X ∨ v = Xv′)⇒ v ∈ w′).

A path π is initialized iff it starts in an initial node: root(ptφ) ∈ π[0]. An
infinite path π in tφ is fair iff each eventuality that appears on some node on
π is eventually fulfilled: ∀i ∈ IN . ∀v ∈ π[i] . ((op(v) = U ∧ right (v) = v′) ∨
(op(v) = F ∧ left (v) = v′))⇒ (∃i′ ≥ i . v′ ∈ π[i′]).

A path in tφ is satisfied iff 1. it is initialized, 2. it does not contain a closed
node, and 3. (a) it is finite and ends in a terminal node or (b) it is infinite and
fair.

A tableau is satisfied iff it contains a satisfied path, unsatisfied otherwise.

The definition above deviates from standard definitions for LTL tableaux in
that nodes are sets of parse tree nodes (occurrences of subformulas) rather than
subformulas. Moreover, it does not require nodes to not contain contradictions
but rather delays this check to the detection of satisfied paths. This affects nei-
ther arguments of correctness (non-existence versus non-consideration of nodes)
nor of termination (finiteness of the number of nodes). Hence:

Fact 3 (φ is Satisfiable iff tφ is Satisfied) Let φ be an LTL formula in NNF
with tableau tφ. φ is satisfiable iff tφ is satisfied.

A step-by-step description to extract an UC is given below.

Definition 19 (UC Extracted From Unsatisfied Tableau). Let φ be an
unsatisfiable LTL formula in NNF with parse tree ptφ and tableau tφ. Let Ctφ be

25

the set of closed nodes in tφ. Proceed as follows: 1. Choose a subset W ⊆ Wtφ

of nodes in tφ s.t. W contains a set of closed nodes that are sufficient to prevent
satisfaction of tφ; in other words, even when allowing a satisfied path to contain
nodes in Wtφ\(W∩Ctφ) rather than in Wtφ\Ctφ , then tφ would still be unsatisfied.
2. Choose a subset V ⊆ Vptφ of parse tree nodes of ptφ s.t. the intersection
of each closed node in W with V contains parse tree node(s) representing the
Boolean constant 0 or a pair of contradicting literals. 3. Mark the nodes in ptφ
that are contained in V . 4. Recursively mark the fathers of marked nodes in ptφ.
5. Finally remove unmarked nodes from ptφ and redirect dangling edges to fresh
1 nodes.

The following theorem states equivalence of the sets of UCs that can be
obtained by extraction from an unsatisfied tableau and via parse tree.

Theorem 4 (Equivalence of UCs Extracted From Unsatisfied Tableaux
and via Parse Tree). Let φ be an unsatisfiable LTL formula in NNF with parse
tree ptφ and tableau tφ. A parse tree pt ′ can be obtained from tφ as a result of
Def. 19 iff pt ′ is an UC of ptφ via parse tree (Def. 9).

Proof. Lemmas 1 and 2.

Lemma 1 (Correctness of UC Extraction From Unsatisfied Tableau).
Let φ be an unsatisfiable LTL formula in NNF with parse tree ptφ and tableau
tφ. Let pt ′ be a parse tree obtained from tφ as a result of Def. 19. Then pt ′ is an
UC of ptφ via parse tree (Def. 9).

Proof. (Sketch.) We have to show that Def. 9 holds, i.e., pt ′ is a core (Def. 8)
and it represents an unsatisfiable formula.

It is easy to see that the procedure outlined in Def. 19 selects a non-empty
set of nodes in ptφ and marks all of these nodes as well as all nodes on the
way between any one of them and the root. It then removes subtrees rooted at
unmarked nodes (including all children, also being unmarked by construction)
and replaces them with 1. With φ being in NNF this establishes Def. 8.

In order to show that the formula represented by pt ′ is unsatisfiable we con-
sider a variant of pt ′ that is obtained as follows. Rather than replacing unmarked
subtrees with 1 we only replace unmarked leafs with 1. Let the resulting parse
tree be pt ′′ with associated formula φ′′. ptφ and pt ′′ are isomorphic up to the la-
beling of leaf nodes. By Def. 18, their tableaux are isomorphic s.t. two isomorphic
tableau nodes are sets of isomorphic parse tree nodes.

We can now state the following. 1. A node in tφ′′ is initial (resp. terminal) iff
the isomorphic node in tφ is initial (resp. terminal). 2. For any parse tree node
representing a formula of the form ψ′Uψ or Fψ, a tableau node w in tφ′′ contains
the parse tree node v representing ψ iff the tableau node isomorphic to w in tφ
contains the parse tree node isomorphic to v. 3. If a node in tφ′′ is isomorphic
to a node in W ∩ Ctφ , then it is closed.

Now it’s easy to see that tφ′′ is unsatisfied and, hence, φ′′ is unsatisfiable. As
φ′′ simplifies to φ′, so is the latter.

26

Lemma 2 (Completeness of UC Extraction From Unsatisfied Tableau).
Let φ be an unsatisfiable LTL formula in NNF with parse tree ptφ and tableau
tφ. Let pt ′ be an UC of ptφ via parse tree (Def. 9). Then pt ′ can be obtained
from tφ as a result of Def. 19.

Proof. (Sketch.) First assume pt ′ is an IUC of ptφ by Def. 9. Extend pt ′ s.t. it
is isomorphic to ptφ as in the proof of Lemma. 1 and name the result pt ′′. By
correctness of the tableau method (Fact 3) the tableau for f(pt ′′) is unsatisfied.
When applying the core extraction method in Def. 19 to the tableau for f(pt ′′)
it is both possible and sufficient to mark all leaf nodes of pt ′′ in the tableau for
f(pt ′′) in steps 1 and 2 of Def. 19 and, hence, obtain pt ′′ as an UC. By a similar
argument as in the proof of Thm. 1 the same core can be extracted from tφ.

Now let pt ′ be not irreducible, and let pt ′′ be an IUC of pt ′. By the previous
argument pt ′′ can be extracted as an UC from ptφ. Note that the tableau con-
struction for φ in Def. 18 is such that every parse tree node of ptφ will appear
as parse tree node in some tableau node of tφ. Furthermore, the core extraction
according to Def. 19 allows to mark any node v appearing in some tableau node
and, hence, add any parse tree node v and the corresponding path from the root
of the parse tree ptφ to v to the core. Hence, pt ′′ can be extracted as an UC
from the tableau tφ.

