
Enhanced Unsatisfiable Cores for QBF:
Weakening Universal to Existential Quantifiers

(extended version with Appendix A only; git: 3849414; compiled: 2020-06-18 15:25:07+02:00)

Viktor Schuppan
Email: Viktor.Schuppan@gmx.de, URL: http://schuppan.de/viktor/

Abstract—We propose an enhanced notion of unsatisfiable
cores for QBF in prenex CNF that weakens universal to existen-
tial quantifiers in addition to the traditional removal of clauses.
We can thus obtain unsatisfiable cores that are semantically
different from those obtained by the traditional notion; this gives
rise to explanations — and, via hitting set duality, diagnoses — of
unsatisfiability that are not provided by traditional unsatisfiable
cores. We use a source-to-source transformation on QBF that
reduces the weakening of universal to existential quantifiers to
the removal of clauses. This enables any tool or method that
can compute unsatisfiable cores of the traditional notion to
also compute unsatisfiable cores of our enhanced notion. We
implement our approach in the QBF solver DepQBF, and we
experimentally evaluate it on a subset of QBFLIB. Several case
studies illustrate that interesting information can be learned from
our enhanced notion of unsatisfiable cores.

Index Terms—QBF, unsatisfiable cores, quantifier weakening

I. INTRODUCTION

a) Motivation and Contributions: Many important prob-
lems can be naturally encoded as quantified Boolean formulas
(QBF), e.g., two-player games (e.g., [GR03,AGS05]), variants
of planning (e.g., [Rin99,Tur02]), satisfiability of modal logic
K [PV03], and several problems in knowledge representation
(e.g., [EETW00]) and formal methods (e.g., [AB00,SB01]);
for a more extensive list see [GMN09]. Unsatisfiable cores
have been established as a fundamental concept in applied
logic with significant applications in AI and formal meth-
ods. For example, unsatisfiable cores are commonly taken
to represent causes of and serve as explanations of unsat-
isfiability in various logics (e.g., [CD91,BS01,SC03,SSJ+03,
YM05,Sch12]), and they are used as building blocks to obtain
advanced explanations of unsatisfiability (e.g., [KLM06]) and
to diagnose (e.g., [Rei87]) and repair (e.g., [Sch05]) unsat-
isfiability. Existing work on unsatisfiable cores for QBF in
prenex conjunctive normal form (PCNF) weakens formulas
by removing clauses [YM05,KZ06,IJM13,LE15].

In this paper we propose an enhanced notion of unsatisfiable
cores for QBF in PCNF that, in addition to removing clauses,
weakens universal to existential quantifiers (Section III). Our
enhanced notion of unsatisfiable cores can represent causes
and lead to explanations of unsatisfiability that are different
from any one that can be obtained from an unsatisfiable
core of the traditional notion (Section IV). Moreover, via the
well-known hitting set duality (e.g., [Rei87]; for a generic
formulation see [Sla14]), this induces diagnoses and repairs
for unsatisfiability that cannot be obtained when using the

traditional notion of unsatisfiable cores. On a less rigorous,
but nevertheless practically relevant note, an unsatisfiable core,
in which the set of quantifiers that has been weakened from
universal to existential has some unexpected characteristics,
may provide the initial ”hunch” to the user that something may
not be quite right in the QBF under consideration. In Section
V we show that if in an unsatisfiable QBF in PCNF no clause
can be removed without making the result satisfiable, then also
no universal quantifier can be weakened to an existential one
without losing unsatisfiability. Then we extend the PSPACE-
completeness result for minimally unsatisfiable cores of the
traditional notion [KZ06] to our enhanced notion (Section
VI). We describe a transformation of QBF in PCNF such
that weakening of universal to existential quantifiers can be
performed by removing clauses in the transformed formula
(Sections VII,VIII). That allows to obtain unsatisfiable cores in
our enhanced notion by first applying the transformation, then
using existing tools and methods to compute an unsatisfiable
core by removing clauses, and finally mapping back the result
to an unsatisfiable core in the enhanced notion. Next we
provide some hints on how to interpret unsatisfiable cores
(Section IX), and we classify universal quantifications into
non-trivially, trivially, and not ∀-to-∃ reducible (Section X).
We implement our approach in DepQBF [LE17] (Section XI),
and we experimentally evaluate it on a subset of QBFLIB
[GNPT] (Section XIII). Using a number of case studies includ-
ing two-player games [GR03], conformant planning [Rin07],
and satisfiability of modal logic K [PV03] we illustrate that
interesting information can be learned from our enhanced
notion of unsatisfiable cores (Section XII). Our experiments
show that on instances from QBFLIB unsatisfiable cores of our
enhanced notion can be computed and that indeed universal
quantifications are weakened to existential ones.

b) Related Work: Previous work on unsatisfiable cores
for QBF in PCNF uses the traditional notion of removal of
clauses from the matrix [YM05,KZ06,IJM13,LE15].

Weakening universal to existential quantifiers has been
called “quantifier abstraction” in a work on failed literal
detection for QBF [LB11] and “existential abstraction” in the
context of generalizing Q-resolution [LES16].
QBFDD [BLB10,qbfdd] allows quantifier manipulations

when minimizing failure-inducing input.
[RSMB14], which is probably the most closely related

work, introduces the concept of soft variables, which are
variables that may be placed at different positions of the prefix

mailto:Viktor.Schuppan@gmx.de
http://schuppan.de/viktor/

of a QBF subject to a preference function. The authors then
define the optimization problem of finding a placement for the
soft variables that maximizes the preference function while
maintaining satisfiability of the resulting QBF. They use a
transformation, which can be seen as a generalized version
of our transformation in Section VII, to reduce their problem
to a weighted partial MaxQBF problem (e.g., [CFLS93]). (We
discovered our transformation independently.) They implement
their approach in quantom [RPSB12]. Our work differs from
[RSMB14] as follows. When seen as a specification language
for sets of prefixes of QBF the notion of soft variables
in Definition 1–3 of [RSMB14] is more powerful than our
notion of cores in Definition 1. [RSMB14] searches for a still
satisfiable result, while we search for a still unsatisfiable result.
While the two are related via hitting set duality, the approaches
are complementary, and often one is used as part of a method
to obtain the other ([IJM13] is an example). In [RSMB14] the
authors make no connection to unsatisfiable cores. [RSMB14]
uses a MaxSAT-based algorithm [ZSM03]; we use a standard
algorithm to obtain (optionally) minimal clausal unsatisfiable
cores (e.g., [Mar12]). [RSMB14] finds a maximum solution,
while we (optionally) find a minimal solution. [RSMB14]
leaves the matrix unchanged, whereas we (optionally) also
weaken the matrix. As a minor practical point, our approach
does not require to enhance a QBF in PCNF with additional
information, thus making a large set of benchmarks directly
available.

When debugging unsatisfiable Alloy models Shlyakhter et
al. [SSJ+03] point out which values of bound variables are
irrelevant to the unsatisfiability. For a Boolean variable p in
some formula ∀p.f [p] this corresponds to weakening f [⊥/p]∧
f [>/p] to f [⊥/p] or to f [>/p] — which can be achieved
by removing clauses with occurrences of p of the suitable
polarity and, hence, by the traditional notion —, whereas we
can additionally weaken to f [⊥/p] ∨ f [>/p].

Finally, our work is in the spirit of efforts investigating the
aspect of granularity in various notions including: unsatisfiable
cores for propositional logic (e.g., [KLM06,Sch16b]), tempo-
ral logic (e.g, [Sch12,Sch16a]), and constraint programming
(e.g., [GMP07]); equivalent formulas (e.g., [GW11]); unre-
alizable cores (e.g., [Sch12]); vacuity (e.g., [AFF+03,GC04]);
justifications (e.g., [KPG06,LPSV06,HPS08]); diagnoses (e.g.,
[PQ13]); and repair (e.g., [KPSG06,DQF14]). For a uniform
treatment of some such notions and their relationships see the
work on minimal sets over monotone predicates [MJ14].

II. PRELIMINARIES

We consider QBF in PCNF (e.g., [KB09,GMN09]); any
QBF can be transformed into an equivalent QBF in PCNF
(e.g., [KB09]).

We assume a set of variables V ; variables are denoted by
the letter p. The Boolean constants are ⊥ (false) and > (true).
Literals are variables, Boolean constants, or their negations,
denoted ¬; we write literals as the letter l. A clause (l1 ∨
. . . ∨ ln) is a disjunction of literals, denoted by the letter c.
In clauses we use implication → as an abbreviation as usual.

A conjunctive normal form (CNF) formula c1 ∧ . . . ∧ cn is a
conjunction of clauses; CNF formulas are denoted by the letter
C. When convenient we view clauses as sets of literals and
CNF formulas as sets of clauses. A variable p is pure in a CNF
formula C, if it occurs only non-negated or only negated in C.
IB = {0, 1} is the set of Booleans. An assignment v for C is
a mapping from V to IB. A literal l evaluates to 1 under v iff
l = >, l = ¬⊥, l = p and v(p) = 1, or l = ¬p and v(p) = 0.
A clause c evaluates to 1 under v iff one or more of its literals
evaluate to 1 under v. The empty clause evaluates to 0. A CNF
formula C evaluates to 1 under v iff all of its clauses evaluate
to 1 under v. The empty CNF formula evaluates to 1. A CNF
formula C is satisfiable if there exists an assignment v such
that C evaluates to 1 under v; otherwise, it is unsatisfiable.
∀ and ∃ denote universal and existential quantifiers, respec-

tively. We use the letter Q to represent quantifiers. Let Q1, . . .,
Qn ∈ {∀,∃} be quantifiers, let p1, . . . , pn ∈ V be pairwise
different variables, and let C be a CNF formula whose
variables are contained in p1, . . . , pn. Then Q1p1 . . . Qnpn.C
is a QBF in PCNF with prefix Q1p1 . . . Qnpn and matrix C.
Prefixes are written as the letter Π. The alternation depth
of a QBF in PCNF is one plus the number of alternations
between ∀ and ∃ in the prefix. If Π.C is a QBF in PCNF
and p ∈ V , then (Π.C)[⊥/p] (resp. (Π.C)[>/p]) denotes the
QBF in PCNF that is obtained from Π.C by replacing every
occurrence of p in C with ⊥ (resp. >). Satisfiability of a
QBF in PCNF is then defined as follows. ∀pΠ.C is satisfi-
able iff (Π.C)[⊥/p] and (Π.C)[>/p] are satisfiable. ∃pΠ.C
is satisfiable iff (Π.C)[⊥/p] or (Π.C)[>/p] are satisfiable.
Deciding the satisfiability of a QBF in PCNF is PSPACE-
complete [SM73]; the satisfiability problems for QBF in PCNF
with alternation depth at most i ∈ N and either ∀ or ∃ as the
first quantifier yield complete problems for the i-th level of
the polynomial hierarchy ΠP

i and ΣP
i , respectively [Sto76,

Wra76].

III. ENHANCED UNSATISFIABLE CORES FOR QBF

In this section we add to the traditional notion of cores for
QBF in PCNF (henceforth called c-cores), which are obtained
by removing clauses, the notions of q-cores, which are ob-
tained by weakening universal to existential quantifiers, and of
qc-cores, which combine c-cores and q-cores. In Definition 1
we characterize c-, q-, and qc-cores. In Definitions 2 and 3 we
state natural extensions of proper cores and unsatisfiable cores
to q- and qc-cores. In Definition 4, we introduce quantifier-
minimally unsatisfiable cores in addition to the traditional
clause-minimally unsatisfiable cores. Let Π.C be a QBF in
PCNF.

Definition 1 (Core):

1) Let C ′ ⊆ C. Then Π.C ′ is a c-core of Π.C.
2) Let Π = Q1p1 . . . Qnpn, Π′ = Q′1p1 . . . Q

′
npn be prefixes

such that, ∀1 ≤ i ≤ n: if Qi is ∃, then Q′i is ∃; otherwise,
Q′i ∈ {∀,∃}. Then Π′.C is a q-core of Π.C.

3) Let Π.C ′ be a c-core of Π.C, and let Π′.C ′ be a q-core
of Π.C ′. Then Π′.C ′ is a qc-core of Π.C.

2

Some authors (e.g., [LE15]) remove quantifications from the
prefix of a c-core if the quantified variables cease to occur in
the matrix of the c-core. In our implementation we do this as
a generic postprocessing step and, therefore, we opt to keep
our exposition simple and omit this step from Definition 1.

Definition 2 (Proper Core): Let Π′.C ′ be a qc-core (resp. c-
core, q-core) of Π.C such that Π′ 6= Π or C ′ 6= C. Then Π′.C ′

is a proper qc-core (resp. proper c-core, q-core) of Π.C.
Definition 3 (Unsatisfiable Core): Let Π′.C ′ be a qc-core

(resp. c-core, q-core) of Π.C such that Π′.C ′ is unsatisfiable.
Then Π′.C ′ is an unsatisfiable qc-core (resp. unsatisfiable c-
core, q-core) of Π.C.

If Π′.C ′ is an unsatisfiable c-core, q-core, or qc-core of
Π.C, then Π.C is unsatisfiable.

Definition 4 (Minimal Unsatisfiability): Let Π.C be unsatis-
fiable such that there is no proper unsatisfiable c-core (resp. q-
core) of Π.C. Then Π.C is c-minimally unsatisfiable (resp. q-
minimally unsatisfiable).

Example 1: As an example consider Π.C = ∀p.(p)∧ (¬p).
Clearly, Π.C is unsatisfiable. Π.C has four c-cores Π.C,
∀p.(p), ∀p.(¬p), and ∀p.>. The first three are unsatisfiable
c-cores, the last three are proper c-cores, and the second and
third are both q- and c-minimally unsatisfiable.

Π.C has two q-cores Π.C and ∃p.(p)∧(¬p), both of which
are unsatisfiable. Only ∃p.(p) ∧ (¬p) is a proper q-core and
q-minimally unsatisfiable; it is also c-minimally unsatisfiable.

Any c-core or q-core is also a qc-core. ∃p.(p), ∃p.(¬p),
and ∃p.> are the only qc-cores of Π.C that are both proper
c-cores and proper q-cores of Π.C. However, none of them is
unsatisfiable.

IV. QC-CORES CAN BE DIFFERENT FROM C-CORES

Unsatisfiable cores are commonly taken to be causes
and/or explanations of unsatisfiability (e.g, [CD91,BS01,SC03,
SSJ+03,YM05,Sch12]). Some authors prefer minimally or
minimum cardinality unsatisfiable cores (e.g., [CD91,LS04,
SC03,TCJ08]), and some authors use unsatisfiable cores
as building blocks of more advanced explanations (e.g.,
[KLM06]). In this paper we take the view that a minimally
unsatisfiable core represents a cause of unsatisfiability and
gives rise to an explanation of unsatisfiability. We now argue
that our enhanced notion of unsatisfiable qc-cores for QBF
in PCNF can identify additional causes of unsatisfiability
(giving rise to additional explanations of unsatisfiability) that
are indeed different from the ones identified by the traditional
notion of unsatisfiable c-cores.

We consider ∀p.(p)∧ (¬p) from Example 1 with q- and c-
minimally unsatisfiable qc-cores ∀p.(p), ∀p.(¬p), and ∃p.(p)∧
(¬p). Clearly, the q-core ∃p.(p)∧(¬p) is syntactically different
from the c-cores ∀p.(p) and ∀p.(¬p). However, in general,
syntactic differences may carry little meaning; we therefore
proceed to discuss differences based on semantics.

One semantics for unsatisfiable QBF is given by tree refu-
tations [Gel12,CFL+06]. A tree refutation for an unsatisfiable
QBF Π.C is a tree such that

1) its non-leaf nodes are labeled with variables in Π (the
labeling of leaf nodes is irrelevant);

2) its edges are labeled with Booleans (representing as-
signments to the variables that are labeling their source
nodes);

3) every node labeled with a universally quantified variable
has one outgoing edge labeled with either 0 or 1;

4) every node labeled with an existentially quantified vari-
able has two outgoing edges labeled with 0 and 1,
respectively;

5) on every path from the root to a leaf node the sequence of
labels on the non-leaf nodes is identical to the sequence
of variables given by the prefix Π; and

6) on every path from the root to a leaf node the induced
assignment to the variables in Π falsifies C.

Intuitively, a tree refutation shows how to choose the assign-
ment to the universally quantified variables in order to falsify
Π.C.
∀p.(p) has one tree refutation with the root node labeled p

and its single outgoing edge labeled 0. ∃p.(p)∧ (¬p) has one
tree refutation with the root node labeled p and two outgoing
edges labeled 0 and 1. Clearly, the tree refutation for ∃p.(p)∧
(¬p) differs from the one for ∀p.(p). The two tree refutations
correspond to different ways to explain the unsatisfiability of
∀p.(p) ∧ (¬p): for ∀p.(p) assigning 0 to p falsifies (p); for
∃p.(p)∧(¬p) each assignment to p falsifies one of the clauses
(p) and (¬p). The case of ∀p.(¬p) is analogous.

Let C1, C2 be two different matrices that have the same
sets of satisfying assignments. For any prefix Π such that
Π.C1 and Π.C2 are unsatisfiable, the sets of tree refutations
for Π.C1 and Π.C2 are identical. I.e., tree refutations are
not always sufficient to distinguish unsatisfiable cores. In
that case we may turn to proof-theoretic semantics, which
can be more discriminating [Fra14]. We can, for example,
assign to unsatisfiable QBFs in PCNF the sets of their Q-
resolution proofs of unsatisfiability [KKF95] and then compare
unsatisfiable cores in terms of their sets of Q-resolution proofs.
Q-resolution essentially allows for two operations (we omit
some details and assume a working knowledge of resolution):
(i) resolve two clauses on an existentially quantified literal;
and (ii) remove a universally quantified literal l from a clause
c if there is no existentially quantified literal in c that occurs
to the right of the variable of l in the prefix. Then a QBF in
PCNF is unsatisfiable iff the empty clause can be derived via
Q-resolution [KKF95].
∀p.(p) (resp. ∀p.(¬p)) is proved unsatisfiable by removing

p (resp. ¬p) from (p) (resp. (¬p)), whereas ∃p.(p) ∧ (¬p) is
proved unsatisfiable by resolving (p) with (¬p). Again, the
set of proofs for ∃p.(p) ∧ (¬p) is different from the sets of
proofs for ∀p.(p) and ∀p.(¬p).

V. C-MINIMAL UNSATISFIABILITY IMPLIES Q-MINIMAL
UNSATISFIABILITY

In this section we show that any c-minimally unsatisfiable
core is also q-minimally unsatisfiable.

3

Theorem 1: Let Π.C be a c-minimally unsatisfiable QBF
in PCNF such that every universally quantified variable in Π
occurs in some clause in C. Then Π.C is also q-minimally
unsatisfiable. The converse is not true.

Proof: The first part is an immediate consequence of the
following Lemma 1. An example that the converse is not
true is Π.C = ∃p∃p′ . (p) ∧ (¬p) ∧ (p′). Π.C is clearly
q-minimally unsatisfiable; however, removing (p′) from C
results in a proper c-core of Π.C, i.e., Π.C is not c-minimally
unsatisfiable. This concludes the proof.

Lemma 1: Let

Π.C = Q1p1 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qnpn.

c1 ∧ . . . ∧ ci−1 ∧ ci ∧ ci+1 ∧ . . . ∧ cm

be a QBF in PCNF such that pl occurs in ci, let Π′.C ′ be
obtained from Π.C by changing ∀pl to ∃pl in Π, and let Π′′.C ′′

be obtained from Π.C by removing ci from C. If Π′.C ′ is
unsatisfiable, then so is Π′′.C ′′.

Proof: By induction over l. For the base case let l−1 = 0.
By assumption

Π′.C ′ = ∃plQl+1pl+1 . . . Qnpn.

c1 ∧ . . . ∧ ci−1 ∧ ci ∧ ci+1 ∧ . . . ∧ cm

is unsatisfiable. Expanding ∃pl gives unsatisfiability of both

(Ql+1pl+1 . . . Qnpn.c1∧. . .∧ci−1∧ci∧ci+1∧. . .∧cm)[⊥/pl],

and

(Ql+1pl+1 . . . Qnpn.c1∧. . .∧ci−1∧ci∧ci+1∧. . .∧cm)[>/pl].

Without limitation of generality let pl occur non-negated in
ci. Hence,

(Ql+1pl+1 . . . Qnpn.c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ cm)[>/pl]

is also unsatisfiable. Finally, by the definition of ∀,

∀plQl+1pl+1 . . . Qnpn.c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ cm

is unsatisfiable as desired.
For the inductive case let l − 1 > 0. First let Q1 = ∃. By

assumption

Π′.C ′ = ∃p1Q2p2 . . . Ql−1pl−1∃plQl+1pl+1 . . . Qnpn.

c1 ∧ . . . ∧ ci−1 ∧ ci ∧ ci+1 ∧ . . . ∧ cm

is unsatisfiable. Expanding ∃p1 gives unsatisfiability of both

(Q2p2 . . . Ql−1pl−1∃plQl+1pl+1 . . . Qnpn.

c1 ∧ . . . ∧ ci−1 ∧ ci ∧ ci+1 ∧ . . . ∧ cm)[⊥/p1],

and

(Q2p2 . . . Ql−1pl−1∃plQl+1pl+1 . . . Qnpn.

c1 ∧ . . . ∧ ci−1 ∧ ci ∧ ci+1 ∧ . . . ∧ cm)[>/p1].

With the inductive assumption both

(Q2p2 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qnpn.

c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ cm)[⊥/p1],

and

(Q2p2 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qnpn.

c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ cm)[>/p1]

are unsatisfiable as well. Finally, by the definition of ∃,

∃p1Q2p2 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qnpn.

c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ cm

is unsatisfiable as desired.
Now let Q1 = ∀. By assumption

Π′.C ′ = ∀p1Q2p2 . . . Ql−1pl−1∃plQl+1pl+1 . . . Qnpn.

c1 ∧ . . . ∧ ci−1 ∧ ci ∧ ci+1 ∧ . . . ∧ cm

is unsatisfiable. Expanding ∀p1 gives unsatisfiability of

(Q2p2 . . . Ql−1pl−1∃plQl+1pl+1 . . . Qnpn.

c1 ∧ . . . ∧ ci−1 ∧ ci ∧ ci+1 ∧ . . . ∧ cm)[⊥/p1]

or

(Q2p2 . . . Ql−1pl−1∃plQl+1pl+1 . . . Qnpn.

c1 ∧ . . . ∧ ci−1 ∧ ci ∧ ci+1 ∧ . . . ∧ cm)[>/p1].

Without limitation of generality let the first part ⊥/p1 be
unsatisfiable. Hence, with the inductive assumption,

(Q2p2 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qnpn.

c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ cm)[⊥/p1]

is unsatisfiable. Finally, by the definition of ∀,

∀p1Q2p2 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qnpn.

c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ cm

is unsatisfiable as desired. This concludes the proof.
One might think that Theorem 1 would cast doubt on

the usefulness of q- or qc-cores, as it shows that essentially
any c-minimally unsatisfiable c-core is also a q-minimally
unsatisfiable c-core (and qc-core). However, as shown in
Section IV, qc-cores can represent causes of unsatisfiability of
a formula (and give rise to corresponding explanations) that
none of the c-cores represents.

VI. COMPLEXITY

Let CMF, QMF, and QCMF denote the sets of c-minimally
unsatisfiable QBF in PCNF, q-minimally unsatisfiable QBF in
PCNF, and CMF ∩ QMF, respectively. CMF has been shown
to be PSPACE-complete in [KZ06]. In this section we extend
this result to QMF and QCMF.

Theorem 2: QMF and QCMF are PSPACE-complete.
Proof: Membership of QMF and QCMF in PSPACE is

obvious. For PSPACE-hardness of QMF let

Π.C = Q1p1 . . . Qmpm.c1 ∧ . . . ∧ cn

be a QBF in PCNF. Let Π′.C be obtained from Π.C by remov-
ing those universal quantifications from Π whose variables do
not occur in any clause of C. Let

Π′′.C ′′ = Π′∀p′1 . . . ∀p′n.(c1 ∨ p′1) ∧ . . . ∧ (cn ∨ p′n)

4

with p′1 . . . p
′
n fresh. Clearly, the size of Π′′.C ′′ is linear in the

size of Π.C. We show that Π.C is in CMF iff Π′′.C ′′ is in
QMF. First assume that Π.C is in CMF. Then Π′.C is also
in CMF and, by Theorem 1, in QMF. Hence, Π′′.C ′′ is in
QMF as well. Now assume that Π.C is not in CMF. If Π.C is
satisfiable, then so is Π′′.C ′′; thus, Π′′.C ′′ 6∈ QMF. Let Π.C
be unsatisfiable. Clearly, Π′.C is also not in CMF. For some
0 ≤ i ≤ n let ci be a clause that can be removed from C
without making the resulting QBF satisfiable. Then

Π′∀p′1 . . . ∀p′i−1∃p′i∀p′i+1∀p′n.(c1 ∨ p′1) ∧ . . . ∧ (cn ∨ p′n),

which is a proper q-core of Π′′.C ′′, is unsatisfiable. Hence,
Π′′.C ′′ is not in QMF. Thus, QMF is PSPACE-hard. The proof
for PSPACE-hardness of QCMF is similar. This concludes the
proof.

VII. A2AECC: Q- AND QC-CORES AS C-CORES

We now describe a source-to-source transformation on QBF
in PCNF that allows to cast q- and qc-cores as c-cores. Let
Π.C be a QBF in PCNF. For each universally quantified vari-
able pi in Π.C the transformation replaces the quantification
∀pi in the prefix Π with ∀p′i∃pi, where p′i is a fresh variable,
and conjoins the matrix C with two clauses (pi → p′i) and
(p′i → pi). Hence, the acronym A2AECC. This is formalized
in Definition 5.

Definition 5 (A2AECC): Let Π.C = Q1p1 . . . Qnpn.C. Let
p′1, . . . , p

′
n be fresh. Let, for all 1 ≤ i ≤ n,

a2ae(Qipi) =

{
∀p′i∃pi if Qi = ∀
∃pi otherwise,

and

a2cc(Qipi) =

{
(pi → p′i) ∧ (p′i → pi) if Qi = ∀
> otherwise.

Then

a2aecc(Π.C) = a2ae(Q1p1) . . . a2ae(Qnpn).

(
∧

1≤i≤n

a2cc(Qipi)) ∧ C.

Let Π.C be an unsatisfiable QBF in PCNF. Definition 5
allows to compute an unsatisfiable q- or qc-core Π′.C ′ of
Π.C by computing an unsatisfiable c-core of a2aecc(Π.C)
as follows.

1) Let Πa2aecc.Ca2aecc = a2aecc(Π.C).
2) Compute an unsatisfiable c-core Πa2aecc.C

′
a2aecc of

Πa2aecc.Ca2aecc.
3) Let C ′ = C if a q-core is desired, and let C ′ = C ∩

C ′a2aecc if a qc-core is desired.
4) Obtain Π′ from Π by replacing each quantification Qipi

in Π with Q′ipi where

Q′i =

∃ if (Qi = ∃) or (Qi = ∀ and

C ′a2aecc ∩ {(pi → p′i), (p
′
i → pi)} = ∅),

∀ otherwise.

The correctness of this procedure is established in Theorem
3 below. Its proof uses the following Lemma 2, which is
immediate by the semantics of QBF.

Lemma 2: Let

Π.C = Q1p1 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qmpm.

c1 ∧ . . . ∧ cn

be a QBF in PCNF. Let p′l be fresh. Let

Π′.C ′ = Q1p1 . . . Ql−1pl−1∀p′l∃plQl+1pl+1 . . . Qmpm.

(pl → p′l) ∧ (p′l → pl) ∧ c1 ∧ . . . ∧ cn.

Then Π.C is satisfiable iff Π′.C ′ is satisfiable.
Theorem 3: Let Π.C be a QBF in PCNF. Let P be a subset

of the universally quantified variables in Π. Let Π′ be obtained
from Π by weakening ∀p to ∃p for all p ∈ P . Let

Πa2aecc.Ca2aecc = a2aecc(Π.C)

and let

C ′a2aecc = Ca2aecc \
⋃
p∈P
{(p→ p′), (p′ → p)}.

Then
1) Π′.C is a q-core of Π.C.
2) Πa2aecc.C

′
a2aecc is a c-core of Πa2aecc.Ca2aecc.

3) Π′.C is satisfiable iff Πa2aecc.C
′
a2aecc is satisfiable.

Proof: Claims 1, 2 follow directly from Definition 1. We
prove claim 3 by induction on the cardinality of P . The base
case |P | = 0 follows by repeated application of Lemma 2.
For the inductive case assume that the claim holds for any
P with |P | = n. Now let P = {p1, . . . , pn+1}. Let Π′′ be
obtained from Π by weakening ∀pn+1 in Π to ∃pn+1. Let
Π′′a2aecc.C

′′
a2aecc = a2aecc(Π′′.C). By inductive assumption

Π′.C is satisfiable iff

Π′′a2aecc.C
′′
a2aecc \

⋃
p∈{p1,...,pn}

{(p→ p′), (p′ → p)}

is satisfiable. By construction of C ′a2aecc and C ′′a2aecc we have

C ′a2aecc = C ′′a2aecc \
⋃

p∈{p1,...,pn}

{(p→ p′), (p′ → p)}.

Hence, Π′.C is satisfiable iff Π′′a2aecc.C
′
a2aecc is satisfiable.

Notice that Πa2aecc only differs from Π′′a2aecc by having
∀p′n+1∃pn+1 in place of ∃pn+1. Hence, as p′n+1 does not occur
in C ′a2aecc, Π′′a2aecc.C

′
a2aecc is satisfiable iff Πa2aecc.C

′
a2aecc

is satisfiable. Thus, by transitivity Π′.C is satisfiable iff
Πa2aecc.C

′
a2aecc is satisfiable as desired. This concludes the

proof.
If a prefix Π has m universal quantifiers, then the alternation

depth of a2aecc(Π.C) is either 2m or 2m + 1. In the next
Section VIII we present a variant of the transformation that
does not affect alternation depth but has different semantics.

If a universally quantified variable p is pure in a matrix
C, then either (p′ → p) (if p occurs only non-negated
in C) or (p → p′) (if p occurs only negated in C) is a

5

quantified blocked clause [BLS11] in a2aecc(Π.C) and can
be eliminated.

If a solver for QBF in PCNF supports grouping of clauses
when extracting c-cores (e.g., [NRS14,Nad10,LS08]), as does
DepQBF [LE15], then a clause group for each pair of clauses
(pi → p′i), (p

′
i → pi) introduced by Definition 5 can be used

to ensure that either none or both of (pi → p′i), (p
′
i → pi) are

present in a c-core of a2aecc(Π.C).
Example 2: As an example we revisit Π.C = ∀p.(p)∧ (¬p)

from Example 1. We have

a2aecc(Π.C) = ∀p′∃p.(p→ p′) ∧ (p′ → p) ∧ (p) ∧ (¬p).

The unsatisfiable c-cores

Π′.C ′1 = ∀p′∃p.(p→ p′) ∧ (p′ → p) ∧ (p)

and
Π′.C ′2 = ∀p′∃p.(p→ p′) ∧ (p′ → p) ∧ (¬p)

of a2aecc(Π.C) correspond to the unsatisfiable c-cores ∀p.(p)
and ∀p.(¬p) of Π.C. The unsatisfiable c-core

Π′.C ′3 = ∀p′∃p.(p) ∧ (¬p)

of a2aecc(Π.C) corresponds to the unsatisfiable q-core
∃p.(p) ∧ (¬p) of Π.C. Contrary to Π′.C ′3, neither Π′.C ′1 nor
Π′.C ′2 is c-minimally unsatisfiable; however, when treating
(p → p′), (p′ → p) as a clause group as mentioned above,
then Π′.C ′1 and Π′.C ′2 are c-minimally unsatisfiable under a
suitable definition of c-minimality that takes clause groups into
account.

The transformation in Definition 5, Theorem 3 is also of
theoretical interest. For example, it can be used to extend
the hitting set-based relationship [Sla14] between unsatisfiable
subsets of clauses and co-satisfiable subsets of clauses (com-
plements of satisfiable subsets [Sla14], i.e., diagnoses [Rei87]
and repairs [Sch05]) to a relationship between unsatisfiable
q- or qc-cores and suitably defined “co-satisfiable q- or qc-
cores” of QBF in PCNF. The latter induce an enhanced notion
of diagnosis and repair for QBF in PCNF that diagnoses and
repairs unsatisfiable QBF not only by removal of clauses but
also by weakening of universal to existential quantifiers.

For a second example consider the following relationship
between Definition 6 (see Section X) and [KLM06]. In
[KLM06] Kullmann et al. classify the clauses of a CNF as
necessary if they are contained in all minimal unsatisfiable
cores, as only potentially necessary if they are contained in
some but not all minimal unsatisfiable cores, and as never nec-
essary if they are not contained in any minimal unsatisfiable
core. It is easy to see that ∀p is not ∀-to-∃ reducible in Π.C
iff {(p→ p′), (p′ → p)} has a non-empty intersection with all
c-minimally unsatisfiable c-cores of a2aecc(Π.C) (cf. “nec-
essary” in [KLM06]) and trivially ∀-to-∃ reducible in Π.C
iff {(p→ p′), (p′ → p)} has an empty intersection with all
c-minimally unsatisfiable c-cores of a2aecc(Π.C) (cf. “never
necessary” in [KLM06]).

VIII. A VARIANT OF A2AECC: REDUCING ALTERNATION
DEPTH BY REDUCING PRECISION

In this section we discuss a variant of the A2AECC trans-
formation that avoids the increase in alternation depth when
going from Π.C to a2aecc(Π.C), but underapproximates the
set of universal quantifiers that can be weakened to existential
ones in an unsatisfiable q- or qc-core of Π.C.

Let Π.C be a QBF in PCNF with n universal quantifiers
and alternation depth m. Let ∀pi,1 . . . ∀pi,ni be a maximal
sequence, called a block, of universal quantifications in Π.
Definition 5 turns this block into ∀p′i,1∃pi,1 . . . ∀p′i,ni

∃pi,ni
.

Overall, this increases the alternation depth of a2aecc(Π.C)
compared to Π.C by 2 · n−m (+1, if Π starts with ∃).

Consider a variant of Definition 5, denoted a2aecc′,
that instead turns each block of universal quantifications
∀pi,1 . . . ∀pi,ni into ∀p′i,1 . . . ∀p′i,ni

∃pi,1 . . . ∃pi,ni . Now the
increase in alternation depth from Π.C to a2aecc′(Π.C)
is at most 1. Moreover, by considering the respective
tree refutations (see Section IV), it is easy to see
that a2aecc(Π.C) is unsatisfiable iff a2aecc′(Π.C)
is unsatisfiable. As shown in Theorem 3, removing
(pi,i′ → p′i,i′)∧(p′i,i′ → pi,i′) from a2aecc(Π.C) corresponds
to weakening ∀pi,1 . . . ∀pi,i′−1∀pi,i′∀pi,i′+1 . . . ∀pi,ni

to ∀pi,1 . . . ∀pi,i′−1∃pi,i′∀pi,i′+1 . . . ∀pi,ni
in Π.C. In

contrast, it is straightforward to prove that removing
(pi,i′ → p′i,i′)∧(p′i,i′ → pi,i′) from a2aecc′(Π.C) corresponds
to weakening ∀pi,1 . . . ∀pi,i′−1∀pi,i′∀pi,i′+1 . . . ∀pi,ni to
∀pi,1 . . . ∀pi,i′−1∀pi,i′+1 . . . ∀pi,ni∃pi,i′ in Π.C.