Marking More Than 0 and Contradicting Literals The proof of Thm. 4 makes it
clear that, when IUCs are desired, in Def. 19 it is never necessary to start marking
from subformulas other than 0 and contradicting literals in closed nodes.

8 Discussion

Past Time Operators Intuitively, past time operators are symmetric to the
future time operators {X,U,R,F,G}, but (assuming that the current time point
is i) speak about past time points i′ ≤ i rather than future time points i′ ≥ i.
Their exact definition is unimportant for us. It is well-known that past time
operators (e.g., [Eme90]) do not add expressive power to LTL [Kam68,GPSS80]
but sometimes allow for more natural [LPZ85] or succinct [LMS02] specifications.
While we have no formal result we conjecture that past time operators don’t pose
major difficulties for any of the notions of UC we suggest. We have therefore
omitted past time operators from the presentation. Note, though, that we have
not investigated the role of past time operators and, in particular, the influence
of separation on the notion of an UC obtained via SNF.

Sharing of Subformulas Taking sharing of subformulas into account can con-
siderably improve the presentation of an UC to a user. An example is φ ≡ ψ∧¬ψ:
φ is unsatisfiable regardless of the actual definition of ψ and, most likely, the user
would prefer a presentation of an UC at that abstract level rather than with all
details of ψ present. As is known from vacuity checking [AFF+03] neither consid-
ering occurrences of a subformula as shared nor considering occurrences of a sub-
formula separately will always lead to the (likely) best feedback to the user: let ψ

27

be satisfiable, let ψ′ be implied by ψ, and consider (ψ ∧ 0)∨(ψ ∧ ¬ψ) ∨ (ψ ∧ ¬ψ′).
The first occurrence of ψ is not relevant at all, the second occurrence is relevant
at this abstract level only, and the third occurrence is relevant at some more
detailed level. This might suggest to strive for the most fine-grained partition of
some subset of the set of occurrences of a shared subformula that still allows to
establish unsatisfiability, but we have to leave further investigation of this issue
to future work.

Relevant Algorithms In this paper we were mostly concerned with notions
of UCs rather than with efficient ways to obtain them. Here we provide a few
selected pointers to relevant algorithms. We assume that the goal is to obtain a
small, possibly irreducible, UC.

Straightforward but naive algorithms work directly on the representations as
parse trees or sets of conjunctions, trying to remove subtrees (resp. subsets of
conjuncts), keeping them removed if the result is still unsatisfiable, and restoring
the previous state otherwise. On a parse tree a possibility is to work top-down
in a breadth-first fashion. On a set of conjuncts one can start with a full set of
conjuncts and remove conjuncts one by one (e.g., [CD91]). Another possibility
is to proceed by partitioning the set of conjuncts into two and halving the size
of the partitions in each subsequent iteration (e.g., [Jun01]). If the expected size
of a core is small compared to the number of clauses, then it might be more
efficient to start from an empty set of conjuncts and add conjuncts until the
result becomes unsatisfiable (e.g., [BS01]).

Less naive algorithms extract an UC from a proof of unsatisfiability (e.g.,
[GN03,ZM03a,ZM03b]). When using a technique that yields an unsatisfiable but
maybe not irreducible core (such as extracting a core from a proof), then one
can iterate this (or another such) technique until a fixed point or a resource limit
is reached (e.g., [ZM03b]). Clearly, reuse of intermediate results in subsequent
iterations may aid efficient performance (e.g., [DHN06]). When the iterative
method is terminated one can continue with one of the naive techniques (e.g.,
[ZM03b,DHN06]). Prefixing conjuncts with activation or clause selector variables
can be used to obtain several cores with a single satisfiability check (e.g., [LS05,
CRST07]) or to search for IUCs with a minimum number of conjuncts (e.g.,
[LS04]).

9 Related Work

Notions of Core [CRST07] proposes a notion of UCs of LTL formulas. The
context in that work is a method for satisfiability checking of LTL formulas by
using Boolean abstraction (e.g., [KS08]), i.e., by 1. treating the input formula
as a Boolean combination of temporal formulas, 2. abstracting the temporal
formulas with fresh Boolean propositions, 3. obtaining satisfying assignments
in the Boolean space, 4. concretizing the Boolean satisfying assignments, and
5. checking satisfiability of the concretized assignments in the temporal space.

28

As a consequence, an UC in [CRST07] is a subset of the set of top-level temporal
formulas, potentially leading to very coarse cores.

SAT uses CNF as a standard format and UCs are typically subsets of clauses
(e.g., [BS01]). Similarly, in constraint programming, an UC is a subset of the set
of input constraints (e.g., [BDTW93]); recently, a more fine-grained notion based
on unsatisfiable tuples has been suggested [GMP07]. Finally, also in satisfiability
modulo theories (SMT) UCs are subsets of formulas (e.g., [CGS07]).

For realizability [PR89,ALW89] of a set of LTL formulas, partitioned into a
set of assumptions and a set of guarantees, [CRST08a] suggests to first reduce the
number of guarantees and then, additionally, to reduce the set of assumptions.

Extracting Cores from Proofs In [PPZ01] a successful run of a model
checker, which essentially corresponds to an unsatisfied tableau, is used to
extract a temporal proof from the tableau [GPVW95] as a certificate that
the model fulfills the specification. [Nam01] generates certificates for success-
ful model checking runs of µ-calculus specifications. [SC03] extracts UCs from
unsatisfied tableaux to aid debugging in the context of description logics. Ex-
tracting a core from a resolution proof is an established technique in proposi-
tional SAT (e.g., [GN03,ZM03a,ZM03b]). In SMT UCs from SAT can be used
to extract UCs for SMT [CGS07]. Extraction from proofs is also used in vacuity
checking [Nam04,SDGC07].

Applications of Cores Using UCs to help a user debugging by pointing out
a subset of the input as part of some problem is stated explicitly as motivation
in many works on cores, e.g., [CD91,BDTW93,BS01,ZM03b].

[SSJ+03] presents a method for debugging declarative specifications by trans-
lating an abstract syntax tree (AST) of an inconsistent specification to CNF,
extracting an UC from the CNF, and mapping the result back to AST highlight-
ing only the relevant parts. That work has some similarities with our discussion;
however, there are also a number of differences. 1. The exposition in [SSJ+03] is
for first order relational logic and generalizes to languages that are reducible to
SAT, while our logic is LTL. 2. The motivation and focus of [SSJ+03] is on the
method of core extraction, and it is accompanied by some experimental results.
The notion of a core as parts of the AST is taken as a given. On the other hand,
our focus is on investigating different notions of cores and on comparing the
resulting information that can be gained. 3. Finally, [SSJ+03] does not consider
tableaux.