By the semantics of QBF the unsatisfiability of a c-core of
a2aecc′(Π.C) implies the unsatisfiability of the corresponding
c-core of a2aecc(Π.C). For an example that the converse is
not true consider Π.C = ∀p1∀p2.(p1 → p2) ∧ (p2 → p1).
Weakening ∀p1 to ∃p1 in Π.C results in ∃p1∀p2.(p1 → p2)∧
(p2 → p1), which is unsatisfiable. Correspondingly, in line
with Theorem 3, removing (p1 → p′1) ∧ (p′1 → p1) from
a2aecc(Π.C) yields the unsatisfiable

∀p′1∃p1∀p′2∃p2.(p2 → p′2)∧(p′2 → p2)∧(p1 → p2)∧(p2 → p1).

On the other hand, removing (p1 → p′1) ∧ (p′1 → p1) from
a2aecc′(Π.C) leads to

∀p′1∀p′2∃p1∃p2.(p2 → p′2)∧(p′2 → p2)∧(p1 → p2)∧(p2 → p1),

which is satisfiable, as is ∀p2∃p1.(p1 → p2) ∧ (p2 → p1).
We finally discuss a different perspective on the semantics

of a2aecc′. a2aecc considers the positions of quantifications
within a quantifier block as fixed, i.e., a block of universal
quantifications is treated as a list of quantifications. How-
ever, the semantics of QBF allows to arbitrarily shuffle the
quantifications within a quantifier block without affecting
the satisfiability of the resulting QBF. Hence, a quantifier
block can also be seen as a set of quantifications. In the
light of that, a2aecc′ can be interpreted as employing the
set semantics of a quantifier block and push the universal
quantifications that have been weakened to existential ones
to the right of their quantifier block (i.e., towards the inside of

6

the QBF). We call the semantics obtained when using a2aecc
list semantics and the semantics obtained when using a2aecc′

set-inner semantics. List semantics takes a very conservative
approach in that it assigns maximal meaning to the order
of the quantifications in a quantifier block, whereas set-inner
semantics is very relaxed and assigns no meaning to the order
of quantifications in a quantifier block at all. Keep in mind
that, while — as mentioned above — shuffling quantifications
inside a quantifier block is a satisfiability-preserving operation,
as shown by the example in the previous paragraph weakening
universal quantifications to existential ones is not the same in
list and in set-inner semantics.

IX. INTERPRETING UNSATISFIABLE Q- AND QC-CORES

We now explain that the weakening of a universal to
an existential quantifier in an unsatisfiable core may have
different reasons and that it is easier to judge the significance
of a weakening in an unsatisfiable core if the core is c-minimal.

Let Π.C be an unsatisfiable QBF in PCNF and consider an
unsatisfiable q- or qc-core Π′.C ′ of Π.C. Assume that some
∀p in Π has been weakened to ∃p in Π′. Let C ′′ be a subset
of C ′ such that Π′.C ′′ is c-minimally unsatisfiable (such C ′′

obviously exists). Distinguish two cases. First, assume that p
occurs in some clause c in C ′′. Then there is a cause of the
unsatisfiability of Π.C that requires c, including its occurrence
of p, but needs p to be only existentially quantified (as it is in
Π′) rather than universally quantified (as it is in Π). Second,
assume that there is no such clause. Then the weakening of
∀p to ∃p in Π′ is due to the fact that the unsatisfiability of
Π.C does not require any clause that contains p or ¬p.

Notice that in a q- or qc-core that is unsatisfiable but not
c-minimal both cases may occur simultaneously for different
choices of C ′′. Hence, the fact that ∀p has been weakened to
∃p in a non-c-minimally unsatisfiable q- or qc-core Π′.C ′ of
Π.C should be interpreted with some care. Moreover, if ∀p has
been weakened to ∃p in a c-minimally unsatisfiable q- or qc-
core Π′.C ′, then it should be checked whether C ′ contains p
or not (if not, our implementation removes ∃p from Π′ during
postprocessing).

Example 3: As an example consider

Π.C = ∀p1∀p2∀p3∃p4.(p1 → p2) ∧ (p2 → p1) ∧ (p3 → p4)

and a (non-c-minimally) unsatisfiable qc-core of Π.C

Π′.C ′ = ∃p1∀p2∃p3∃p4.(p1 → p2) ∧ (p2 → p1) ∧ (p3 → p4).

Inspection of Π′.C ′ shows that its unsatisfiability is caused
by ∃p1∀p2.(p1 → p2) ∧ (p2 → p1), and that for its unsat-
isfiability it is sufficient for p1 to be existentially quantified.
Hence, the weakening of ∀p1 to ∃p1 in Π′.C ′ provides useful
additional information about the unsatisfiability of Π.C. On
the other hand, ∃p3∃p4.(p3 → p4) does not contribute to the
unsatisfiability of Π′.C ′. Hence, the fact that p3 is existentially
quantified in Π′.C ′ provides little information about the unsat-
isfiability of Π.C. Π′.C ′ has a single c-minimally unsatisfiable
c-core Π′.C ′′ = ∃p1∀p2∃p3∃p4.(p1 → p2) ∧ (p2 → p1).
Remember that in a c-minimally unsatisfiable core every

clause is required for unsatisfiability. As we can see, p1 occurs
in the matrix C ′′, while p3 does not.

X. ∀-TO-∃ REDUCIBILITY

We now lift the discussion of the previous section from
a single unsatisfiable core to the original formula Π.C by
partitioning the set of universally quantified variables in Π into
three sets as follows. The first set contains those universally
quantified variables p of Π for which a c-minimal qc-core
Π′.C ′ of Π.C exists such that p is existentially quantified in
Π′ and occurs in C ′; these are the variables that are actually
still relevant for the unsatisfiability of Π.C when weakened
from universally to existentially quantified. The second set
contains those universally quantified variables of Π that can be
weakened to existentially quantified variables without making
the result satisfiable, but for which no c-minimal qc-core Π′.C ′

of Π.C exists in which they are existentially quantified in Π′

and occur in C ′; these are the variables that are not relevant for
the unsatisfiability of Π.C. Finally, the third set contains those
universally quantified variables of Π that cannot be weakened
to existentially quantified variables without making the result
satisfiable.

Definition 6 (∀-to-∃ Reducibility): Let Π.C be unsatisfiable,
and let ∀p occur in Π.

1) If there exists a c-minimally unsatisfiable qc-core Π′.C ′

of Π.C such that ∀p in Π has been weakened to ∃p in
Π′ and such that p occurs in C ′, then ∀p is non-trivially
∀-to-∃ reducible in Π.C.

2) If ∀p is not non-trivially ∀-to-∃ reducible in Π.C but there
exists an unsatisfiable q-core Π′.C of Π.C such that ∀p
in Π has been weakened to ∃p in Π′, then ∀p is trivially
∀-to-∃ reducible in Π.C.

3) If there exists no unsatisfiable q-core Π′.C of Π.C in
which ∀p has been weakened to ∃p, then ∀p is not ∀-to-
∃ reducible in Π.C.

If a universally quantified variable p is pure in C, then
— because of the pure literal rule for existentially quantified
variables (e.g., [GMN09]) — ∀p is either trivially or not ∀-to-∃
reducible in Π.C.

Example 4: We continue Example 3. In

Π.C = ∀p1∀p2∀p3∃p4.(p1 → p2) ∧ (p2 → p1) ∧ (p3 → p4)

p1 is non-trivially ∀-to-∃ reducible, p2 is not ∀-to-∃ reducible,
and p3 is trivially ∀-to-∃ reducible.

To better understand the potential for weakening ∀ to ∃ we
are interested in computing which variables in an unsatisfiable
QBF Π.C are non-trivially ∀-to-∃ reducible. A precise result
might require finding all c-minimally unsatisfiable qc-cores of
Π.C. We suggest two methods to underapproximate the set
of non-trivially ∀-to-∃ reducible variables. We start with the
second method. For each ∀p in Π it performs the following
steps.

1) Π′(i).C
′
(i) is obtained from Π.C by weakening ∀p to ∃p.

2) If Π′(i).C
′
(i) is satisfiable, then ∀p is not ∀-to-∃ reducible

in Π.C, and the method moves on to the next universal
quantification in Π.

7

3) Π′(iii).C
′
(iii) is obtained from Π′(i).C

′
(i) by weakening a

maximal set of universal quantifiers to existential ones in
Π′(i) and by removing a maximal set of clauses without
occurrences of p from C(i) such that the result is still
unsatisfiable.

4) Π′(iv).C
′
(iv) is obtained from Π′(iii).C

′
(iii) by removing all

clauses with occurrences of p from C ′(iii).
5) If Π′(iv).C

′
(iv) is satisfiable, then ∀p is non-trivially ∀-

to-∃ reducible in Π.C; otherwise, ∀p is trivially or non-
trivially ∀-to-∃ reducible in Π.C.

The first method, which is cheaper but reports “trivially or
non-trivially” ∀-to-∃ reducible more often, omits step 3.

XI. IMPLEMENTATION

We implemented our ideas in DepQBF [LE17] version 6.03;
we call our version DepQBF-a2aecc. DepQBF-a2aecc
takes a QBF in PCNF Π.C as input. DepQBF-a2aecc can
either be used as a preprocessor to obtain a2aecc(Π.C), or it
can compute — optionally q- and c-minimally — unsatisfiable
c-cores, q-cores, or qc-cores of Π.C. DepQBF allows to
declare clause groups and, if a formula is found unsatisfiable,
to obtain the clause groups used to establish unsatisfiability
[LE15]. We use this to obtain an initial unsatisfiable c-core
Π′.C ′ of Π.C (for c-cores) or of a2aecc(Π.C) (for q- and
qc-cores). For c-cores Π′.C ′ can be output directly. For q-
cores and qc-cores Theorem 3 is applied to translate Π′.C ′

back into a q- or qc-core of Π.C. If minimality is desired,
then C ′ is minimized using a deletion-based algorithm (e.g.,
[Mar12]) with clause set refinement (CSR) (e.g., [BLM12]),
where in the repeated checks for satisfiability the DepQBF API
[LE15] is used to disable or enable clause groups as needed.
Because of Theorem 1 minimization is first applied to the
clauses introduced by Definition 5 and then to the clauses
from C; optionally, CSR can also be restricted to be applied
to the clauses introduced by Definition 5 during the first phase
of minimization. The variant of the A2AECC transformation
presented in Sec. VIII is available as an option.

XII. CASE STUDIES

In this section we discuss some case studies, which we
encountered during our experimental evaluation, that illustrate
how the weakening of universal to existential quantifiers in un-
satisfiable cores can trigger improved understanding of unsat-
isfiable QBFs. The examples are taken from QBFLIB [GNPT].

a) Winning Strategies in Two-Player Games: The
Gent-Rowley suite models variants of the well-known
Connect-4 game that are parameterized by the length of a
winning line and the width and height of the game board
[GR03]. Some instances model whether player 1 can enforce a
draw. For some of these instances, with winning lines of length
2 on boards with at least two rows and two columns, there
exists an unsatisfiable core in which all universal quantifiers
have been turned into existential ones. I.e., even if player 1
had full control over the moves of player 2, she could not
enforce a draw. This is clear, because eventually there must

be a winning line of length 2 for one of the two players, which
is confirmed by the corresponding unsatisfiable core.

Moreover, for instances with longer winning lines and
on larger boards, we obtained unsatisfiable cores with only
a single universal quantifier left, which seemed odd (the
number of universal quantifiers in the input formula grows
with the maximal number of moves, i.e., the board size). Upon
inspection of the unsatisfiable cores it turned out that the game
is modeled in such a way that player 2 can spoil a draw by
playing an illegal move at her first turn, thus forcing a win of
player 1. This seems to be a fact that a user of the model in
[GR03] should be aware of.

Finally, other instances model whether player 2 can enforce
a win. Again, we obtained an unsatisfiable core with only one
universal quantifier left. The core showed that the unsatisfiabil-
ity was caused by player 1 playing an illegal first move, which
should imply a win for player 2; this, however, is forbidden by
Eqn. 12. in [GR03]. This seems to warrant an investigation of
whether this way of modeling the game is indeed as intended.

b) Conformant Planning: The Rintanen/Sort-
ing_networks family encodes a set of problems such that
an instance with parameters d and l is satisfiable iff there exists
a sorting network of depth d that, for all input sequences of
length l, produces a sorted output sequence [Rin07,BG00].
The instance with d = 3, l = 6 is unsatisfiable. It yields an
unsatisfiable core in which the universal quantification over
the first number of the input sequence has been weakened to
an existential one. I.e., even if the ”planner” were allowed
to freely choose the first number of the input sequence, there
would be no sorting network. This is an interesting information
in itself; it additionally implies that there is also no sorting
network of depth 3 for input sequences of length 5.

c) Satisfiability of Modal Logic K: The Pan suite of
examples encodes the satisfiability of formulas in the modal
logic K as QBF [PV03,BHS00]. In the QBF encoding universal
quantification runs over the values of an index variable, where
each value of the index variable activates a part of the encoding
that corresponds to a different ♦-subformula from the original
K formula. This is done to avoid repeating certain subformulas
in the resulting QBF, which keeps the complexity of the
translation from K to QBF polynomial rather than exponential
[PV03]. We obtained an unsatisfiable core for the instance
k_branch_p-2 in which a universal quantifier had been
weakened to an existential one. This showed that either one of
two ♦-subformulas in the input formula is sufficient to obtain
unsatisfiability.

d) Answer Set Programming: The Faber-Leone-
Maratea-Ricca/Strategic_Companies family of ex-
amples encodes the question of whether two fixed companies
out of a set of companies are strategic [FLMR07,LPF+06,
CEG97]. Instance x25.17 is unsatisfiable, which indicates
that the companies under consideration are indeed strategic.
In the unsatisfiable core the universal quantification over
the variable for a third company has been weakened to an
existential one, signaling that that company, too, is strategic.

8

XIII. EXPERIMENTAL EVALUATION

a) Setup and Benchmarks: We used one machine with a
Xeon E3-1245v5 CPU and 32 GB RAM, utilizing 3 out of 4
physical cores for our experiments. The operating system was
Ubuntu 16.04. Run time and memory limits were 300 s and 8
GB. The experiments took about 2.5 months on our machine.

We selected 5342 instances from QBFLIB [GNPT]. In-
stances were chosen randomly such that equally many in-
stances were taken from each benchmark suite (subject to
availability) and, recursively within benchmark suites, equally
many instances from each subfamily (for the selection al-
gorithm see Appendix A). I.e., from benchmark suites with
fewer than 193 available instances all instances were included,
and from each of the remaining suites at least 193 instances
were used. We did not use any other selection criteria. Table I
shows the resulting number of instances per benchmark suite;
“solved” means solved by any solver in any of our experi-
ments. Table II shows the minimum, first quartile, medium,
third quartile, maximum, and mean values of the number of
universal quantifiers, the number of existential quantifiers, the
alternation depth, the number of clauses, and the maximum
variable index for the set of instances. As we were interested in
determining the potential for weakening universal to existential
quantifiers in the examples, we did not use a preprocessor such
as bloqqer [BLS11].

For our implementation, experimental data, and a version of
this paper with more appendices containing tables and plots,
partitioned by benchmark family or structural properties such
as number of universal quantifications or alternation depth, see
http://schuppan.de/viktor/ictai18/.

In the tables and plots below “n.s.” stands for not solved.
In plots red diagonal crosses are unsatisfiable and green
horizontal-/vertical crosses are satisfiable instances. Scatter
plots such as Figure 2 (a) potentially suffer from overplotting,
i.e., several benchmark instances resulting in the same x-
and y-coordinates cannot be distinguished in the plot. In our
case the effect tends to be most pronounced in the corners
of the plot. We therefore replace the crosses in the corners
by the numbers of instances exhibiting the corresponding x-
and y-coordinates. When two values are given, then the red,
upper value is for unsatisfiable and the green, lower value for
satisfiable instances. For example, in Figure 2 (a) there are
804 instances that remained unsolved by both methods.

b) Extracting Unsatisfiable Cores: In our first set of
experiments we used DepQBF-a2aecc to extract unsatis-
fiable cores from the 2528 instances that were found to be
unsatisfiable. In Section XII we already described some of the
unsatisfiable qc-cores that we obtained in more detail.

In the upper two sections of Table III we show how many
universal quantifiers could be weakened to existential ones
relative to the number of universal quantifiers in the original
formula. Column 1 states which kind of unsatisfiable cores was
extracted. “q” (resp. “qc”) refers to q-cores (resp. qc-cores),
“min” to q-minimality for q-cores and to q-,c-minimality for
qc-cores, and “minsepcsr” to minimality with separate CSR.