[TCJ08] suggests improved algorithms for core extraction compared to
[SSJ+03]; the improved algorithms produce IUCs at a reasonable cost by using
mechanisms similar to [ZM03b,DHN06]. The scope of the method is extended to
specification languages with a (restricted) translation to logics with resolution
engine.

Examples of using UCs for debugging in description logics and ontolo-
gies are [SC03, WHR+05]. For temporal logic, the methodology proposed in

29

[PSC+06] suggests to return a subset of the specification in case of a problem.
For [CRST08a] see above.

The application of UCs as filters in an iterative search is mentioned in Sect. 1.

Vacuity Checking Vacuity checking [BBDER01, KV03, AFF+03, BFG+05,
GC04b, GC04a, PS02] is a technique in model checking to determine whether
a model satisfies the specification in an undesired way, e.g., by never sending a
request when the specification is a request response property [BB94]. Vacuity
asks whether there exists a strengthening of a specification s.t. the model still
passes that strengthened specification. The original notion of vacuity from [BB-
DER01, KV03] replaces occurrences of subformulas (i.e., as we do, it does not
consider sharing) in the specification with 0 or 1 depending on polarity and is,
therefore, related to the notion of UC in Sect. 4.

The comparison of notions of vacuity with UCs is as follows: 1. Vacuity is
normally defined with respect to a specific model. [CS07] proposes vacuity with-
out design as a preliminary check of vacuity: a formula is vacuous without design
if it fulfills a variant of itself to which a strengthening operation has been ap-
plied. [FKSFV08] extends that into a framework for inherent vacuity (see below).
2. Vacuity is geared to answer whether there exists at least one strengthening
of the specification s.t. the model still satisfies the specification. For that it is
sufficient to demonstrate that with a single strengthening step. The question of
whether and to which extent the specification should be strengthened is then
usually left to the designer. In core extraction one would ideally like to obtain
IUCs and do so in a fully automated fashion. [GC04b, CS07] discuss mutual
vacuity, i.e., vacuity w.r.t. (possibly maximal) sets of subformulas. [CGS08] pro-
ceeds to obtain even stronger passing formulas combining several strengthened
versions of the original formula. 3. Vacuity typically focuses on strengthening a
formula while methods to obtain UCs use weakening. The reason is that in the
case of a failing specification a counterexample is considered to be more helpful.
Still, vacuity is defined in, e.g., [BBDER01,KV03,FKSFV08] w.r.t. both passing
and failing formulas.

[FKSFV08] proposes a framework to identify inherent vacuity, i.e., specifica-
tions that are vacuous in any model. The framework has 4 parameters: 1. vacu-
ity type: occurrences of subformulas, sharing of subformulas, etc., 2. equivalence
type: closed or open systems, 3. tightening type: equivalence or preservance of
satisfiability/realizability, and 4. polarity type: strengthening or weakening. Our
notion of UCs via parse tree is very closely related to the following instance of
that framework. Let the vacuity type be that of replacing occurrences of subfor-
mulas with 1 or 0 depending on polarity [BBDER01], systems be closed, tight-
ening type be equivalence or preservance of unsatisfiability, and polarity type
be weakening. Then it is straightforward to show that, given a proper UC φ′ by
Def. 9 of some unsatisfiable formula φ, 1. φ is inherently vacuous, and 2. φ′ is an
IUC iff it is not inherently vacuous. [FKSFV08] focuses on satisfiable/realizable
instances and doesn’t make a connection to the notion of unsatisfiable or unre-
alizable cores.

30

[SDGC07] exploits resolution proofs from BMC runs in order to extract
information on vacuity including information on relevance of subformulas at
specific time steps in a fashion related to our extraction of UCs in Sect. 6. A
difference is that the presentation in [SDGC07] only explains how to obtain the
notion of k-step vacuity from some BMC run with bound k but leaves it unclear
how to make the transition from the notion of k-step vacuity to the notion of
vacuity and, similarly, how to aggregate results on the relevance of subformulas
at specific time steps over results for different ks; our method of UC extraction
can return an UC as soon as the generated CNF is unsatisfiable for some k.

Other notions and techniques might be suitable to be carried over from vacu-
ity detection to UCs for LTL and vice versa. E.g., [AFF+03] extends vacuity to
consider sharing of subformulas. We are not aware of any work in vacuity that
takes the perspective of searching an UC of an LTL formula or considers dCNFs
as we do.

10 Conclusion

We suggested notions of unsatisfiable cores for LTL formulas that provide strictly
more fine-grained information than the (few) previous notions. While basic no-
tions turned out to be equivalent, some variants were shown to provide or po-
tentially provide more information, in particular, in the temporal dimension.

We stated initially that we see methods of UC extraction as a means to sug-
gest notions of UCs. Indeed, it turned out that each method for core extraction
suggested a different or a more fine-grained notion of UC that should be taken
into account. It seems to be likely, though, that some of the more fine-grained
notions can be obtained also with other UC extraction methods.

Directions for future work include defining and obtaining the more fine-
grained notions of UC suggested at the end of Sect.s 6 and 7, investigating
the notion of UC that results from temporal resolution proofs, taking sharing
of subformulas into account, and extending the notions to realizability. Equally
important are efficient implementations. Finally, while in theory two algorithms
to obtain UCs might be able to come up with the same set of UCs, their practical
implementations could yield quite different UCs due to the way non-determinism
is resolved; hence, an empirical evaluation of the usefulness of the resulting UCs
is needed.

Acknowledgements The author thanks the research groups at FBK-irst
and Verimag for helpful discussions and comments, in particular, A. Cimatti,
M. Roveri, and S. Tonetta. Part of this work was carried out while the author
was at Verimag/CNRS. He thanks O. Maler for providing the freedom to pur-
sue this work. Finally, the author thanks the Provincia Autonoma di Trento for
support (project EMTELOS).

31

References

AFF+03. R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer,
and M. Vardi. Enhanced vacuity detection in linear temporal logic. In
W. Hunt Jr. and F. Somenzi, editors, CAV, volume 2725 of LNCS, pages
368–380. Springer, 2003. Links: ee, Google Scholar.

ALW89. M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable spec-
ifications of reactive systems. In G. Ausiello, M. Dezani-Ciancaglini, and
S. Ronchi Della Rocca, editors, ICALP, volume 372 of LNCS, pages 1–17.
Springer, 1989. Links: Google Scholar.

BB94. D. Beatty and R. Bryant. Formally verifying a microprocessor using a
simulation methodology. In DAC, pages 596–602, 1994. Links: ee, Google
Scholar.

BBDER01. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of
vacuity in temporal model checking. Formal Methods in System Design,
18(2):141–163, 2001. Links: Google Scholar.

BCC+99. A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using SAT procedures instead of BDDs. In DAC, pages 317–320,
1999. Links: ee, Google Scholar.

BCCZ99. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In R. Cleaveland, editor, TACAS, volume 1579 of LNCS,
pages 193–207. Springer, 1999. Links: Google Scholar.

BCM+92. J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic
model checking: 1020 states and beyond. Inf. Comput., 98(2):142–170,
1992. Links: Google Scholar.

BCP+07. R. Bloem, R. Cavada, I. Pill, M. Roveri, and A. Tchaltsev. RAT: A tool
for the formal analysis of requirements. In W. Damm and H. Hermanns,
editors, CAV, volume 4590 of LNCS, pages 263–267. Springer, 2007. Links:
ee, Google Scholar.

BCRZ99. A. Biere, E. Clarke, R. Raimi, and Y. Zhu. Verifiying safety properties of a
Power PC microprocessor using symbolic model checking without BDDs.
In N. Halbwachs and D. Peled, editors, CAV, volume 1633 of LNCS, pages
60–71. Springer, 1999. Links: ee, Google Scholar.

BDTW93. R Bakker, F. Dikker, F. Tempelman, and P Wognum. Diagnosing and
solving over-determined constraint satisfaction problems. In IJCAI, pages
276–281, 1993. Links: Google Scholar.

BFG+05. D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman, and M. Vardi. Reg-
ular vacuity. In D. Borrione and W. Paul, editors, CHARME, volume 3725
of LNCS, pages 191–206. Springer, 2005. Links: ee, Google Scholar.

BHJ+06. A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan. Linear
encodings of bounded LTL model checking. Logical Methods in Computer
Science, 2(5), 2006. Links: ee, Google Scholar.

BK08. C. Baier and J. Katoen. Principles of Model Checking. MIT Press, 2008.
Links: Google Scholar.

Boy92. T. Boy de la Tour. An optimality result for clause form translation. J.
Symb. Comput., 14(4):283–302, 1992. Links: Google Scholar.

BS01. R. Bruni and A. Sassano. Restoring satisfiability or maintaining unsat-
isfiability by finding small unsatisfiable subformulae. In H. Kautz and
B. Selman, editors, SAT, volume 9 of Electronic Notes in Discrete Math-
ematics, pages 162–173. Elsevier, 2001. Links: ee, Google Scholar.

32

http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=0302-9743{&}volume=2725{&}spage=368

http://scholar.google.com/scholar?q=%22Enhanced+Vacuity+Detection+in+Linear+Temporal+Logic%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Realizable+and+Unrealizable+Specifications+of+Reactive+Systems%22&hl=en&lr=&btnG=Search

http://doi.acm.org/10.1145/196244.196575

http://scholar.google.com/scholar?q=%22Formally+Verifying+a+Microprocessor+Using+a+Simulation+Methodology%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Formally+Verifying+a+Microprocessor+Using+a+Simulation+Methodology%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Efficient+Detection+of+Vacuity+in+Temporal+Model+Checking%22&hl=en&lr=&btnG=Search

http://doi.acm.org/10.1145/309847.309942

http://scholar.google.com/scholar?q=%22Symbolic+Model+Checking+Using+{SAT}+Procedures+instead+of+{BDDs}%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Symbolic+Model+Checking+without+{BDDs}%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Symbolic+Model+Checking:+10^{20}+States+and+Beyond%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/978-3-540-73368-3_30

http://scholar.google.com/scholar?q=%22{RAT}:+A+Tool+for+the+Formal+Analysis+of+Requirements%22&hl=en&lr=&btnG=Search

http://link.springer.de/link/service/series/0558/bibs/1633/16330060.htm

http://scholar.google.com/scholar?q=%22Verifiying+Safety+Properties+of+a+{Power}+{PC}+Microprocessor+Using+Symbolic+Model+Checking+without+{BDDs}%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Diagnosing+and+Solving+Over-Determined+Constraint+Satisfaction+Problems%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/11560548_16

http://scholar.google.com/scholar?q=%22Regular+Vacuity%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.2168/LMCS-2(5:5)2006

http://scholar.google.com/scholar?q=%22Linear+Encodings+of+Bounded+{LTL}+Model+Checking%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Principles+of+Model+Checking%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22An+Optimality+Result+for+Clause+Form+Translation%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1016/S1571-0653(04)00320-8

http://scholar.google.com/scholar?q=%22Restoring+Satisfiability+or+Maintaining+Unsatisfiability+by+finding+small+Unsatisfiable+Subformulae%22&hl=en&lr=&btnG=Search

CD91. J. Chinneck and E. Dravnieks. Locating minimal infeasible constraint sets
in linear programs. ORSA Journal on Computing, 3(2):157–168, 1991.
Links: Google Scholar.

CE81. E. Clarke and E. Emerson. Design and synthesis of synchronization skele-
tons using branching-time temporal logic. In D. Kozen, editor, Logic of
Programs, volume 131 of LNCS, pages 52–71. Springer, 1981. Links: Google
Scholar.

CGH97. E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model
checking. Formal Methods in System Design, 10(1):47–71, 1997. Links:
Google Scholar.

CGP99. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
Links: Google Scholar.

CGS07. A. Cimatti, A. Griggio, and R. Sebastiani. A simple and flexible way
of computing small unsatisfiable cores in SAT modulo theories. In
J. Marques-Silva and K. Sakallah, editors, SAT, volume 4501 of LNCS,
pages 334–339. Springer, 2007. Links: ee, Google Scholar.

CGS08. H. Chockler, A. Gurfinkel, and O. Strichman. Beyond vacuity: Towards the
strongest passing formula. In A. Cimatti and R. Jones, editors, FMCAD,
pages 188–195. IEEE, 2008. Links: ee, Google Scholar.

CKOS05. E. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Computational
challenges in bounded model checking. STTT, 7(2):174–183, 2005. Links:
ee, Google Scholar.

CKV06. H. Chockler, O. Kupferman, and M. Vardi. Coverage metrics for temporal
logic model checking. Formal Methods in System Design, 28(3):189–212,
2006. Links: ee, Google Scholar.