TABLE I: Number of instances per benchmark suite.

all solved solved
unsatisfiable satisfiable

Akshay-Chakraborty-John-Shah-Rabe 20 2 16
Amendola-Ricca-Truszczynski 112 9 7
Ansotegui 38 12 11
Ayari 71 48 23
Basler 193 75 118
Biere 194 25 159
Cashmore-Fox-Giunchiglia 150 110 40
Castellini 169 112 57
Chen-Interian 194 16 0
Diptarama-Jordan-Shinohara 14 11 2
Egly-Seidl-Tompits-Woltran-Zolda 194 97 78
Faber-Leone-Maratea-Ricca 194 128 7
Gent-Rowley 193 142 10
Herbstritt 194 157 27
Interian 193 24 69
Jordan-Kaiser 194 83 87
Katz 20 8 8
Klieber 30 15 6
Kontchakov 136 70 66
Kronegger-Pfandler-Pichler 194 133 44
Lahiri-Seshia 3 1 2
Lee-Jiang 5 2 3
Letombe 194 85 107
Letz 14 9 5
Ling 8 3 5
Mangassarian-Veneris 170 60 71
MayerEichberger-Saffidine 113 3 35
Messinger 63 0 9
Miller-Marin 194 189 5
Miller-Scholl-Becker 194 160 18
Mneimneh-Sakallah 180 44 123
Narizzano 193 78 115
Palacios 24 9 14
Pan 194 89 98
Peitl 10 10 0
Preusser 12 0 9
qbfeval12 17 8 9
Rabe 14 3 0
Rintanen 131 55 71
Sauer-Reimer 193 42 142
Scholl-Becker 64 30 25
Seidl 194 194 0
Tacchella 193 122 70
Tentrup 74 17 29
Wintersteiger 194 38 96
sum 5342 2528 1896

TABLE II: Statistics of structural properties of the set of instances.

min. 1st quart. median 3rd quart. max. mean
all (n = 5342)

number of ∀ 0 19.25 90 213 55,022 325.8
number of ∃ 1 477.5 2,239 7,215 2,202,774 18,980.3
alternation depth 1 2 3 6 1,141 17.7
num. of clauses 1 2,000 9,126.5 29,861.75 5,534,890 80,410.1
max. var. index 1 558.25 2,556.5 8,556.75 2,202,778 33,383.3

solved unsatisfiable (n = 2528)
number of ∀ 0 20 81.5 189 55,022 313.8
number of ∃ 1 622 2,993 8,332.5 2,202,774 23,311.2
alternation depth 1 3 3 12 781 25.9
num. of clauses 5 2,274 11,207.5 35,299 5,534,890 104,313.6
max. var. index 5 764.25 3,287.5 9,880 2,202,778 42,507.8

solved satisfiable (n = 1896)
number of ∀ 0 12 63 232 10,404 314.8
number of ∃ 1 408.75 1,338.5 4,707 1,112,278 7,802.7
alternation depth 1 2 3 4 133 6.3
num. of clauses 1 1,525.25 5,007 18,777 2,812,458 35,569.7
max. var. index 1 458 1,592.5 5,605.5 1,112,282 15,112.6

“list” refers to list semantics and “set-inner” refers to set-
inner semantics in the A2AECC-transformation (see Section
VIII). Column 2 states the number of solved instances (this
is the sum of the remaining columns). (For reference, the

9

http://schuppan.de/viktor/ictai18/

TABLE III: Number of instances whose number of weakened ∀ in the core (resp. ∀-to-∃ reducible ∀) divided by the number of ∀ in the
original formula is in a range. For reference, c-cores were obtained for 1830 instances and c-minimal c-cores for 1682 instances, respectively.

sol-
ved

no ∀ in
input 0

[0.002,
0.004[

[0.004,
0.006[

[0.006,
0.008[

[0.008,
0.02[

[0.02,
0.04[

[0.04,
0.06[

[0.06,
0.08[

[0.08,
0.2[

[0.2,
0.4[

[0.4,
0.6[

[0.6,
0.8[

[0.8,
1[1

q list 1649 21 465 1 4 4 13 46 11 8 95 159 305 96 291 130
q set-inner 1516 21 432 2 6 5 20 25 22 25 128 140 183 85 290 132
q min list 1139 21 195 5 5 6 37 82 250 96 266 176
q min set-inner 995 21 207 2 1 6 32 78 146 79 245 178
qc list 1551 21 1528 1 1
qc set-inner 1414 21 1392 1
qc min list 1441 21 1356 5 3 37 10 5 2 1 1
qc min set-inner 1305 21 1266 1 1 3 5 3 3 2
qc minsepcsr list 927 21 580 1 3 9 42 101 37 9 20 44 27 22 11
qc minsepcsr set-inner 854 21 659 2 1 27 33 12 5 14 37 20 20 3
enuma2e1 list 986 21 831 1 5 9 8 1 21 15 4 10 7 53
enuma2e1 set-inner 930 21 825 1 1 5 5 9 5 4 1 53
enuma2e2 list 657 21 385 1 2 9 29 38 28 22 36 19 7 10 5 45
enuma2e2 set-inner 645 21 465 2 6 11 25 15 10 15 21 4 6 44

corresponding numbers for c-cores and c-minimal c-cores are
1830 and 1682, respectively.) Column 3 lists the number
of solved instances that had no universal quantifiers. The
remaining columns state how many instances exhibited q- or
qc-cores whose share of weakened universal quantifiers falls
in the range from the first row; as during postprocessing our
implementation removes quantifications from the prefix whose
variables have no occurrences in the matrix, the numerator of
this fraction includes only weakened universal quantifications
whose variables still occur in some clause of the matrix
of the core. For example, for q-,c-minimal qc-cores with
separate CSR, there were 22 instances such that the number of
weakened universal quantifiers in the unsatisfiable core divided
by the number of universal quantifiers in the original formula
is in the interval [0.6, 0.8[. A number of instances exhibited
q-cores in which quite a large share of universal quantifiers
was weakened to existential ones; in the light of Section
IX note, though, that these cores need not be c-minimal.
Finding a qc-core in which a significant share of universal
quantifiers is weakened to existential ones seems to require
enabling minimization with separate CSR. Then also here
instances in which a fairly large share of universal quantifiers
is weakened to existential ones can be found; these cores are
c-minimal. Unsurprisingly, Figure 1 shows that for q-cores,
q-minimal q-cores, and q-,c-minimal qc-cores with separate
CSR higher numbers of weakened universal quantifiers tend
to be obtained from original instances with higher numbers of
universal quantifiers.

In the lower section of Table III we show how many
universal quantifiers were found to be non-trivially ∀-to-∃
reducible relative to the number of universal quantifiers in the
original formula, where “enuma2e1” refers to the first and
“enuma2e2” to the second method from Section X. Inspection
of our data show that, as expected, the second method finds
more non-trivially ∀-to-∃ reducible quantifiers than the first
method.

In Figure 2 (a) we compare the sizes of q-,c-minimally
unsatisfiable qc-cores obtained with separate CSR with the
corresponding c-minimally unsatisfiable c-cores in terms of
number of clauses. We find that the qc-cores obtained with

CSR can be significantly larger than the corresponding c-
cores. This is not surprising: weakening a universal to an
existential quantifier corresponds to weakening a conjunction
to a disjunction, and proving unsatisfiability of a disjunc-
tion requires both disjuncts, while proving unsatisfiability of
a conjunction requires only one conjunct. Remember (see
Section XII) that already the fact that a certain universal
quantifier has been weakened to an existential one may convey
valuable information, irrespective of the remainder of the
unsatisfiable core under consideration. Figure 2 (b) shows that
large increases in core size tend to coincide with large numbers
of weakened universal quantifiers, which is expected.

In Figure 3 (a)–(f) we show the run time overhead that is
incurred by each step when going from no core extraction
via c-core extraction to c-minimal c-core extraction and from
no core extraction via q-core extraction, qc-core extraction
and q-,c-minimal qc-core extraction to q-,c-minimal qc-core
extraction with separate CSR. C-core extraction incurs limited
costs (a); minimization comes with a high overhead (b). The
relation of the run times between no core extraction and q-
core extraction is quite variable (c). While moving from q-
cores to qc-cores incurs only a moderate overhead (d), adding
minimization (e) and, on top of that, separate CSR (f) are quite
costly. In Figure 3 (g)–(l) we show the corresponding plots
for memory; memory usage turned out not to be a problem
for DepQBF-a2aecc. Notice that (b) involves solving the
original versus solving the A2AECC-transformed instance;
although the increase in alternation depth of the transformed
instance depends on twice the number of universal quantifiers
minus the alternation depth in the original instance, we did not
observe a clear corresponding dependence of the overhead in
(b) (see Figure 4).

We also ran the experiments using set-inner instead of list
semantics. As expected, when using set-inner semantics, often
fewer universal quantifiers were weakened to existential ones.
However, despite lower alternation depth of the transformed
formula, we did not find an unambiguous performance advan-
tage for set-inner semantics (see Figure 5).

c) Solving A2AECC-Transformed Versus Original In-
stances: Our method for extracting unsatisfiable q- and qc-

10

(a)

0

 1

 10

 100

1k

10k

0 1 10 100 1k 10k

de
pq

bf
-a

2a
ec

c
q

lis
t

[n
um

be
r o

f A
 w

ea
ke

ne
d

to
 E

]

[number of A in original]

(b)

0

 1

 10

 100

1k

10k

0 1 10 100 1k 10k

de
pq

bf
-a

2a
ec

c
q

m
in

 li
st

[n
um

be
r o

f A
 w

ea
ke

ne
d

to
 E

]

[number of A in original]

(c)

0

 1

 10

 100

1k

10k

0 1 10 100 1k 10k

de
pq

bf
-a

2a
ec

c
qc

 m
in

 li
st

[n
um

be
r o

f A
 w

ea
ke

ne
d

to
 E

]

[number of A in original]

(d)

0

 1

 10

 100

1k

10k

0 1 10 100 1k 10k

de
pq

bf
-a

2a
ec

c
qc

 m
in

se
pc

sr
 li

st
[n

um
be

r o
f A

 w
ea

ke
ne

d
to

 E
]

[number of A in original]

Fig. 1: Number of universal quantifiers weakened to existential ones depending on the number of universal quantifiers in the original formula:
(a): q-cores; (b): q-minimal q-cores; (c): q-,c-minimal qc-cores; (d): q-,c-minimal qc-cores with separate CSR.

(a)

1

 10

 100

1k

10k

n.s.

 1 10 100 1k 10k n.s.

de
pq

bf
-a

2a
ec

c
qc

 m
in

se
pc

sr
 [#

cl
au

se
s]

depqbf-a2aecc c min [#clauses]

5

0

0

804

(b)

0.01

0.1

1

10

100

1000

10000

0 1 10 100 1kde
pq

bf
-a

2a
ec

c
qc

 m
in

se
pc

sr
 li

st
 [#

cl
au

se
s]

 /
de

pq
bf

-a
2a

ec
c

c
m

in
 [#

cl
au

se
s]

qc minsepcsr list [number of A weakened to E]

Fig. 2: (a) Comparing sizes of unsatisfiable cores [number of clauses]: x-axis: c-minimal c-cores, y-axis: q-,c-minimal qc-cores with separate
CSR. (b) Ratio of core sizes [numbers of clauses] between q-,c-minimal qc-cores with separate CSR and c-minimal c-cores (y-axis) depending
on the number of universal quantifications weakened to existential ones in the q-,c-minimal qc-core with separate CSR (x-axis); only pairs
for which both unsatisfiable cores were obtained are included.

cores as described in Section VII consists of a preprocessing
step that applies the A2AECC transformation, extraction of un-
satisfiable c-cores, and a postprocessing step that maps c-cores
back to q- or qc-cores. This makes it possible to investigate
the impact of the preprocessing step not only on DepQBF-
-a2aecc but also on other QBF solvers, thus allowing for a
partial evaluation of our proposed methodology beyond Dep-
QBF-a2aecc. Therefore, in our second set of experiments,
we used DepQBF-a2aecc as a preprocessor and ran the fol-
lowing QBF solvers on the original and transformed instances:
DepQBF v. 6.03 [LE17,depqbf], AIGSolve [PS10,aigsolve],
CAQE v. qbfeval 2017 [Ten17,caqe], GhostQ v. 2017-07-26
[JKMC12,ghostq], QESTO v. 1.0 [JM15,qesto], and RAReQS
v. 1.1 [JKMC12,rareqs]. Table IV shows the numbers of
solved instances, and Figure 6 (a)–(f) compare the run times
for solving the transformed versus the original instances for
DepQBF (a), AIGSolve (b), CAQE (c), GhostQ (d), QESTO
(e), and RAReQS (f). We observe that (i) the transformed

instances can be solved in many cases, (ii) the overhead for
solving the transformed instances depends on the solver, and
(iii) some of the transformed instances are solved faster than
the original instances by some solvers. Only AIGSolve and
QESTO ran into memory out on a larger number of instances;
the number of memory outs reached up to 25 % of the number
of time outs. For plots see Figure 6 (g)–(l). For CAQE, QESTO,
and, to a lesser extent, RAReQS our data indicate a dependence
of the overhead of solving the transformed versus the original
instance on twice the number of universal quantifiers minus
the alternation depth in the original instance (see Figure 7).

We also ran the experiments using set-inner instead of list
semantics (see Figure 8). Only for RAReQS set-inner seman-
tics resulted in a fairly unambiguous performance advantage.
AIGSolve and GhostQ were affected comparatively little by
the choice of transformation, while for the remaining solvers
no clear picture arose.

11

(a)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

de
pq

bf
-a

2a
ec

c
c

[s
ec

on
ds

]

depqbf-a2aecc none [seconds]

842

0

0

642

(b)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

de
pq

bf
-a

2a
ec

c
c

m
in

 [s
ec

on
ds

]

depqbf-a2aecc c [seconds]

540

0

0

698

(c)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

de
pq

bf
-a

2a
ec

c
q

lis
t [

se
co

nd
s]

depqbf-a2aecc none [seconds]

691

115

34

554

(d)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

de
pq

bf
-a

2a
ec

c
qc

 li
st

 [s
ec

on
ds

]

depqbf-a2aecc q list [seconds]

673

0

0

879

(e)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

de
pq

bf
-a

2a
ec

c
qc

 m
in

 [s
ec

on
ds

]

depqbf-a2aecc qc [seconds]

449

0

0

977

(f)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

de
pq

bf
-a

2a
ec

c
qc

 m
in

se
pc

sr
 [s

ec
on

ds
]

depqbf-a2aecc qc min [seconds]

257

60

0

1087

(g)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

de
pq

bf
-a

2a
ec

c
c

[B
yt

es
]

depqbf-a2aecc none [Bytes]

703

0

0

642

(h)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

de
pq

bf
-a

2a
ec

c
c

m
in

 [B
yt

es
]

depqbf-a2aecc c [Bytes]

460

0

0

698

(i)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

de
pq

bf
-a

2a
ec

c
q

lis
t [

By
te

s]

depqbf-a2aecc none [Bytes]

591

100

31

554

(j)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

de
pq

bf
-a

2a
ec

c
qc

 li
st

 [B
yt

es
]

depqbf-a2aecc q list [Bytes]

581

0

0

879

(k)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

de
pq

bf
-a

2a
ec

c
qc

 m
in

 li
st

 [B
yt

es
]

depqbf-a2aecc qc list [Bytes]

365

0

0

977

(l)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

de
pq

bf
-a

2a
ec

c
qc

 m
in

se
pc

sr
 li

st
 [B

yt
es

]

depqbf-a2aecc qc min list [Bytes]

215

46

0

1087

Fig. 3: (a)–(f) Comparing run times for extracting unsatisfiable cores in list semantics [seconds]: (a) x-axis: no cores, y-axis: c-cores; (b)
x-axis: c-cores, y-axis: c-minimal c-cores; (c) x-axis: no cores, y-axis: q-cores; (d) x-axis: q-cores, y-axis: qc-cores; (e) x-axis: qc-cores,
y-axis: q-,c-minimal qc-cores; (f) x-axis: q-,c-minimal qc-cores, y-axis: q-,c-minimal qc-cores with separate CSR. (g)–(l): as (a)–(f) but for
memory [Bytes].

TABLE IV: Solving A2AECC-transformed versus original instances: number of (un-)solved instances. The best value per column is in bold
font, and “vbs” is the virtual best solver.

original A2AECC list A2AECC set-inner
unsat sat n.s. unsat sat n.s. unsat sat n.s.

DepQBF 1911 1293 2138 1556 980 2806 1589 974 2779
AIGSolve 1655 1445 2242 1663 1448 2231 1670 1447 2225
CAQE 2091 1154 2097 1666 921 2755 1413 670 3259
GhostQ 1831 1275 2236 1829 1280 2233 1818 1282 2242
QESTO 1793 995 2554 1387 826 3129 1149 528 3665
RAReQS 1900 942 2500 1106 519 3717 1201 519 3622
vbs 2496 1866 980 2374 1787 1181 2333 1789 1220

d) quantom: Despite its differences quantom is the
most closely related tool. In our last set of experiments
we performed a preliminary comparison of both tools. We
used quantom to obtain a minimum cardinality set of uni-
versal quantifiers that, when weakened to existential ones,
make an unsatisfiable QBF satisfiable, and compared the
performance with extracting q-minimally unsatisfiable q-cores
with DepQBF-a2aecc (this compares minimum cardinality
diagnoses with minimal unsatisfiable cores, which are quite
different!). DepQBF-a2aecc (resp. quantom) was faster
on 835 (resp. 81) instances, with some large differences both
ways. For a scatter plot see Figure 9.

XIV. CONCLUSIONS

We proposed a notion of unsatisfiable q- and qc-cores for
QBF in PCNF that weakens universal to existential quantifiers
in addition to removing clauses, leading to unsatisfiable cores
and, thus, explanations and diagnoses of unsatisfiability that
cannot be obtained from traditional c-cores. We used the
A2AECC-transformation to reduce obtaining unsatisfiable q-
and qc-cores to obtaining unsatisfiable c-cores. We illustrated
with case studies that useful additional information can be
obtained from unsatisfiable qc-cores, and we demonstrated
in our experimental evaluation that our approach can suc-
cessfully compute unsatisfiable q- and qc-cores on examples

12

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0 1 10 100 1k 10k 100k

de
pq

bf
-a

2a
ec

c
q

lis
t [

se
co

nd
s]

 /
 d

ep
qb

f-a
2a

ec
c

no
ne

 [s
ec

on
ds

]

(2 * number of A in original) - (alternation depth in original)

Fig. 4: Ratio of run times [seconds] between q-core extraction and
no core extraction (y-axis) depending on the increase in alternation
depth between the original and the A2AECC-transformed instances
(x-axis); only pairs for which both instances were solved are included.
Using gbutils [gbutils] we obtained Kendall’s rank correlation
coefficient τ = 0.17 at p = 3.1 · 10−25.

from QBFLIB. Potential future work includes analyzing how
the A2AECC-transformation and its variant affect different
solvers, obtaining unsatisfiable q- and qc-cores without using
a transformation, e.g., directly from a run of the solver, and
extending this work to logics with quantification beyond QBF.

ACKNOWLEDGMENTS

I thank the authors of [RSMB14], especially Sven Reimer,
for discussion of their work and for providing me with
quantom [RPSB12]. I thank Alessandro Cimatti for mention-
ing that proofs can be used to compare formulas. I am grateful
to the reviewers for their suggestions on how to improve the
paper.

REFERENCES

[AB00] A. Ayari and D. A. Basin. “Bounded Model Construc-
tion for Monadic Second-Order Logics”. In: Computer
Aided Verification, 12th International Conference, CAV
2000, Chicago, IL, USA, July 15-19, 2000, Proceedings.
Ed. by E. A. Emerson and A. P. Sistla. Vol. 1855.
Lecture Notes in Computer Science. Springer, 2000,
pp. 99–112. ISBN: 3-540-67770-4. DOI: 10 . 1007 /
10722167 11 (cit. on p. 1).

[AFF+03] R. Armoni, L. Fix, A. Flaisher, et al. “Enhanced Vacuity
Detection in Linear Temporal Logic”. In: Computer
Aided Verification, 15th International Conference, CAV
2003, Boulder, CO, USA, July 8-12, 2003, Proceedings.
Ed. by W. A. Hunt Jr. and F. Somenzi. Vol. 2725.
Lecture Notes in Computer Science. Springer, 2003,
pp. 368–380. ISBN: 3-540-40524-0. DOI: 10.1007/978-
3-540-45069-6 35 (cit. on p. 2).

[AGS05] C. Ansótegui, C. P. Gomes, and B. Selman. “The
Achilles’ Heel of QBF”. In: Proceedings, The Twentieth
National Conference on Artificial Intelligence and the
Seventeenth Innovative Applications of Artificial Intelli-
gence Conference, July 9-13, 2005, Pittsburgh, Pennsyl-
vania, USA. Ed. by M. M. Veloso and S. Kambhampati.
AAAI Press / The MIT Press, 2005, pp. 275–281. ISBN:
1-57735-236-X. URL: http : / / www. aaai . org / Library /
AAAI/2005/aaai05-044.php (cit. on p. 1).

[aigsolve] http://abs.informatik.uni-freiburg.de/src/projects view.
php?projectID=19 (cit. on p. 11).

[BG00] B. Bonet and H. Geffner. “Planning with Incomplete
Information as Heuristic Search in Belief Space”. In:
Proceedings of the Fifth International Conference on
Artificial Intelligence Planning Systems, Breckenridge,
CO, USA, April 14-17, 2000. Ed. by S. A. Chien,
S. Kambhampati, and C. A. Knoblock. AAAI, 2000,
pp. 52–61. ISBN: 1-57735-111-8. URL: http : / / www.
aaai .org/Library/AIPS/2000/aips00- 006.php (cit. on
p. 8).

[BHS00] P. Balsiger, A. Heuerding, and S. Schwendimann. “A
Benchmark Method for the Propositional Modal Logics
K, KT, S4”. In: J. Autom. Reasoning 24.3 (2000),
pp. 297–317. DOI: 10.1023/A:1006249507577 (cit. on
p. 8).

[BLB10] R. Brummayer, F. Lonsing, and A. Biere. “Automated
Testing and Debugging of SAT and QBF Solvers”.
In: Theory and Applications of Satisfiability Testing -
SAT 2010, 13th International Conference, SAT 2010,
Edinburgh, UK, July 11-14, 2010. Proceedings. Ed. by
O. Strichman and S. Szeider. Vol. 6175. Lecture Notes
in Computer Science. Springer, 2010, pp. 44–57. ISBN:
978-3-642-14185-0. DOI: 10.1007/978-3-642-14186-
7 6 (cit. on p. 1).

[BLM12] A. Belov, I. Lynce, and J. Marques-Silva. “Towards
efficient MUS extraction”. In: AI Commun. 25.2 (2012),
pp. 97–116. DOI: 10.3233/AIC-2012-0523 (cit. on p. 8).

[BLS11] A. Biere, F. Lonsing, and M. Seidl. “Blocked Clause
Elimination for QBF”. In: Automated Deduction -
CADE-23 - 23rd International Conference on Auto-
mated Deduction, Wroclaw, Poland, July 31 - August 5,
2011. Proceedings. Ed. by N. Bjørner and V. Sofronie-
Stokkermans. Vol. 6803. Lecture Notes in Computer
Science. Springer, 2011, pp. 101–115. ISBN: 978-3-
642-22437-9. DOI: 10.1007/978- 3- 642- 22438- 6 10
(cit. on pp. 6, 9).

[BS01] R. Bruni and A. Sassano. “Restoring Satisfiability or
Maintaining Unsatisfiability by finding small Unsatis-
fiable Subformulae”. In: Electronic Notes in Discrete
Mathematics 9 (2001), pp. 162–173. DOI: 10 . 1016 /
S1571-0653(04)00320-8 (cit. on pp. 1, 3).

[caqe] https://www.react.uni- saarland.de/tools/caqe/ (cit. on
p. 11).

[CD91] J. W. Chinneck and E. W. Dravnieks. “Locating Mini-
mal Infeasible Constraint Sets in Linear Programs”. In:
INFORMS Journal on Computing 3.2 (1991), pp. 157–
168. DOI: 10.1287/ijoc.3.2.157 (cit. on pp. 1, 3).

[CEG97] M. Cadoli, T. Eiter, and G. Gottlob. “Default Logic
as a Query Language”. In: IEEE Trans. Knowl. Data
Eng. 9.3 (1997), pp. 448–463. DOI: 10.1109/69.599933
(cit. on p. 8).

[CFL+06] S. Coste-Marquis, H. Fargier, J. Lang, et al. “Repre-
senting Policies for Quantified Boolean Formulae”. In:
Proceedings, Tenth International Conference on Princi-
ples of Knowledge Representation and Reasoning, Lake
District of the United Kingdom, June 2-5, 2006. Ed. by
P. Doherty, J. Mylopoulos, and C. A. Welty. AAAI
Press, 2006, pp. 286–297. ISBN: 978-1-57735-271-6.
URL: http : / / www. aaai . org / Library / KR / 2006 / kr06 -
031.php (cit. on p. 3).

[CFLS93] A. Condon, J. Feigenbaum, C. Lund, and P. W. Shor.
“Probabilistically checkable debate systems and ap-
proximation algorithms for PSPACE-hard functions”.
In: Proceedings of the Twenty-Fifth Annual ACM Sym-
posium on Theory of Computing, May 16-18, 1993, San
Diego, CA, USA. Ed. by S. R. Kosaraju, D. S. Johnson,
and A. Aggarwal. ACM, 1993, pp. 305–314. ISBN: 0-

13

http://scholar.google.com/scholar?q=%22Bounded+Model+Construction+for+Monadic+Second-Order+Logics%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Bounded+Model+Construction+for+Monadic+Second-Order+Logics%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/10722167_11
https://doi.org/10.1007/10722167_11
http://scholar.google.com/scholar?q=%22Enhanced+Vacuity+Detection+in+Linear+Temporal+Logic%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Enhanced+Vacuity+Detection+in+Linear+Temporal+Logic%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-540-45069-6_35
https://doi.org/10.1007/978-3-540-45069-6_35
http://scholar.google.com/scholar?q=%22The+Achilles'+Heel+of+QBF%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22The+Achilles'+Heel+of+QBF%22&hl=en&lr=&btnG=Search
http://www.aaai.org/Library/AAAI/2005/aaai05-044.php
http://www.aaai.org/Library/AAAI/2005/aaai05-044.php
http://abs.informatik.uni-freiburg.de/src/projects_view.php?projectID=19
http://abs.informatik.uni-freiburg.de/src/projects_view.php?projectID=19
http://scholar.google.com/scholar?q=%22Planning+with+Incomplete+Information+as+Heuristic+Search+in+Belief+Space%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Planning+with+Incomplete+Information+as+Heuristic+Search+in+Belief+Space%22&hl=en&lr=&btnG=Search
http://www.aaai.org/Library/AIPS/2000/aips00-006.php
http://www.aaai.org/Library/AIPS/2000/aips00-006.php
http://scholar.google.com/scholar?q=%22A+Benchmark+Method+for+the+Propositional+Modal+Logics+K,+KT,+S4%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22A+Benchmark+Method+for+the+Propositional+Modal+Logics+K,+KT,+S4%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22A+Benchmark+Method+for+the+Propositional+Modal+Logics+K,+KT,+S4%22&hl=en&lr=&btnG=Search
https://doi.org/10.1023/A:1006249507577
http://scholar.google.com/scholar?q=%22Automated+Testing+and+Debugging+of+SAT+and+QBF+Solvers%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Automated+Testing+and+Debugging+of+SAT+and+QBF+Solvers%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-642-14186-7_6
https://doi.org/10.1007/978-3-642-14186-7_6
http://scholar.google.com/scholar?q=%22Towards+efficient+MUS+extraction%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Towards+efficient+MUS+extraction%22&hl=en&lr=&btnG=Search
https://doi.org/10.3233/AIC-2012-0523
http://scholar.google.com/scholar?q=%22Blocked+Clause+Elimination+for+QBF%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Blocked+Clause+Elimination+for+QBF%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-642-22438-6_10
http://scholar.google.com/scholar?q=%22Restoring+Satisfiability+or+Maintaining+Unsatisfiability+by+finding+small+Unsatisfiable+Subformulae%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Restoring+Satisfiability+or+Maintaining+Unsatisfiability+by+finding+small+Unsatisfiable+Subformulae%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Restoring+Satisfiability+or+Maintaining+Unsatisfiability+by+finding+small+Unsatisfiable+Subformulae%22&hl=en&lr=&btnG=Search
https://doi.org/10.1016/S1571-0653(04)00320-8
https://doi.org/10.1016/S1571-0653(04)00320-8
https://www.react.uni-saarland.de/tools/caqe/
http://scholar.google.com/scholar?q=%22Locating+Minimal+Infeasible+Constraint+Sets+in+Linear+Programs%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Locating+Minimal+Infeasible+Constraint+Sets+in+Linear+Programs%22&hl=en&lr=&btnG=Search
https://doi.org/10.1287/ijoc.3.2.157
http://scholar.google.com/scholar?q=%22Default+Logic+as+a+Query+Language%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Default+Logic+as+a+Query+Language%22&hl=en&lr=&btnG=Search
https://doi.org/10.1109/69.599933
http://scholar.google.com/scholar?q=%22Representing+Policies+for+Quantified+Boolean+Formulae%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Representing+Policies+for+Quantified+Boolean+Formulae%22&hl=en&lr=&btnG=Search
http://www.aaai.org/Library/KR/2006/kr06-031.php
http://www.aaai.org/Library/KR/2006/kr06-031.php
http://scholar.google.com/scholar?q=%22Probabilistically+checkable+debate+systems+and+approximation+algorithms+for+PSPACE-hard+functions%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Probabilistically+checkable+debate+systems+and+approximation+algorithms+for+PSPACE-hard+functions%22&hl=en&lr=&btnG=Search

(a)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

de
pq

bf
-a

2a
ec

c
q

se
t-i

nn
er

 [s
ec

on
ds

]

depqbf-a2aecc q list [seconds]

685

55

13

776

(b)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

de
pq

bf
-a

2a
ec

c
qc

 s
et

-in
ne

r [
se

co
nd

s]

depqbf-a2aecc qc list [seconds]

592

45

12

883

(c)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

de
pq

bf
-a

2a
ec

c
qc

 m
in

 s
et

-in
ne

r [
se

co
nd

s]

depqbf-a2aecc qc min list [seconds]

411

17

9

1000

(d)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.de
pq

bf
-a

2a
ec

c
qc

 m
in

se
pc

sr
 s

et
-in

ne
r [

se
co

nd
s]

depqbf-a2aecc qc minsepcsr list [seconds]

240

10

1

1573

(e)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

de
pq

bf
-a

2a
ec

c
q

se
t-i

nn
er

 [B
yt

es
]

depqbf-a2aecc q list [Bytes]

590

45

12

776

(f)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

de
pq

bf
-a

2a
ec

c
qc

 s
et

-in
ne

r [
By

te
s]

depqbf-a2aecc qc list [Bytes]

516

41

9

883

(g)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

de
pq

bf
-a

2a
ec

c
qc

 m
in

 s
et

-in
ne

r [
By

te
s]

depqbf-a2aecc qc min list [Bytes]

343

14

9

1000

(h)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.de
pq

bf
-a

2a
ec

c
qc

 m
in

se
pc

sr
 s

et
-in

ne
r [

By
te

s]

depqbf-a2aecc qc minsepcsr list [Bytes]

200

7

1

1573

Fig. 5: (a)–(d) Comparing run times for extracting unsatisfiable cores in list semantics (x-axis) vs. set-inner semantics (y-axis) [seconds]: (a)
q-cores; (b) qc-cores; (c) q-,c-minimal qc-cores; (d) q-,c-minimal qc-cores with separate CSR. (e)–(h): as (a)–(d) but for memory [Bytes].

(a)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

de
pq

bf
 a

2a
ec

c
lis

t [
se

co
nd

s]

depqbf original [seconds]

639
505

120
147

10
6

570
554

(b)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

ai
gs

ol
ve

 a
2a

ec
c

lis
t [

se
co

nd
s]

aigsolve original [seconds]

557
613

3
0

0
0

840
427

(c)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

ca
qe

 a
2a

ec
c

lis
t [

se
co

nd
s]

caqe original [seconds]

447
404

68
28

0
0

432
735

(d)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

gh
os

tq
 a

2a
ec

c
lis

t [
se

co
nd

s]

ghostq original [seconds]

457
399

0
1

0
0

664
605

(e)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

qe
st

o
a2

ae
cc

 li
st

 [s
ec

on
ds

]

qesto original [seconds]

371
311

35
18

0
0

702
892

(f)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

ra
re

qs
 a

2a
ec

c
lis

t [
se

co
nd

s]

rareqs original [seconds]

423
211

289
234

0
0

627
946

(g)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

de
pq

bf
 a

2a
ec

c
lis

t [
By

te
s]

depqbf original [Bytes]

559
462

89
140

10
3

570
554

(h)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

ai
gs

ol
ve

 a
2a

ec
c

lis
t [

By
te

s]

aigsolve original [Bytes]

483
562

3
0

0
0

840
427

(i)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

ca
qe

 a
2a

ec
c

lis
t [

By
te

s]

caqe original [Bytes]

368
355

41
12

0
0

432
735

(j)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

gh
os

tq
 a

2a
ec

c
lis

t [
By

te
s]

ghostq original [Bytes]

264
293

0
1

0
0

664
605

(k)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

qe
st

o
a2

ae
cc

 li
st

 [B
yt

es
]

qesto original [Bytes]

318
274

22
10

0
0

702
892

(l)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

ra
re

qs
 a

2a
ec

c
lis

t [
By

te
s]

rareqs original [Bytes]

331
177

240
204

0
0

627
946

Fig. 6: (a)–(f): Comparing run times for solving original (x-axis) versus transformed (y-axis) instances [seconds]: (a) DepQBF; (b) AIGSolve;
(c) CAQE; (d) GhostQ; (e) QESTO; (f) RAReQS. (g)–(l): as (a)–(f) but for memory [Bytes].

14

(a)

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0 1 10 100 1k 10k 100k

de
pq

bf
 a

2a
ec

c
lis

t [
se

co
nd

s]
 /

 d
ep

qb
f o

rig
in

al
 [s

ec
on

ds
]

(2 * number of A in original) - (alternation depth in original)

τ = 0.11
p = 3.8 · 10−15

(b)

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0 1 10 100 1k 10k 100k

ai
gs

ol
ve

 a
2a

ec
c

lis
t [

se
co

nd
s]

 /
 a

ig
so

lve
 o

rig
in

al
 [s

ec
on

ds
]

(2 * number of A in original) - (alternation depth in original)

τ = 0.06
p = 1.6 · 10−7

(c)

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0 1 10 100 1k 10k 100k

ca
qe

 a
2a

ec
c

lis
t [

se
co

nd
s]

 /
 c

aq
e

or
ig

in
al

 [s
ec

on
ds

]

(2 * number of A in original) - (alternation depth in original)

τ = 0.41
p = 4.8 · 10−209

(d)

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0 1 10 100 1k 10k 100k

gh
os

tq
 a

2a
ec

c
lis

t [
se

co
nd

s]
 /

 g
ho

st
q

or
ig

in
al

 [s
ec

on
ds

]

(2 * number of A in original) - (alternation depth in original)

τ = 0.09
p = 2.6 · 10−14

(e)

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0 1 10 100 1k 10k 100k

qe
st

o
a2

ae
cc

 li
st

 [s
ec

on
ds

] /
 q

es
to

 o
rig

in
al

 [s
ec

on
ds

]

(2 * number of A in original) - (alternation depth in original)

τ = 0.48
p = 6.3 · 10−245

(f)

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0 1 10 100 1k 10k 100k

ra
re

qs
 a

2a
ec

c
lis

t [
se

co
nd

s]
 /

 ra
re

qs
 o

rig
in

al
 [s

ec
on

ds
]

(2 * number of A in original) - (alternation depth in original)

τ = 0.26
p = 4.9 · 10−54

Fig. 7: Ratio of run times [seconds] between solving A2AECC-transformed and original instances (y-axis) depending on the increase
in alternation depth between the original and the A2AECC-transformed instances (x-axis): (a) DepQBF; (b) AIGSolve; (c) CAQE; (d)
GhostQ; (e) QESTO; (f) RAReQS. Only pairs for which both instances were solved are included. Using gbutils [gbutils] we obtained
Kendall’s rank correlation coefficient τ at p as shown to the right of the plots.