CRS04. A. Cimatti, M. Roveri, and D. Sheridan. Bounded verification of past LTL.
In A. Hu and A. Martin, editors, FMCAD, volume 3312 of LNCS, pages
245–259. Springer, 2004. Links: ee, Google Scholar.

CRST07. A. Cimatti, M. Roveri, V. Schuppan, and S. Tonetta. Boolean abstraction
for temporal logic satisfiability. In W. Damm and H. Hermanns, editors,
CAV, volume 4590 of LNCS, pages 532–546. Springer, 2007. Links: ee,
Google Scholar.

CRST08a. A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev. Diagnostic infor-
mation for realizability. In F. Logozzo, D. Peled, and L. Zuck, editors,
VMCAI, volume 4905 of LNCS, pages 52–67. Springer, 2008. Links: ee,
Google Scholar.

CRST08b. A. Cimatti, M. Roveri, A. Susi, and S. Tonetta. From informal require-
ments to property-driven formal validation. In FMICS, 2008. To appear.
Links: Google Scholar.

CRST08c. A. Cimatti, M. Roveri, A. Susi, and S. Tonetta. Object models with
temporal constraints. In SEFM, pages 249–158. IEEE Computer Society,
2008. Links: ee, Google Scholar.

CS07. H. Chockler and O. Strichman. Easier and more informative vacuity
checks. In MEMOCODE, pages 189–198. IEEE, 2007. Links: ee, Google
Scholar.

CTVW03. E. Clarke, M. Talupur, H. Veith, and D. Wang. SAT based predicate
abstraction for hardware verification. In Giunchiglia E and A. Tacchella,
editors, SAT, volume 2919 of LNCS, pages 78–92. Springer, 2003. Links:
ee, Google Scholar.

33

http://scholar.google.com/scholar?q=%22Locating+Minimal+Infeasible+Constraint+Sets+in+Linear+Programs%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Design+and+Synthesis+of+Synchronization+Skeletons+Using+Branching-Time+Temporal+Logic%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Design+and+Synthesis+of+Synchronization+Skeletons+Using+Branching-Time+Temporal+Logic%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Another+Look+at+{LTL}+Model+Checking%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Model+Checking%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/978-3-540-72788-0_32

http://scholar.google.com/scholar?q=%22A+Simple+and+Flexible+Way+of+Computing+Small+Unsatisfiable+Cores+in+{SAT}+Modulo+Theories%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1109/FMCAD.2008.ECP.28

http://scholar.google.com/scholar?q=%22Beyond+Vacuity:+Towards+the+Strongest+Passing+Formula%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/s10009-004-0182-5

http://scholar.google.com/scholar?q=%22Computational+challenges+in+bounded+model+checking%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/s10703-006-0001-6

http://scholar.google.com/scholar?q=%22Coverage+metrics+for+temporal+logic+model+checking%22&hl=en&lr=&btnG=Search

http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=0302-9743{&}volume=3312{&}spage=245

http://scholar.google.com/scholar?q=%22Bounded+Verification+of+Past+{LTL}%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/978-3-540-73368-3_53

http://scholar.google.com/scholar?q=%22Boolean+Abstraction+for+Temporal+Logic+Satisfiability%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/978-3-540-78163-9_9

http://scholar.google.com/scholar?q=%22Diagnostic+Information+for+Realizability%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22From+Informal+Requirements+to+Property-Driven+Formal+Validation%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1109/SEFM.2008.23

http://scholar.google.com/scholar?q=%22Object+Models+with+Temporal+Constraints%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1109/MEMCOD.2007.371225

http://scholar.google.com/scholar?q=%22Easier+and+More+Informative+Vacuity+Checks%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Easier+and+More+Informative+Vacuity+Checks%22&hl=en&lr=&btnG=Search

http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=0302-9743{&}volume=2919{&}spage=78

http://scholar.google.com/scholar?q=%22{SAT}+Based+Predicate+Abstraction+for+Hardware+Verification%22&hl=en&lr=&btnG=Search

DHN06. N. Dershowitz, Z. Hanna, and A. Nadel. A scalable algorithm for minimal
unsatisfiable core extraction. In A. Biere and C. Gomes, editors, SAT,
volume 4121 of LNCS, pages 36–41. Springer, 2006. Links: ee, Google
Scholar.

Eme90. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume B: Formal Models and Se-
matics, pages 995–1072. Elsevier and MIT Press, 1990. Links: Google
Scholar.

ER00. U. Egly and T. Rath. Practically useful variants of definitional translations
to normal form. Inf. Comput., 162(1-2):255–264, 2000. Links: Google
Scholar.

eur. Formal verification of ETCS specifications. http://es.fbk.eu/events/

formal-etcs/.
FDP01. M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM

Trans. Comput. Log., 2(1):12–56, 2001. Links: ee, Google Scholar.
Fis91. M. Fisher. A resolution method for temporal logic. In IJCAI, pages 99–

104, 1991. Links: Google Scholar.
FKSFV08. D. Fisman, O. Kupferman, S. Sheinvald-Faragy, and M. Vardi. A frame-

work for inherent vacuity. In HVC, 2008. To appear. Links: Google
Scholar.

FN92. M. Fisher and P. Noël. Transformation and synthesis in metatem. Part
I: Propositional metatem. Technical Report UMCS-92-2-1, University of
Manchester, Department of Computer Science, 1992. Available from http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.4998.
FSW02. A. Frisch, D. Sheridan, and T. Walsh. A fixpoint based encoding for

bounded model checking. In M. Aagaard and J. O’Leary, editors, FMCAD,
volume 2517 of LNCS, pages 238–255. Springer, 2002. Links: ee, Google
Scholar.

GC04a. A. Gurfinkel and M. Chechik. Extending extended vacuity. In A. Hu
and A. Martin, editors, FMCAD, volume 3312 of LNCS, pages 306–321.
Springer, 2004. Links: ee, Google Scholar.

GC04b. A. Gurfinkel and M. Chechik. How vacuous is vacuous? In K. Jensen
and A. Podelski, editors, TACAS, volume 2988 of LNCS, pages 451–466.
Springer, 2004. Links: ee, Google Scholar.

GMP07. É. Grégoire, B. Mazure, and C. Piette. MUST: Provide a finer-grained
explanation of unsatisfiability. In C. Bessiere, editor, CP, volume 4741 of
LNCS, pages 317–331. Springer, 2007. Links: ee, Google Scholar.