89791-591-7. DOI: 10 . 1145 / 167088 . 167190 (cit. on
p. 2).

[depqbf] http://lonsing.github.io/depqbf/ (cit. on p. 11).
[DQF14] J. Du, G. Qi, and X. Fu. “A Practical Fine-grained

Approach to Resolving Incoherent OWL 2 DL Ter-
minologies”. In: Proceedings of the 23rd ACM In-
ternational Conference on Conference on Information
and Knowledge Management, CIKM 2014, Shanghai,
China, November 3-7, 2014. Ed. by J. Li, X. S. Wang,
M. N. Garofalakis, et al. ACM, 2014, pp. 919–928.
ISBN: 978-1-4503-2598-1. DOI: 10 . 1145 / 2661829 .
2662046 (cit. on p. 2).

[EETW00] U. Egly, T. Eiter, H. Tompits, and S. Woltran. “Solving
Advanced Reasoning Tasks Using Quantified Boolean
Formulas”. In: Proceedings of the Seventeenth Na-
tional Conference on Artificial Intelligence and Twelfth
Conference on on Innovative Applications of Artificial
Intelligence, July 30 - August 3, 2000, Austin, Texas,
USA. Ed. by H. A. Kautz and B. W. Porter. AAAI
Press / The MIT Press, 2000, pp. 417–422. ISBN: 0-
262-51112-6. URL: http://www.aaai.org/Library/AAAI/
2000/aaai00-064.php (cit. on p. 1).

[FLMR07] W. Faber, N. Leone, M. Maratea, and F. Ricca. “Look-
ing Back in DLV: Experiments and Comparison to QBF
Solvers”. In: Answer Set Programming, 4th Interna-

tional Workshop, ASP 2007, Porto, Portugal, September
8 and 13, 2007, Proceedings. 2007 (cit. on p. 8).

[Fra14] N. Francez. “The Granularity of Meaning in Proof-
Theoretic Semantics”. In: Logical Aspects of Computa-
tional Linguistics - 8th International Conference, LACL
2014, Toulouse, France, June 18-20, 2014. Proceedings.
Ed. by N. Asher and S. Soloviev. Vol. 8535. Lecture
Notes in Computer Science. Springer, 2014, pp. 96–
106. ISBN: 978-3-662-43741-4. DOI: 10.1007/978- 3-
662-43742-1 8 (cit. on p. 3).

[gbutils] http://cafim.sssup.it/∼giulio/software/gbutils/ (cit. on
pp. 13, 15).

[GC04] A. Gurfinkel and M. Chechik. “How Vacuous Is Vac-
uous?” In: Tools and Algorithms for the Construction
and Analysis of Systems, 10th International Conference,
TACAS 2004, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS
2004, Barcelona, Spain, March 29 - April 2, 2004, Pro-
ceedings. Ed. by K. Jensen and A. Podelski. Vol. 2988.
Lecture Notes in Computer Science. Springer, 2004,
pp. 451–466. ISBN: 3-540-21299-X. DOI: 10.1007/978-
3-540-24730-2 34 (cit. on p. 2).

[Gel12] A. V. Gelder. “Contributions to the Theory of Practical
Quantified Boolean Formula Solving”. In: Principles
and Practice of Constraint Programming - 18th In-

15

https://doi.org/10.1145/167088.167190
http://lonsing.github.io/depqbf/
http://scholar.google.com/scholar?q=%22A+Practical+Fine-grained+Approach+to+Resolving+Incoherent+OWL+2+DL+Terminologies%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22A+Practical+Fine-grained+Approach+to+Resolving+Incoherent+OWL+2+DL+Terminologies%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22A+Practical+Fine-grained+Approach+to+Resolving+Incoherent+OWL+2+DL+Terminologies%22&hl=en&lr=&btnG=Search
https://doi.org/10.1145/2661829.2662046
https://doi.org/10.1145/2661829.2662046
http://scholar.google.com/scholar?q=%22Solving+Advanced+Reasoning+Tasks+Using+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Solving+Advanced+Reasoning+Tasks+Using+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Solving+Advanced+Reasoning+Tasks+Using+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search
http://www.aaai.org/Library/AAAI/2000/aaai00-064.php
http://www.aaai.org/Library/AAAI/2000/aaai00-064.php
http://scholar.google.com/scholar?q=%22Looking+Back+in+DLV%3A+Experiments+and+Comparison+to+QBF+Solvers%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Looking+Back+in+DLV%3A+Experiments+and+Comparison+to+QBF+Solvers%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Looking+Back+in+DLV%3A+Experiments+and+Comparison+to+QBF+Solvers%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22The+Granularity+of+Meaning+in+Proof-Theoretic+Semantics%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22The+Granularity+of+Meaning+in+Proof-Theoretic+Semantics%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-662-43742-1_8
https://doi.org/10.1007/978-3-662-43742-1_8
http://cafim.sssup.it/~giulio/software/gbutils/
http://scholar.google.com/scholar?q=%22How+Vacuous+Is+Vacuous?%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22How+Vacuous+Is+Vacuous?%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-540-24730-2_34
https://doi.org/10.1007/978-3-540-24730-2_34
http://scholar.google.com/scholar?q=%22Contributions+to+the+Theory+of+Practical+Quantified+Boolean+Formula+Solving%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Contributions+to+the+Theory+of+Practical+Quantified+Boolean+Formula+Solving%22&hl=en&lr=&btnG=Search

(a)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

de
pq

bf
 a

2a
ec

c
se

t-i
nn

er
 [s

ec
on

ds
]

depqbf a2aecc list [seconds]

620
500

40
9

12
0

861
850

(b)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

ai
gs

ol
ve

 a
2a

ec
c

se
t-i

nn
er

 [s
ec

on
ds

]

aigsolve a2aecc list [seconds]

557
612

0
0

0
0

851
441

(c)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

ca
qe

 a
2a

ec
c

se
t-i

nn
er

 [s
ec

on
ds

]

caqe a2aecc list [seconds]

433
316

7
42

16
1

683
903

(d)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

gh
os

tq
 a

2a
ec

c
se

t-i
nn

er
 [s

ec
on

ds
]

ghostq a2aecc list [seconds]

442
398

0
0

0
0

685
611

(e)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

qe
st

o
a2

ae
cc

 s
et

-in
ne

r [
se

co
nd

s]

qesto a2aecc list [seconds]

351
235

3
32

6
0

981
1042

(f)

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

ra
re

qs
 a

2a
ec

c
se

t-i
nn

er
 [s

ec
on

ds
]

rareqs a2aecc list [seconds]

421
211

1
0

16
0

1321
1320

(g)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

de
pq

bf
 a

2a
ec

c
se

t-i
nn

er
 [B

yt
es

]

depqbf a2aecc list [Bytes]

545
460

39
3

10
0

861
850

(h)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

ai
gs

ol
ve

 a
2a

ec
c

se
t-i

nn
er

 [B
yt

es
]

aigsolve a2aecc list [Bytes]

488
564

0
0

0
0

851
441

(i)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

ca
qe

 a
2a

ec
c

se
t-i

nn
er

 [B
yt

es
]

caqe a2aecc list [Bytes]

356
284

5
37

9
1

683
903

(j)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

gh
os

tq
 a

2a
ec

c
se

t-i
nn

er
 [B

yt
es

]

ghostq a2aecc list [Bytes]

263
282

0
0

0
0

685
611

(k)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

qe
st

o
a2

ae
cc

 s
et

-in
ne

r [
By

te
s]

qesto a2aecc list [Bytes]

304
211

1
21

4
0

981
1042

(l)

1M

10M

100M

1G

8G
n.s.

1M 10M 100M 1G 8G n.s.

ra
re

qs
 a

2a
ec

c
se

t-i
nn

er
 [B

yt
es

]

rareqs a2aecc list [Bytes]

328
178

0
0

13
0

1321
1320

Fig. 8: (a)–(f) Comparing run times for solving transformed instances in list semantics (x-axis) vs. set-inner semantics (y-axis) [seconds]:
(a) DepQBF; (b) AIGSolve; (c) CAQE; (d) GhostQ; (e) QESTO; (f) RAReQS. (g)–(l): as (a)–(f) but for memory [Bytes].

0.1

 1

 10

 100

 300

n.s.

 0.1 1 10 100 300 n.s.

qu
an

to
m

 q
 li

st
 [s

ec
on

ds
]

depqbf-a2aecc q min list [seconds]

223

133

1

1362

Fig. 9: Comparing run times for finding minimal unsatisfiable q-cores
with DepQBF-a2aecc (x-axis) with finding minimum-cardinality
sets of universal quantifiers whose weakening to existential quantifiers
results in satisfiability (y-axis) [seconds].

ternational Conference, CP 2012, Québec City, QC,
Canada, October 8-12, 2012. Proceedings. Ed. by M.
Milano. Vol. 7514. Lecture Notes in Computer Science.
Springer, 2012, pp. 647–663. ISBN: 978-3-642-33557-
0. DOI: 10.1007/978-3-642-33558-7 47 (cit. on p. 3).

[ghostq] https://www.wklieber.com/ghostq/ (cit. on p. 11).
[GMN09] E. Giunchiglia, P. Marin, and M. Narizzano. “Reason-

ing with Quantified Boolean Formulas”. In: Handbook
of Satisfiability. Ed. by A. Biere, M. Heule, H. van
Maaren, and T. Walsh. Vol. 185. Frontiers in Artifi-
cial Intelligence and Applications. IOS Press, 2009,

pp. 761–780. ISBN: 978-1-58603-929-5. DOI: 10.3233/
978-1-58603-929-5-761 (cit. on pp. 1, 2, 7).

[GMP07] É. Grégoire, B. Mazure, and C. Piette. “MUST: Provide
a Finer-Grained Explanation of Unsatisfiability”. In:
Principles and Practice of Constraint Programming
- CP 2007, 13th International Conference, CP 2007,
Providence, RI, USA, September 23-27, 2007, Proceed-
ings. Ed. by C. Bessiere. Vol. 4741. Lecture Notes in
Computer Science. Springer, 2007, pp. 317–331. ISBN:
978-3-540-74969-1. DOI: 10.1007/978-3-540-74970-
7 24 (cit. on p. 2).

[GNPT] E. Giunchiglia, M. Narizzano, L. Pulina, and A. Tac-
chella. Quantified Boolean Formulas satisfiability li-
brary (QBFLIB). http://www.qbflib.org/ (cit. on pp. 1,
8, 9).

[GR03] I. P. Gent and A. G. D. Rowley. “Encoding Connect-
4 Using Quantified Boolean Formulae”. In: Modelling
and Reformulating Constraint Satisfaction Problems:
Towards Systematisation and Automation, Second Inter-
national Workshop, Kinsale Ireland, September 2003,
Proceedings. Ed. by A. M. Frisch. 2003, pp. 78–93.
URL: https : / / www - users . cs . york . ac . uk / frisch /
Reformulation /03 /proceedings .pdf#page=84 (cit. on
pp. 1, 8).

[GW11] S. Grimm and J. Wissmann. “Elimination of Redun-
dancy in Ontologies”. In: The Semantic Web: Research
and Applications - 8th Extended Semantic Web Confer-
ence, ESWC 2011, Heraklion, Crete, Greece, May 29-
June 2, 2011, Proceedings, Part I. Ed. by G. Antoniou,

16

https://doi.org/10.1007/978-3-642-33558-7_47
https://www.wklieber.com/ghostq/
http://scholar.google.com/scholar?q=%22Reasoning+with+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Reasoning+with+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search
https://doi.org/10.3233/978-1-58603-929-5-761
https://doi.org/10.3233/978-1-58603-929-5-761
http://scholar.google.com/scholar?q=%22MUST%3A+Provide+a+Finer-Grained+Explanation+of+Unsatisfiability%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22MUST%3A+Provide+a+Finer-Grained+Explanation+of+Unsatisfiability%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-540-74970-7_24
https://doi.org/10.1007/978-3-540-74970-7_24
http://www.qbflib.org/
http://scholar.google.com/scholar?q=%22Encoding+Connect-4+Using+Quantified+Boolean+Formulae%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Encoding+Connect-4+Using+Quantified+Boolean+Formulae%22&hl=en&lr=&btnG=Search
https://www-users.cs.york.ac.uk/frisch/Reformulation/03/proceedings.pdf#page=84
https://www-users.cs.york.ac.uk/frisch/Reformulation/03/proceedings.pdf#page=84
http://scholar.google.com/scholar?q=%22Elimination+of+Redundancy+in+Ontologies%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Elimination+of+Redundancy+in+Ontologies%22&hl=en&lr=&btnG=Search

M. Grobelnik, E. P. B. Simperl, et al. Vol. 6643.
Lecture Notes in Computer Science. Springer, 2011,
pp. 260–274. ISBN: 978-3-642-21033-4. DOI: 10.1007/
978-3-642-21034-1 18 (cit. on p. 2).

[HPS08] M. Horridge, B. Parsia, and U. Sattler. “Laconic and
Precise Justifications in OWL”. In: The Semantic Web
- ISWC 2008, 7th International Semantic Web Confer-
ence, ISWC 2008, Karlsruhe, Germany, October 26-
30, 2008. Proceedings. Ed. by A. P. Sheth, S. Staab,
M. Dean, et al. Vol. 5318. Lecture Notes in Computer
Science. Springer, 2008, pp. 323–338. ISBN: 978-3-
540-88563-4. DOI: 10.1007/978- 3- 540- 88564- 1 21
(cit. on p. 2).

[IJM13] A. Ignatiev, M. Janota, and J. Marques-Silva. “Quan-
tified Maximum Satisfiability: A Core-Guided Ap-
proach”. In: Theory and Applications of Satisfiability
Testing - SAT 2013 - 16th International Conference,
Helsinki, Finland, July 8-12, 2013. Proceedings. Ed. by
M. Järvisalo and A. V. Gelder. Vol. 7962. Lecture Notes
in Computer Science. Springer, 2013, pp. 250–266.
ISBN: 978-3-642-39070-8. DOI: 10.1007/978- 3- 642-
39071-5 19 (cit. on pp. 1, 2).

[JKMC12] M. Janota, W. Klieber, J. Marques-Silva, and E. M.
Clarke. “Solving QBF with Counterexample Guided
Refinement”. In: Theory and Applications of Satisfiabil-
ity Testing - SAT 2012 - 15th International Conference,
Trento, Italy, June 17-20, 2012. Proceedings. Ed. by
A. Cimatti and R. Sebastiani. Vol. 7317. Lecture Notes
in Computer Science. Springer, 2012, pp. 114–128.
ISBN: 978-3-642-31611-1. DOI: 10.1007/978- 3- 642-
31612-8 10 (cit. on p. 11).

[JM15] M. Janota and J. Marques-Silva. “Solving QBF by
Clause Selection”. In: Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelli-
gence, IJCAI 2015, Buenos Aires, Argentina, July 25-
31, 2015. Ed. by Q. Yang and M. Wooldridge. AAAI
Press, 2015, pp. 325–331. ISBN: 978-1-57735-738-4.
URL: http://ijcai.org/Abstract/15/052 (cit. on p. 11).

[KB09] H. Kleine Büning and U. Bubeck. “Theory of Quanti-
fied Boolean Formulas”. In: Handbook of Satisfiability.
Ed. by A. Biere, M. Heule, H. van Maaren, and T.
Walsh. Vol. 185. Frontiers in Artificial Intelligence and
Applications. IOS Press, 2009, pp. 735–760. ISBN: 978-
1-58603-929-5. DOI: 10.3233/978-1-58603-929-5-735
(cit. on p. 2).

[KKF95] H. Kleine Büning, M. Karpinski, and A. Flögel. “Reso-
lution for Quantified Boolean Formulas”. In: Inf. Com-
put. 117.1 (1995), pp. 12–18. DOI: 10.1006/inco.1995.
1025 (cit. on p. 3).

[KLM06] O. Kullmann, I. Lynce, and J. Marques-Silva. “Cate-
gorisation of Clauses in Conjunctive Normal Forms:
Minimally Unsatisfiable Sub-clause-sets and the Lean
Kernel”. In: Theory and Applications of Satisfiability
Testing - SAT 2006, 9th International Conference, Seat-
tle, WA, USA, August 12-15, 2006, Proceedings. Ed. by
A. Biere and C. P. Gomes. Vol. 4121. Lecture Notes in
Computer Science. Springer, 2006, pp. 22–35. ISBN:
3-540-37206-7. DOI: 10 . 1007 / 11814948 4 (cit. on
pp. 1–3, 6).

[KPG06] A. Kalyanpur, B. Parsia, and B. C. Grau. “Beyond
Asserted Axioms: Fine-Grain Justifications for OWL-
DL Entailments”. In: Proceedings of the 2006 Inter-
national Workshop on Description Logics (DL2006),
Windermere, Lake District, UK, May 30 - June 1, 2006.
Ed. by B. Parsia, U. Sattler, and D. Toman. Vol. 189.
CEUR Workshop Proceedings. CEUR-WS.org, 2006.

URL: http:/ /ceur- ws.org/Vol- 189/submission 30.pdf
(cit. on p. 2).

[KPSG06] A. Kalyanpur, B. Parsia, E. Sirin, and B. C. Grau. “Re-
pairing Unsatisfiable Concepts in OWL Ontologies”. In:
The Semantic Web: Research and Applications, 3rd Eu-
ropean Semantic Web Conference, ESWC 2006, Budva,
Montenegro, June 11-14, 2006, Proceedings. Ed. by
Y. Sure and J. Domingue. Vol. 4011. Lecture Notes in
Computer Science. Springer, 2006, pp. 170–184. ISBN:
3-540-34544-2. DOI: 10 . 1007 / 11762256 15 (cit. on
p. 2).

[KZ06] H. Kleine Büning and X. Zhao. “Minimal False Quanti-
fied Boolean Formulas”. In: Theory and Applications of
Satisfiability Testing - SAT 2006, 9th International Con-
ference, Seattle, WA, USA, August 12-15, 2006, Pro-
ceedings. Ed. by A. Biere and C. P. Gomes. Vol. 4121.
Lecture Notes in Computer Science. Springer, 2006,
pp. 339–352. ISBN: 3-540-37206-7. DOI: 10 . 1007 /
11814948 32 (cit. on pp. 1, 4).

[LB11] F. Lonsing and A. Biere. “Failed Literal Detection for
QBF”. In: Theory and Applications of Satisfiability Test-
ing - SAT 2011 - 14th International Conference, SAT
2011, Ann Arbor, MI, USA, June 19-22, 2011. Proceed-
ings. Ed. by K. A. Sakallah and L. Simon. Vol. 6695.
Lecture Notes in Computer Science. Springer, 2011,
pp. 259–272. ISBN: 978-3-642-21580-3. DOI: 10.1007/
978-3-642-21581-0 21 (cit. on p. 1).

[LE15] F. Lonsing and U. Egly. “Incrementally Computing
Minimal Unsatisfiable Cores of QBFs via a Clause
Group Solver API”. In: Theory and Applications of Sat-
isfiability Testing - SAT 2015 - 18th International Con-
ference, Austin, TX, USA, September 24-27, 2015, Pro-
ceedings. Ed. by M. Heule and S. Weaver. Vol. 9340.
Lecture Notes in Computer Science. Springer, 2015,
pp. 191–198. ISBN: 978-3-319-24317-7. DOI: 10.1007/
978-3-319-24318-4 14 (cit. on pp. 1, 3, 6, 8).

[LE17] F. Lonsing and U. Egly. “DepQBF 6.0: A Search-
Based QBF Solver Beyond Traditional QCDCL”. In:
Automated Deduction - CADE 26 - 26th International
Conference on Automated Deduction, Gothenburg, Swe-
den, August 6-11, 2017, Proceedings. Ed. by L. de
Moura. Vol. 10395. Lecture Notes in Computer Science.
Springer, 2017, pp. 371–384. ISBN: 978-3-319-63045-
8. DOI: 10.1007/978-3-319-63046-5 23 (cit. on pp. 1,
8, 11).

[LES16] F. Lonsing, U. Egly, and M. Seidl. “Q-Resolution with
Generalized Axioms”. In: Theory and Applications of
Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceed-
ings. Ed. by N. Creignou and D. L. Berre. Vol. 9710.
Lecture Notes in Computer Science. Springer, 2016,
pp. 435–452. ISBN: 978-3-319-40969-6. DOI: 10.1007/
978-3-319-40970-2 27 (cit. on p. 1).

[LPF+06] N. Leone, G. Pfeifer, W. Faber, et al. “The DLV system
for knowledge representation and reasoning”. In: ACM
Trans. Comput. Log. 7.3 (2006), pp. 499–562. DOI: 10.
1145/1149114.1149117 (cit. on p. 8).

[LPSV06] S. C. Lam, J. Z. Pan, D. H. Sleeman, and W. W.
Vasconcelos. “A Fine-Grained Approach to Resolving
Unsatisfiable Ontologies”. In: 2006 IEEE / WIC /
ACM International Conference on Web Intelligence (WI
2006), 18-22 December 2006, Hong Kong, China. IEEE
Computer Society, 2006, pp. 428–434. ISBN: 0-7695-
2747-7. DOI: 10.1109/WI.2006.11 (cit. on p. 2).

[LS04] I. Lynce and J. P. M. Silva. “On Computing Minimum
Unsatisfiable Cores”. In: SAT 2004 - The Seventh In-
ternational Conference on Theory and Applications of

17

https://doi.org/10.1007/978-3-642-21034-1_18
https://doi.org/10.1007/978-3-642-21034-1_18
http://scholar.google.com/scholar?q=%22Laconic+and+Precise+Justifications+in+OWL%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Laconic+and+Precise+Justifications+in+OWL%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-540-88564-1_21
http://scholar.google.com/scholar?q=%22Quantified+Maximum+Satisfiability%3A+A+Core-Guided+Approach%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Quantified+Maximum+Satisfiability%3A+A+Core-Guided+Approach%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Quantified+Maximum+Satisfiability%3A+A+Core-Guided+Approach%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-642-39071-5_19
https://doi.org/10.1007/978-3-642-39071-5_19
http://scholar.google.com/scholar?q=%22Solving+QBF+with+Counterexample+Guided+Refinement%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Solving+QBF+with+Counterexample+Guided+Refinement%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-642-31612-8_10
https://doi.org/10.1007/978-3-642-31612-8_10
http://scholar.google.com/scholar?q=%22Solving+QBF+by+Clause+Selection%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Solving+QBF+by+Clause+Selection%22&hl=en&lr=&btnG=Search
http://ijcai.org/Abstract/15/052
http://scholar.google.com/scholar?q=%22Theory+of+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Theory+of+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search
https://doi.org/10.3233/978-1-58603-929-5-735
http://scholar.google.com/scholar?q=%22Resolution+for+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Resolution+for+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search
https://doi.org/10.1006/inco.1995.1025
https://doi.org/10.1006/inco.1995.1025
http://scholar.google.com/scholar?q=%22Categorisation+of+Clauses+in+Conjunctive+Normal+Forms%3A+Minimally+Unsatisfiable+Sub-clause-sets+and+the+Lean+Kernel%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Categorisation+of+Clauses+in+Conjunctive+Normal+Forms%3A+Minimally+Unsatisfiable+Sub-clause-sets+and+the+Lean+Kernel%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Categorisation+of+Clauses+in+Conjunctive+Normal+Forms%3A+Minimally+Unsatisfiable+Sub-clause-sets+and+the+Lean+Kernel%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Categorisation+of+Clauses+in+Conjunctive+Normal+Forms%3A+Minimally+Unsatisfiable+Sub-clause-sets+and+the+Lean+Kernel%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/11814948_4
http://scholar.google.com/scholar?q=%22Beyond+Asserted+Axioms%3A+Fine-Grain+Justifications+for+OWL-DL+Entailments%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Beyond+Asserted+Axioms%3A+Fine-Grain+Justifications+for+OWL-DL+Entailments%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Beyond+Asserted+Axioms%3A+Fine-Grain+Justifications+for+OWL-DL+Entailments%22&hl=en&lr=&btnG=Search
http://ceur-ws.org/Vol-189/submission_30.pdf
http://scholar.google.com/scholar?q=%22Repairing+Unsatisfiable+Concepts+in+OWL+Ontologies%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Repairing+Unsatisfiable+Concepts+in+OWL+Ontologies%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/11762256_15
http://scholar.google.com/scholar?q=%22Minimal+False+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Minimal+False+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/11814948_32
https://doi.org/10.1007/11814948_32
http://scholar.google.com/scholar?q=%22Failed+Literal+Detection+for+QBF%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Failed+Literal+Detection+for+QBF%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-642-21581-0_21
https://doi.org/10.1007/978-3-642-21581-0_21
http://scholar.google.com/scholar?q=%22Incrementally+Computing+Minimal+Unsatisfiable+Cores+of+QBFs+via+a+Clause+Group+Solver+API%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Incrementally+Computing+Minimal+Unsatisfiable+Cores+of+QBFs+via+a+Clause+Group+Solver+API%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Incrementally+Computing+Minimal+Unsatisfiable+Cores+of+QBFs+via+a+Clause+Group+Solver+API%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-319-24318-4_14
https://doi.org/10.1007/978-3-319-24318-4_14
http://scholar.google.com/scholar?q=%22DepQBF+6.0%3A+A+Search-Based+QBF+Solver+Beyond+Traditional+QCDCL%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22DepQBF+6.0%3A+A+Search-Based+QBF+Solver+Beyond+Traditional+QCDCL%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-319-63046-5_23
http://scholar.google.com/scholar?q=%22Q-Resolution+with+Generalized+Axioms%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Q-Resolution+with+Generalized+Axioms%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-319-40970-2_27
https://doi.org/10.1007/978-3-319-40970-2_27
http://scholar.google.com/scholar?q=%22The+DLV+system+for+knowledge+representation+and+reasoning%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22The+DLV+system+for+knowledge+representation+and+reasoning%22&hl=en&lr=&btnG=Search
https://doi.org/10.1145/1149114.1149117
https://doi.org/10.1145/1149114.1149117
http://scholar.google.com/scholar?q=%22A+Fine-Grained+Approach+to+Resolving+Unsatisfiable+Ontologies%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22A+Fine-Grained+Approach+to+Resolving+Unsatisfiable+Ontologies%22&hl=en&lr=&btnG=Search
https://doi.org/10.1109/WI.2006.11
http://scholar.google.com/scholar?q=%22On+Computing+Minimum+Unsatisfiable+Cores%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22On+Computing+Minimum+Unsatisfiable+Cores%22&hl=en&lr=&btnG=Search

Satisfiability Testing, 10-13 May 2004, Vancouver, BC,
Canada, Online Proceedings. 2004. URL: http://www.
satisfiability. org /SAT04 /programme/110 .pdf (cit. on
p. 3).

[LS08] M. H. Liffiton and K. A. Sakallah. “Algorithms for
Computing Minimal Unsatisfiable Subsets of Con-
straints”. In: J. Autom. Reasoning 40.1 (2008), pp. 1–33.
DOI: 10.1007/s10817-007-9084-z (cit. on p. 6).

[Mar12] J. Marques-Silva. “Computing Minimally Unsatisfi-
able Subformulas: State of the Art and Future Direc-
tions”. In: Multiple-Valued Logic and Soft Comput-
ing 19.1-3 (2012), pp. 163–183. URL: http : / / www.
oldcitypublishing . com / MVLSC / MVLSCabstracts /
MVLSC18.5-6abstracts/MVLSCv18n5-6p617-636Li.
html (cit. on pp. 2, 8).

[MJ14] J. Marques-Silva and M. Janota. “Computing Minimal
Sets on Propositional Formulae I: Problems & Reduc-
tions”. In: CoRR abs/1402.3011 (2014). URL: http : / /
arxiv.org/abs/1402.3011 (cit. on p. 2).

[Nad10] A. Nadel. “Boosting minimal unsatisfiable core extrac-
tion”. In: Proceedings of 10th International Conference
on Formal Methods in Computer-Aided Design, FM-
CAD 2010, Lugano, Switzerland, October 20-23. Ed. by
R. Bloem and N. Sharygina. IEEE, 2010, pp. 221–229.
ISBN: 978-1-4577-0734-6. URL: http://ieeexplore.ieee.
org/document/5770953/ (cit. on p. 6).

[NRS14] A. Nadel, V. Ryvchin, and O. Strichman. “Acceler-
ated Deletion-based Extraction of Minimal Unsatisfi-
able Cores”. In: JSAT 9 (2014), pp. 27–51. URL: https:
//satassociation.org/jsat/index.php/jsat/article/view/116
(cit. on p. 6).

[PQ13] I. Pill and T. Quaritsch. “Behavioral Diagnosis of LTL
Specifications at Operator Level”. In: IJCAI 2013, Pro-
ceedings of the 23rd International Joint Conference on
Artificial Intelligence, Beijing, China, August 3-9, 2013.
Ed. by F. Rossi. IJCAI/AAAI, 2013, pp. 1053–1059.
ISBN: 978-1-57735-633-2. URL: http://www.aaai.org/
ocs/index.php/IJCAI/IJCAI13/paper/view/6595 (cit. on
p. 2).

[PS10] F. Pigorsch and C. Scholl. “An AIG-Based QBF-
solver using SAT for preprocessing”. In: Proceedings
of the 47th Design Automation Conference, DAC 2010,
Anaheim, California, USA, July 13-18, 2010. Ed. by
S. S. Sapatnekar. ACM, 2010, pp. 170–175. ISBN: 978-
1-4503-0002-5. DOI: 10.1145/1837274.1837318 (cit. on
p. 11).

[PV03] G. Pan and M. Y. Vardi. “Optimizing a BDD-Based
Modal Solver”. In: Automated Deduction - CADE-19,
19th International Conference on Automated Deduction
Miami Beach, FL, USA, July 28 - August 2, 2003,
Proceedings. Ed. by F. Baader. Vol. 2741. Lecture
Notes in Computer Science. Springer, 2003, pp. 75–89.
ISBN: 3-540-40559-3. DOI: 10.1007/978-3-540-45085-
6 7 (cit. on pp. 1, 8).

[qbfdd] https://github.com/aniemetz/qbfdd (cit. on p. 1).
[qesto] http://sat.inesc-id.pt/∼mikolas/sw/qesto/ (cit. on p. 11).
[rareqs] http://sat.inesc-id.pt/∼mikolas/sw/areqs/ (cit. on p. 11).
[Rei87] R. Reiter. “A Theory of Diagnosis from First Princi-

ples”. In: Artif. Intell. 32.1 (1987), pp. 57–95. DOI:
10.1016/0004-3702(87)90062-2 (cit. on pp. 1, 6).

[Rin07] J. Rintanen. “Asymptotically Optimal Encodings of
Conformant Planning in QBF”. In: Proceedings of the
Twenty-Second AAAI Conference on Artificial Intelli-
gence, July 22-26, 2007, Vancouver, British Columbia,
Canada. AAAI Press, 2007, pp. 1045–1050. ISBN: 978-
1-57735-323-2. URL: http : / / www. aaai . org / Library /
AAAI/2007/aaai07-166.php (cit. on pp. 1, 8).

[Rin99] J. Rintanen. “Constructing Conditional Plans by a
Theorem-Prover”. In: J. Artif. Intell. Res. 10 (1999),
pp. 323–352. DOI: 10.1613/jair.591 (cit. on p. 1).

[RPSB12] S. Reimer, F. Pigorsch, C. Scholl, and B. Becker.
“Enhanced Integration of QBF Solving Techniques”.
In: Methoden und Beschreibungssprachen zur Model-
lierung und Verifikation von Schaltungen und Systemen
(MBMV), Kaiserslautern, Germany, March 5-7, 2012.
Ed. by J. Brandt and K. Schneider. Verlag Dr. Kovac,
2012, pp. 133–143 (cit. on pp. 2, 13).

[RSMB14] S. Reimer, M. Sauer, P. Marin, and B. Becker. “QBF
with Soft Variables”. In: ECEASST 70 (2014). URL:
http://journal.ub.tu-berlin.de/eceasst/article/view/973
(cit. on pp. 1, 2, 13).

[SB01] C. Scholl and B. Becker. “Checking Equivalence for
Partial Implementations”. In: Proceedings of the 38th
Design Automation Conference, DAC 2001, Las Vegas,
NV, USA, June 18-22, 2001. ACM, 2001, pp. 238–243.
ISBN: 1-58113-297-2. DOI: 10 . 1145 / 378239 . 378471
(cit. on p. 1).

[SC03] S. Schlobach and R. Cornet. “Non-Standard Reason-
ing Services for the Debugging of Description Logic
Terminologies”. In: IJCAI-03, Proceedings of the Eigh-
teenth International Joint Conference on Artificial Intel-
ligence, Acapulco, Mexico, August 9-15, 2003. Ed. by
G. Gottlob and T. Walsh. Morgan Kaufmann, 2003,
pp. 355–362. URL: http : / / ijcai . org / Proceedings / 03 /
Papers/053.pdf (cit. on pp. 1, 3).

[Sch05] S. Schlobach. “Diagnosing Terminologies”. In: Pro-
ceedings, The Twentieth National Conference on Ar-
tificial Intelligence and the Seventeenth Innovative Ap-
plications of Artificial Intelligence Conference, July 9-
13, 2005, Pittsburgh, Pennsylvania, USA. Ed. by M. M.
Veloso and S. Kambhampati. AAAI Press / The MIT
Press, 2005, pp. 670–675. ISBN: 1-57735-236-X. URL:
http://www.aaai.org/Library/AAAI/2005/aaai05-105.
php (cit. on pp. 1, 6).

[Sch12] V. Schuppan. “Towards a notion of unsatisfiable and
unrealizable cores for LTL”. In: Sci. Comput. Program.
77.7-8 (2012), pp. 908–939. DOI: 10.1016/j.scico.2010.
11.004 (cit. on pp. 1–3).

[Sch16a] V. Schuppan. “Enhancing unsatisfiable cores for LTL
with information on temporal relevance”. In: Theor.
Comput. Sci. 655, Part B (2016), pp. 155–192. DOI:
10.1016/j.tcs.2016.01.014 (cit. on p. 2).

[Sch16b] V. Schuppan. “Extracting unsatisfiable cores for LTL
via temporal resolution”. In: Acta Inf. 53.3 (2016),
pp. 247–299. DOI: 10.1007/s00236-015-0242-1 (cit. on
p. 2).

[Sla14] J. Slaney. “Set-theoretic duality: A fundamental feature
of combinatorial optimisation”. In: ECAI 2014 - 21st
European Conference on Artificial Intelligence, 18-22
August 2014, Prague, Czech Republic - Including Pres-
tigious Applications of Intelligent Systems (PAIS 2014).
Ed. by T. Schaub, G. Friedrich, and B. O’Sullivan.
Vol. 263. Frontiers in Artificial Intelligence and Ap-
plications. IOS Press, 2014, pp. 843–848. ISBN: 978-1-
61499-418-3. DOI: 10.3233/978-1-61499-419-0-843
(cit. on pp. 1, 6).