GN03. E. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for
CNF formulas. In DATE, pages 10886–10891. IEEE Computer Society,
2003. Links: ee, Google Scholar.

GPSS80. D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal basis
of fairness. In POPL, pages 163–173. ACM Press, 1980. Links: Google
Scholar.

GPVW95. R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In P. Dembinski and M. Sredniawa,
editors, PSTV, volume 38 of IFIP Conference Proceedings, pages 3–18.
Chapman & Hall, 1995. Links: Google Scholar.

HJL05. K. Heljanko, T. Junttila, and T. Latvala. Incremental and complete
bounded model checking for full PLTL. In K. Etessami and S. Rajamani,
editors, CAV, volume 3576 of LNCS, pages 98–111. Springer, 2005. Links:
ee, Google Scholar.

34

http://dx.doi.org/10.1007/11814948_5

http://scholar.google.com/scholar?q=%22A+Scalable+Algorithm+for+Minimal+Unsatisfiable+Core+Extraction%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22A+Scalable+Algorithm+for+Minimal+Unsatisfiable+Core+Extraction%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Temporal+and+Modal+Logic%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Temporal+and+Modal+Logic%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Practically+Useful+Variants+of+Definitional+Translations+to+Normal+Form%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Practically+Useful+Variants+of+Definitional+Translations+to+Normal+Form%22&hl=en&lr=&btnG=Search

http://es.fbk.eu/events/formal-etcs/

http://es.fbk.eu/events/formal-etcs/

http://doi.acm.org/10.1145/371282.371311

http://scholar.google.com/scholar?q=%22Clausal+temporal+resolution%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22A+Resolution+Method+for+Temporal+Logic%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22A+Framework+for+Inherent+Vacuity%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22A+Framework+for+Inherent+Vacuity%22&hl=en&lr=&btnG=Search

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.4998

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.4998

http://link.springer.de/link/service/series/0558/bibs/2517/25170238.htm

http://scholar.google.com/scholar?q=%22A+Fixpoint+Based+Encoding+for+Bounded+Model+Checking%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22A+Fixpoint+Based+Encoding+for+Bounded+Model+Checking%22&hl=en&lr=&btnG=Search

http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=0302-9743{&}volume=3312{&}spage=306

http://scholar.google.com/scholar?q=%22Extending+Extended+Vacuity%22&hl=en&lr=&btnG=Search

http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=0302-9743{&}volume=2988{&}spage=451

http://scholar.google.com/scholar?q=%22How+Vacuous+Is+Vacuous?%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/978-3-540-74970-7_24

http://scholar.google.com/scholar?q=%22{MUST}:+Provide+a+Finer-Grained+Explanation+of+Unsatisfiability%22&hl=en&lr=&btnG=Search

http://csdl.computer.org/comp/proceedings/date/2003/1870/01/187010886abs.htm

http://scholar.google.com/scholar?q=%22Verification+of+Proofs+of+Unsatisfiability+for+{CNF}+Formulas%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22On+the+Temporal+Basis+of+Fairness%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22On+the+Temporal+Basis+of+Fairness%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Simple+on-the-fly+automatic+verification+of+linear+temporal+logic%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/11513988_10

http://scholar.google.com/scholar?q=%22Incremental+and+Complete+Bounded+Model+Checking+for+Full+{PLTL}%22&hl=en&lr=&btnG=Search

HK02. U. Hustadt and B. Konev. TRP++: A temporal resolution prover. In
R. Nieuwenhuis, editor, WIL, 2002. Available from http://www.lsi.upc.

es/∼roberto/wil/1.ps.gz.

HK03. U. Hustadt and B. Konev. Trp++2.0: A temporal resolution prover. In
F. Baader, editor, CADE, volume 2741 of LNCS, pages 274–278. Springer,
2003. Links: ee, Google Scholar.

Jun01. U. Junker. QuickXplain: Conflict detection for arbitrary constraint prop-
agation algorithms. In CONS, 2001. Available from http://www.lirmm.

fr/∼bessiere/ws ijcai01/junker.ps.gz.

Kam68. J. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Uni-
versity of California at Los Angeles, 1968. Links: Google Scholar.

KS08. D. Kroening and O. Strichman. Decision Procedures. Springer, 2008.
Links: Google Scholar.

KV03. O. Kupferman and M. Vardi. Vacuity detection in temporal model check-
ing. STTT, 4(2):224–233, 2003. Links: ee, Google Scholar.

LMS02. F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal logic with for-
gettable past. In LICS, pages 383–392. IEEE Computer Society, 2002.
Links: Google Scholar.

LP85. O. Lichtenstein and A. Pnueli. Checking that finite state concurrent pro-
grams satisfy their linear specification. In POPL, pages 97–107, 1985.
Links: Google Scholar.

LPZ85. O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In
R. Parikh, editor, LoP, volume 193 of LNCS, pages 196–218. Springer,
1985. Links: Google Scholar.

LS04. I. Lynce and J. Marques Silva. On computing minimum unsatisfiable cores.
In H. Hoos and D. Mitchell, editors, SAT, volume 3542 of LNCS, pages
305–310. Springer, 2004. Links: ee, Google Scholar.

LS05. M. Liffiton and K. Sakallah. On finding all minimally unsatisfiable subfor-
mulas. In F. Bacchus and T. Walsh, editors, SAT, volume 3569 of LNCS,
pages 173–186. Springer, 2005. Links: ee, Google Scholar.

Nam01. K. Namjoshi. Certifying model checkers. In G. Berry, H. Comon, and
A. Finkel, editors, CAV, volume 2102 of LNCS, pages 2–13. Springer, 2001.
Links: ee, Google Scholar.

Nam04. K. Namjoshi. An efficiently checkable, proof-based formulation of vacuity
in model checking. In R. Alur and D. Peled, editors, CAV, volume 3114
of LNCS, pages 57–69. Springer, 2004. Links: ee, Google Scholar.

PBG05. M. Prasad, A. Biere, and A. Gupta. A survey of recent advances in SAT-
based formal verification. STTT, 7(2):156–173, 2005. Links: ee, Google
Scholar.

PG86. D. Plaisted and S. Greenbaum. A structure-preserving clause form trans-
lation. J. Symb. Comput., 2(3):293–304, 1986. Links: Google Scholar.

Pnu77. A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE
Computer Society, 1977. Links: Google Scholar.