[SM73] L. J. Stockmeyer and A. R. Meyer. “Word Problems
Requiring Exponential Time: Preliminary Report”. In:
Proceedings of the 5th Annual ACM Symposium on
Theory of Computing, April 30 - May 2, 1973, Austin,
Texas, USA. Ed. by A. V. Aho, A. Borodin, R. L.
Constable, et al. ACM, 1973, pp. 1–9. DOI: 10.1145/
800125.804029 (cit. on p. 2).

18

http://www.satisfiability.org/SAT04/programme/110.pdf
http://www.satisfiability.org/SAT04/programme/110.pdf
http://scholar.google.com/scholar?q=%22Algorithms+for+Computing+Minimal+Unsatisfiable+Subsets+of+Constraints%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Algorithms+for+Computing+Minimal+Unsatisfiable+Subsets+of+Constraints%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Algorithms+for+Computing+Minimal+Unsatisfiable+Subsets+of+Constraints%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/s10817-007-9084-z
http://scholar.google.com/scholar?q=%22Computing+Minimally+Unsatisfiable+Subformulas%3A+State+of+the+Art+and+Future+Directions%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Computing+Minimally+Unsatisfiable+Subformulas%3A+State+of+the+Art+and+Future+Directions%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Computing+Minimally+Unsatisfiable+Subformulas%3A+State+of+the+Art+and+Future+Directions%22&hl=en&lr=&btnG=Search
http://www.oldcitypublishing.com/MVLSC/MVLSCabstracts/MVLSC18.5-6abstracts/MVLSCv18n5-6p617-636Li.html
http://www.oldcitypublishing.com/MVLSC/MVLSCabstracts/MVLSC18.5-6abstracts/MVLSCv18n5-6p617-636Li.html
http://www.oldcitypublishing.com/MVLSC/MVLSCabstracts/MVLSC18.5-6abstracts/MVLSCv18n5-6p617-636Li.html
http://www.oldcitypublishing.com/MVLSC/MVLSCabstracts/MVLSC18.5-6abstracts/MVLSCv18n5-6p617-636Li.html
http://scholar.google.com/scholar?q=%22Computing+Minimal+Sets+on+Propositional+Formulae+I%3A+Problems+&+Reductions%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Computing+Minimal+Sets+on+Propositional+Formulae+I%3A+Problems+&+Reductions%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Computing+Minimal+Sets+on+Propositional+Formulae+I%3A+Problems+&+Reductions%22&hl=en&lr=&btnG=Search
http://arxiv.org/abs/1402.3011
http://arxiv.org/abs/1402.3011
http://scholar.google.com/scholar?q=%22Boosting+minimal+unsatisfiable+core+extraction%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Boosting+minimal+unsatisfiable+core+extraction%22&hl=en&lr=&btnG=Search
http://ieeexplore.ieee.org/document/5770953/
http://ieeexplore.ieee.org/document/5770953/
http://scholar.google.com/scholar?q=%22Accelerated+Deletion-based+Extraction+of+Minimal+Unsatisfiable+Cores%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Accelerated+Deletion-based+Extraction+of+Minimal+Unsatisfiable+Cores%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Accelerated+Deletion-based+Extraction+of+Minimal+Unsatisfiable+Cores%22&hl=en&lr=&btnG=Search
https://satassociation.org/jsat/index.php/jsat/article/view/116
https://satassociation.org/jsat/index.php/jsat/article/view/116
http://scholar.google.com/scholar?q=%22Behavioral+Diagnosis+of+LTL+Specifications+at+Operator+Level%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Behavioral+Diagnosis+of+LTL+Specifications+at+Operator+Level%22&hl=en&lr=&btnG=Search
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6595
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6595
http://scholar.google.com/scholar?q=%22An+AIG-Based+QBF-solver+using+SAT+for+preprocessing%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22An+AIG-Based+QBF-solver+using+SAT+for+preprocessing%22&hl=en&lr=&btnG=Search
https://doi.org/10.1145/1837274.1837318
http://scholar.google.com/scholar?q=%22Optimizing+a+BDD-Based+Modal+Solver%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Optimizing+a+BDD-Based+Modal+Solver%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-540-45085-6_7
https://doi.org/10.1007/978-3-540-45085-6_7
https://github.com/aniemetz/qbfdd
http://sat.inesc-id.pt/~mikolas/sw/qesto/
http://sat.inesc-id.pt/~mikolas/sw/areqs/
http://scholar.google.com/scholar?q=%22A+Theory+of+Diagnosis+from+First+Principles%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22A+Theory+of+Diagnosis+from+First+Principles%22&hl=en&lr=&btnG=Search
https://doi.org/10.1016/0004-3702(87)90062-2
http://scholar.google.com/scholar?q=%22Asymptotically+Optimal+Encodings+of+Conformant+Planning+in+QBF%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Asymptotically+Optimal+Encodings+of+Conformant+Planning+in+QBF%22&hl=en&lr=&btnG=Search
http://www.aaai.org/Library/AAAI/2007/aaai07-166.php
http://www.aaai.org/Library/AAAI/2007/aaai07-166.php
http://scholar.google.com/scholar?q=%22Constructing+Conditional+Plans+by+a+Theorem-Prover%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Constructing+Conditional+Plans+by+a+Theorem-Prover%22&hl=en&lr=&btnG=Search
https://doi.org/10.1613/jair.591
http://scholar.google.com/scholar?q=%22Enhanced+Integration+of+QBF+Solving+Techniques%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22QBF+with+Soft+Variables%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22QBF+with+Soft+Variables%22&hl=en&lr=&btnG=Search
http://journal.ub.tu-berlin.de/eceasst/article/view/973
http://scholar.google.com/scholar?q=%22Checking+Equivalence+for+Partial+Implementations%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Checking+Equivalence+for+Partial+Implementations%22&hl=en&lr=&btnG=Search
https://doi.org/10.1145/378239.378471
http://scholar.google.com/scholar?q=%22Non-Standard+Reasoning+Services+for+the+Debugging+of+Description+Logic+Terminologies%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Non-Standard+Reasoning+Services+for+the+Debugging+of+Description+Logic+Terminologies%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Non-Standard+Reasoning+Services+for+the+Debugging+of+Description+Logic+Terminologies%22&hl=en&lr=&btnG=Search
http://ijcai.org/Proceedings/03/Papers/053.pdf
http://ijcai.org/Proceedings/03/Papers/053.pdf
http://scholar.google.com/scholar?q=%22Diagnosing+Terminologies%22&hl=en&lr=&btnG=Search
http://www.aaai.org/Library/AAAI/2005/aaai05-105.php
http://www.aaai.org/Library/AAAI/2005/aaai05-105.php
http://scholar.google.com/scholar?q=%22Towards+a+notion+of+unsatisfiable+and+unrealizable+cores+for+LTL%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Towards+a+notion+of+unsatisfiable+and+unrealizable+cores+for+LTL%22&hl=en&lr=&btnG=Search
https://doi.org/10.1016/j.scico.2010.11.004
https://doi.org/10.1016/j.scico.2010.11.004
http://scholar.google.com/scholar?q=%22Enhancing+unsatisfiable+cores+for+LTL+with+information+on+temporal+relevance%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Enhancing+unsatisfiable+cores+for+LTL+with+information+on+temporal+relevance%22&hl=en&lr=&btnG=Search
https://doi.org/10.1016/j.tcs.2016.01.014
http://scholar.google.com/scholar?q=%22Extracting+unsatisfiable+cores+for+LTL+via+temporal+resolution%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Extracting+unsatisfiable+cores+for+LTL+via+temporal+resolution%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/s00236-015-0242-1
http://scholar.google.com/scholar?q=%22Set-theoretic+duality%3A+A+fundamental+feature+of+combinatorial+optimisation%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Set-theoretic+duality%3A+A+fundamental+feature+of+combinatorial+optimisation%22&hl=en&lr=&btnG=Search
https://doi.org/10.3233/978-1-61499-419-0-843
http://scholar.google.com/scholar?q=%22Word+Problems+Requiring+Exponential+Time%3A+Preliminary+Report%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Word+Problems+Requiring+Exponential+Time%3A+Preliminary+Report%22&hl=en&lr=&btnG=Search
https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/800125.804029

[SSJ+03] I. Shlyakhter, R. Seater, D. Jackson, et al. “Debugging
Overconstrained Declarative Models Using Unsatisfi-
able Cores”. In: 18th IEEE International Conference
on Automated Software Engineering (ASE 2003), 6-
10 October 2003, Montreal, Canada. IEEE Computer
Society, 2003, pp. 94–105. ISBN: 0-7695-2035-9. DOI:
10.1109/ASE.2003.1240298 (cit. on pp. 1–3).

[Sto76] L. J. Stockmeyer. “The Polynomial-Time Hierarchy”.
In: Theor. Comput. Sci. 3.1 (1976), pp. 1–22. DOI: 10.
1016/0304-3975(76)90061-X (cit. on p. 2).

[TCJ08] E. Torlak, F. S. Chang, and D. Jackson. “Finding Mini-
mal Unsatisfiable Cores of Declarative Specifications”.
In: FM 2008: Formal Methods, 15th International Sym-
posium on Formal Methods, Turku, Finland, May 26-30,
2008, Proceedings. Ed. by J. Cuéllar, T. S. E. Maibaum,
and K. Sere. Vol. 5014. Lecture Notes in Computer
Science. Springer, 2008, pp. 326–341. ISBN: 978-3-
540-68235-6. DOI: 10.1007/978- 3- 540- 68237- 0 23
(cit. on p. 3).

[Ten17] L. Tentrup. “On Expansion and Resolution in CEGAR
Based QBF Solving”. In: Computer Aided Verification -
29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part II. Ed.
by R. Majumdar and V. Kuncak. Vol. 10427. Lecture
Notes in Computer Science. Springer, 2017, pp. 475–
494. ISBN: 978-3-319-63389-3. DOI: 10.1007/978- 3-
319-63390-9 25 (cit. on p. 11).

[Tur02] H. Turner. “Polynomial-Length Planning Spans the
Polynomial Hierarchy”. In: Logics in Artificial Intel-
ligence, European Conference, JELIA 2002, Cosenza,
Italy, September, 23-26, Proceedings. Ed. by S. Flesca,
S. Greco, N. Leone, and G. Ianni. Vol. 2424. Lecture
Notes in Computer Science. Springer, 2002, pp. 111–
124. ISBN: 3-540-44190-5. DOI: 10.1007/3-540-45757-
7 10 (cit. on p. 1).

[Wra76] C. Wrathall. “Complete Sets and the Polynomial-Time
Hierarchy”. In: Theor. Comput. Sci. 3.1 (1976), pp. 23–
33. DOI: 10.1016/0304-3975(76)90062-1 (cit. on p. 2).

[YM05] Y. Yu and S. Malik. “Validating the result of a
Quantified Boolean Formula (QBF) solver: theory and
practice”. In: Proceedings of the 2005 Conference on
Asia South Pacific Design Automation, ASP-DAC 2005,
Shanghai, China, January 18-21, 2005. Ed. by T. Tang.
ACM Press, 2005, pp. 1047–1051. ISBN: 0-7803-8737-
6. DOI: 10.1145/1120725.1120821 (cit. on pp. 1, 3).

[ZSM03] H. Zhang, H. Shen, and F. Manyà. “Exact Algorithms
for MAX-SAT”. In: Electr. Notes Theor. Comput. Sci.
86.1 (2003), pp. 190–203. DOI: 10 . 1016 / S1571 -
0661(04)80663-7 (cit. on p. 2).

19

http://scholar.google.com/scholar?q=%22Debugging+Overconstrained+Declarative+Models+Using+Unsatisfiable+Cores%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Debugging+Overconstrained+Declarative+Models+Using+Unsatisfiable+Cores%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Debugging+Overconstrained+Declarative+Models+Using+Unsatisfiable+Cores%22&hl=en&lr=&btnG=Search
https://doi.org/10.1109/ASE.2003.1240298
http://scholar.google.com/scholar?q=%22The+Polynomial-Time+Hierarchy%22&hl=en&lr=&btnG=Search
https://doi.org/10.1016/0304-3975(76)90061-X
https://doi.org/10.1016/0304-3975(76)90061-X
http://scholar.google.com/scholar?q=%22Finding+Minimal+Unsatisfiable+Cores+of+Declarative+Specifications%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Finding+Minimal+Unsatisfiable+Cores+of+Declarative+Specifications%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-540-68237-0_23
http://scholar.google.com/scholar?q=%22On+Expansion+and+Resolution+in+CEGAR+Based+QBF+Solving%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22On+Expansion+and+Resolution+in+CEGAR+Based+QBF+Solving%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-319-63390-9_25
https://doi.org/10.1007/978-3-319-63390-9_25
http://scholar.google.com/scholar?q=%22Polynomial-Length+Planning+Spans+the+Polynomial+Hierarchy%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Polynomial-Length+Planning+Spans+the+Polynomial+Hierarchy%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/3-540-45757-7_10
https://doi.org/10.1007/3-540-45757-7_10
http://scholar.google.com/scholar?q=%22Complete+Sets+and+the+Polynomial-Time+Hierarchy%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Complete+Sets+and+the+Polynomial-Time+Hierarchy%22&hl=en&lr=&btnG=Search
https://doi.org/10.1016/0304-3975(76)90062-1
http://scholar.google.com/scholar?q=%22Validating+the+result+of+a+Quantified+Boolean+Formula+(QBF)+solver%3A+theory+and+practice%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Validating+the+result+of+a+Quantified+Boolean+Formula+(QBF)+solver%3A+theory+and+practice%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Validating+the+result+of+a+Quantified+Boolean+Formula+(QBF)+solver%3A+theory+and+practice%22&hl=en&lr=&btnG=Search
https://doi.org/10.1145/1120725.1120821
http://scholar.google.com/scholar?q=%22Exact+Algorithms+for+MAX-SAT%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Exact+Algorithms+for+MAX-SAT%22&hl=en&lr=&btnG=Search
https://doi.org/10.1016/S1571-0661(04)80663-7
https://doi.org/10.1016/S1571-0661(04)80663-7

APPENDIX A
SELECTION OF BENCHMARKS

We briefly describe how we obtained our set of benchmarks instances. There were three main goals.
1) The set of benchmarks instances should be randomized at the lowest (leaf-) level of the benchmark family tree.
2) The set of benchmarks instances should give equal weight to the immediate subfamilies of each (inner) node of the

benchmark family tree, as long as each subfamily has enough members.
3) It should be possible to continue supplying slices of benchmark instances to the server running the experiments until the

time for running the experiments is up — without knowing in advance when that is or how many slices will be run until
then.

To achieve these goals we created a queue of benchmark instances as described below that, when traversed from head to any
point between head and tail, ensures the first two goals to a reasonable extent. We then split the benchmark queue into slices
of size 25 and fed the slices in ascending order to the server running the experiments. We ran slices 1 through 214. Finally,
we removed 8 benchmark instances in which at least one variable occurred both universally and existentially quantified in the
prefix. For full details we refer to our experimental data, which includes the shell scripts used, and which is available from
http://schuppan.de/viktor/ictai18/.

Figure 10 shows the algorithm used to generate the queue of benchmark instances. It is called with the root node of the
benchmark family tree as argument. In that tree each node represents a (sub)family of benchmark instances; a leaf node holds
a set of benchmark instances; and an inner node holds no benchmark instances but has a non-emtpy set of child nodes. The
algorithm uses the following subroutines.
is_leaf_node(node n) returns true iff n is a leaf node.
get_instances(node n) returns the set of benchmark instances of leaf node n.
number_of_subfamilies(node n) returns the number of subfamilies of node n.
get_subfamily(node n, natural i) returns the node corresponding to the i-th subfamily of node n.
empty_queue() returns the empty queue.
dequeue(queue q) takes a non-empty queue q, dequeues its first element, and returns that element.
enqueue(queue q, element e) takes a queue q and an element e and enqueues e to q.
enqueue_queue(queue q1, queue q2) takes two queues q1 and q2 and returns the concatenation of q1 and q2.
shuffle(queue q) takes a queue of benchmark instances q and returns a random permutation of q.

1 Function benchmark_queue(node n): queue
2 if is_leaf_node (n) then
3 return shuffle (get_instances (n));
4 else
5 k ←number_of_subfamilies (n);
6 for i ←1 to k do
7 queues subfamilies[i] ←benchmark_queue (get_subfamily (n,i));
8 end
9 queue ←empty_queue ();

10 repeat
11 tmp ←empty_queue ();
12 for i ←1 to k do
13 if queues subfamilies[i] 6= empty_queue () then
14 enqueue (tmp, dequeue (queues subfamilies[i]));
15 end
16 end
17 enqueue_queue (queue, shuffle (tmp));
18 until tmp = empty_queue ();
19 return queue;
20 end
21 end

Fig. 10: Generating a queue of benchmark instances.

20

http://schuppan.de/viktor/ictai18/

	I Introduction
	II Preliminaries
	III Enhanced Unsatisfiable Cores for QBF
	IV QC-Cores Can Be Different From C-Cores
	V C-Minimal Unsatisfiability Implies Q-Minimal Unsatisfiability
	VI Complexity
	VII A2AECC: Q- and QC-Cores as C-Cores
	VIII A Variant of A2AECC: Reducing Alternation Depth by Reducing Precision
	IX Interpreting Unsatisfiable Q- and QC-Cores
	X A-to-E Reducibility
	XI Implementation
	XII Case Studies
	XIII Experimental Evaluation
	XIV Conclusions
	Acknowledgments
	Appendix A: Selection of Benchmarks