PPZ01. D. Peled, A. Pnueli, and L. Zuck. From falsification to verification. In
R. Hariharan, M. Mukund, and V. Vinay, editors, FSTTCS, volume 2245
of LNCS, pages 292–304. Springer, 2001. Links: ee, Google Scholar.

PR89. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL,
pages 179–190, 1989. Links: Google Scholar.

pro. Prosyd. http://www.prosyd.org/.

35

http://www.lsi.upc.es/~roberto/wil/1.ps.gz

http://www.lsi.upc.es/~roberto/wil/1.ps.gz

http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=0302-9743{&}volume=2741{&}spage=274

http://scholar.google.com/scholar?q=%22TRP++2.0:+A+Temporal+Resolution+Prover%22&hl=en&lr=&btnG=Search

http://www.lirmm.fr/~bessiere/ws_ijcai01/junker.ps.gz

http://www.lirmm.fr/~bessiere/ws_ijcai01/junker.ps.gz

http://scholar.google.com/scholar?q=%22Tense+Logic+and+the+Theory+of+Linear+Order%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Decision+Procedures%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/s100090100062

http://scholar.google.com/scholar?q=%22Vacuity+detection+in+temporal+model+checking%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Temporal+Logic+with+Forgettable+Past%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Checking+That+Finite+State+Concurrent+Programs+Satisfy+Their+Linear+Specification%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22The+Glory+of+the+Past%22&hl=en&lr=&btnG=Search

http://www.satisfiability.org/SAT04/programme/110.pdf

http://scholar.google.com/scholar?q=%22On+Computing+Minimum+Unsatisfiable+Cores%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/11499107_13

http://scholar.google.com/scholar?q=%22On+Finding+All+Minimally+Unsatisfiable+Subformulas%22&hl=en&lr=&btnG=Search

http://link.springer.de/link/service/series/0558/bibs/2102/21020002.htm

http://scholar.google.com/scholar?q=%22Certifying+Model+Checkers%22&hl=en&lr=&btnG=Search

http://springerlink.metapress.com/openurl.asp?genre=article{&}issn=0302-9743{&}volume=3114{&}spage=57

http://scholar.google.com/scholar?q=%22An+Efficiently+Checkable,+Proof-Based+Formulation+of+Vacuity+in+Model+Checking%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/s10009-004-0183-4

http://scholar.google.com/scholar?q=%22A+survey+of+recent+advances+in+{SAT}-based+formal+verification%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22A+survey+of+recent+advances+in+{SAT}-based+formal+verification%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22A+Structure-Preserving+Clause+Form+Translation%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22The+Temporal+Logic+of+Programs%22&hl=en&lr=&btnG=Search

http://link.springer.de/link/service/series/0558/bibs/2245/22450292.htm

http://scholar.google.com/scholar?q=%22From+Falsification+to+Verification%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22On+the+Synthesis+of+a+Reactive+Module%22&hl=en&lr=&btnG=Search

http://www.prosyd.org/

PS02. M. Purandare and F. Somenzi. Vacuum cleaning CTL formulae. In
E. Brinksma and K. Larsen, editors, CAV, volume 2404 of LNCS, pages
485–499. Springer, 2002. Links: ee, Google Scholar.

PSC+06. I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, and A. Cimatti.
Formal analysis of hardware requirements. In E. Sentovich, editor, DAC,
pages 821–826. ACM, 2006. Links: ee, Google Scholar.

QS82. J. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In M. Dezani-Ciancaglini and U. Montanari, edi-
tors, Symposium on Programming, volume 137 of LNCS, pages 337–351.
Springer, 1982. Links: Google Scholar.

SC03. S. Schlobach and R. Cornet. Non-standard reasoning services for the de-
bugging of description logic terminologies. In G. Gottlob and T. Walsh,
editors, IJCAI, pages 355–362. Morgan Kaufmann, 2003. Links: Google
Scholar.

Sch09. V. Schuppan. Towards a notion of unsatisfiable cores for LTL. In F. Arbab
and M. Sirjani, editors, FSEN, pages 57–72. School of Computer Science,
Institute for Research in Fundamental Sciences (IPM), Iran, 2009. Links:
ee, Google Scholar.

SDGC07. J. Simmonds, J. Davies, A. Gurfinkel, and M. Chechik. Exploiting reso-
lution proofs to speed up LTL vacuity detection for BMC. In FMCAD,
pages 3–12. IEEE Computer Society, 2007. Links: ee, Google Scholar.

SSJ+03. I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, and M. Taghdiri. De-
bugging overconstrained declarative models using unsatisfiable cores. In
ASE, pages 94–105. IEEE Computer Society, 2003. Links: ee, Google
Scholar.

SSS00. M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using
induction and a SAT-solver. In Warren A. Hunt Jr. and Steven D. Johnson,
editors, FMCAD, volume 1954 of LNCS, pages 108–125. Springer, 2000.
Links: ee, Google Scholar.

TCJ08. E. Torlak, F. Chang, and D. Jackson. Finding minimal unsatisfiable cores
of declarative specifications. In J. Cuéllar, T. Maibaum, and K. Sere,
editors, FM, volume 5014 of LNCS, pages 326–341. Springer, 2008. Links:
ee, Google Scholar.

WHR+05. H. Wang, M. Horridge, A. Rector, N. Drummond, and J. Seidenberg. De-
bugging OWL-DL ontologies: A heuristic approach. In Y. Gil, E. Motta,
V. Benjamins, and M. Musen, editors, ISWC, volume 3729 of LNCS, pages
745–757. Springer, 2005. Links: ee, Google Scholar.

WW99. S. Wolfman and D. Weld. The LPSAT engine & its application to resource
planning. In T. Dean, editor, IJCAI, pages 310–317. Morgan Kaufmann,
1999. Links: Google Scholar.

ZM03a. L. Zhang and S. Malik. Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applica-
tions. In DATE, pages 10880–10885. IEEE Computer Society, 2003. Links:
ee, Google Scholar.

ZM03b. L. Zhang and S. Malik. Extracting small unsatisfiable cores from unsatis-
fiable Boolean formula. Presented at SAT, 2003. Available from http://

research.microsoft.com/users/lintaoz/papers/SAT 2003 core.pdf.

36

http://link.springer.de/link/service/series/0558/bibs/2404/24040485.htm

http://scholar.google.com/scholar?q=%22Vacuum+Cleaning+{CTL}+Formulae%22&hl=en&lr=&btnG=Search

http://doi.acm.org/10.1145/1146909.1147119

http://scholar.google.com/scholar?q=%22Formal+analysis+of+hardware+requirements%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Specification+and+verification+of+concurrent+systems+in+{CESAR}%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Non-Standard+Reasoning+Services+for+the+Debugging+of+Description+Logic+Terminologies%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Non-Standard+Reasoning+Services+for+the+Debugging+of+Description+Logic+Terminologies%22&hl=en&lr=&btnG=Search

http://www.schuppan.de/viktor/VSchuppan-FSEN-2009-preproceedings-preprint.pdf

http://scholar.google.com/scholar?q=%22Towards+a+Notion+of+Unsatisfiable+Cores+for+{LTL}%22&hl=en&lr=&btnG=Search

http://doi.ieeecomputersociety.org/10.1109/FMCAD.2007.20

http://scholar.google.com/scholar?q=%22Exploiting+Resolution+Proofs+to+Speed+Up+{LTL}+Vacuity+Detection+for+{BMC}%22&hl=en&lr=&btnG=Search

http://csdl.computer.org/comp/proceedings/ase/2003/2035/00/20350094abs.htm

http://scholar.google.com/scholar?q=%22Debugging+Overconstrained+Declarative+Models+Using+Unsatisfiable+Cores%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Debugging+Overconstrained+Declarative+Models+Using+Unsatisfiable+Cores%22&hl=en&lr=&btnG=Search

http://link.springer.de/link/service/series/0558/bibs/1954/19540108.htm

http://scholar.google.com/scholar?q=%22Checking+Safety+Properties+Using+Induction+and+a+{SAT}-Solver%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/978-3-540-68237-0_23

http://scholar.google.com/scholar?q=%22Finding+Minimal+Unsatisfiable+Cores+of+Declarative+Specifications%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/11574620_53

http://scholar.google.com/scholar?q=%22Debugging+{OWL-DL}+Ontologies:+A+Heuristic+Approach%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22The+{LPSAT}+Engine+{&}+Its+Application+to+Resource+Planning%22&hl=en&lr=&btnG=Search

http://csdl.computer.org/comp/proceedings/date/2003/1870/01/187010880abs.htm

http://scholar.google.com/scholar?q=%22Validating+{SAT}+Solvers+Using+an+Independent+Resolution-Based+Checker:+Practical+Implementations+and+Other+Applications%22&hl=en&lr=&btnG=Search

http://research.microsoft.com/users/lintaoz/papers/SAT_2003_core.pdf

http://research.microsoft.com/users/lintaoz/papers/SAT_2003_core.pdf

A Conversion to and from NNF

In this section we show algorithms to convert an LTL formula to NNF and back
by remembering the set of dualized nodes during the conversion.

Algorithm 1 Conversion of an LTL formula given as parse tree pt to NNF. D
stores the set of dualized nodes.
1: procedure NNFrec(var v: parse tree node, var D: set parse tree node, negate: boolean)
2: if oppt (v) == p then

3: isnegatedpt (v)← isnegatedpt (v)⊕ negate;

4: if negate then
5: D ← D ∪ v
6: end if
7: else
8: if isnegatedpt (v) ∧ ¬negate ∨ ¬isnegatedpt (v) ∧ negate then

9: isnegatedpt (v)← 0

10: oppt (v)← dual(oppt (v))

11: D ← D ∪ v
12: negatedown ← 1
13: else
14: if isnegatedpt (v) ∧ negate then

15: isnegatedpt (v)← 0

16: end if
17: negatedown ← 0
18: end if
19: if oppt (v) == ◦1 ∨ oppt (v) == ◦2 then

20: NNFrec(leftpt (v), v, D, negatedown)

21: if oppt (v) == ◦2 then

22: NNFrec(rightpt (v), v, D, negatedown)

23: end if
24: end if
25: end if
26: end procedure

27: procedure NNF(var v: parse tree node, var D: set parse tree node)
28: D ← ∅
29: NNFrec(v, D)
30: end procedure

Claim. Let φ be an LTL formula with parse tree ptφ. Let pt ′, D be the result
of executing NNF(root(ptφ), D). Then f(pt ′) is the NNF of φ.

Claim. Let φ be an LTL formula with parse tree ptφ. Let pt ′, D be the result of
executing NNF(root(ptφ),D), let pt ′′ be the result of executing deNNFrec(root(pt ′′),
D). Then ptφ and pt ′′ are isomorphic.

37

Algorithm 2 Undoing the conversion of an LTL formula given as parse tree pt
to NNF. D stores the set of dualized nodes.
1: procedure deNNFrec(var v: parse tree node, var D: set parse tree node)
2: if oppt (v) == p then

3: if v ∈ D then
4: isnegatedpt (v)← ¬isnegatedpt (v)

5: end if
6: else
7: if v ∈ D then
8: oppt (v)← dual(oppt (v))

9: end if
10: if v == root(pt) then
11: isnegatedpt (v)← v ∈ D
12: else
13: isnegatedpt (v)← v ∈ D ⊕ fatherpt (v) ∈ D
14: end if
15: if oppt (v) == ◦1 ∨ oppt (v) == ◦2 then

16: deNNFrec(leftpt (v), v, D)

17: if oppt (v) == ◦2 then

18: deNNFrec(rightpt (v), v, D)

19: end if
20: end if
21: end if
22: end procedure

23: procedure deNNF(var v: parse tree node, var D: set parse tree node, var N : set parse tree
node)

24: deNNFrec(v, D)
25: for all v′ ∈ N do
26: if isnegatedpt (v

′) then

27: isnegatedpt (v
′)← 0

28: oppt (v
′)← 0

29: end if
30: end for
31: end procedure

38

		1 Introduction

		2 Preliminaries

		3 Notions and Concepts Related to UCs

		4 Unsatisfiable Cores via Parse Trees

		4.1 Intuition and Example

		4.2 Formalization

		5 Unsatisfiable Cores via Definitional Conjunctive Normal Form

		5.1 Basic Form

		5.2 Variants

		Replacing Biimplications with Implications

		Splitting Implications for Binary Operators

		Temporal Unfolding

		Splitting Conjunctions from Temporal Unfolding

		5.3 Comparison with Separated Normal Form

		6 Unsatisfiable Cores via Bounded Model Checking

		6.1 Intuition and Example

		6.2 Formalization

		7 Unsatisfiable Cores via Tableaux

		7.1 Intuition and Example

		7.2 Formalization

		8 Discussion

		9 Related Work

		10 Conclusion

		A Conversion to and from NNF

