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Abstract—We propose an enhanced notion of unsatisfiable
cores for QBF in prenex CNF that weakens universal to existen-
tial quantifiers in addition to the traditional removal of clauses.
We can thus obtain unsatisfiable cores that are semantically
different from those obtained by the traditional notion; this gives
rise to explanations — and, via hitting set duality, diagnoses — of
unsatisfiability that are not provided by traditional unsatisfiable
cores. We use a source-to-source transformation on QBF that
reduces the weakening of universal to existential quantifiers to
the removal of clauses. This enables any tool or method that
can compute unsatisfiable cores of the traditional notion to
also compute unsatisfiable cores of our enhanced notion. We
implement our approach in the QBF solver DepQBF, and we
experimentally evaluate it on a subset of QBFLIB. Several case
studies illustrate that interesting information can be learned from
our enhanced notion of unsatisfiable cores.

I. INTRODUCTION

a) Motivation and Contributions: Many important prob-
lems can be naturally encoded as quantified Boolean formulas
(QBF), e.g., two-player games (e.g., [1]), variants of planning
(e.g., [2]), satisfiability of modal logic K [3], and several
problems in knowledge representation (e.g., [4]) and formal
methods (e.g., [5]); for a more extensive list see [6]. Unsatis-
fiable cores have become a fundamental concept in applied
logic. For example, they are commonly taken to represent
causes of and serve as explanations of unsatisfiability in
various logics (e.g., [7]-[11]), and they are used as building
blocks to obtain advanced explanations of unsatisfiability (e.g.,
[12]) and to diagnose (e.g., [13]) and repair (e.g., [14])
unsatisfiability. Existing work on unsatisfiable cores for QBF
in prenex conjunctive normal form (PCNF) weakens formulas
by removing clauses [10], [15]-[17].

In this paper we propose an enhanced notion of unsatisfiable
cores for QBF in PCNF that, in addition to removing clauses,
weakens universal to existential quantifiers (Section IIT). Our
enhanced notion of unsatisfiable cores can represent causes
and lead to explanations of unsatisfiability that are different
from any one that can be obtained from an unsatisfiable core
of the traditional notion (Section IV). Moreover, via the well-
known hitting set duality (e.g., [13]; for a generic formulation
see [18]), this induces diagnoses and repairs for unsatisfiability
that cannot be obtained when using the traditional notion
of unsatisfiable cores. On a less rigorous, but nevertheless
practically relevant note, an unsatisfiable core, in which the
set of quantifiers that has been weakened from universal to
existential has some unexpected characteristics, may provide
the initial “hunch” to the user that something may not be

quite right in the QBF under consideration. In Section V
we show that if in an unsatisfiable QBF in PCNF no clause
can be removed without making the result satisfiable, then
also no universal quantifier can be weakened to an existen-
tial one without losing unsatisfiability. Then we extend the
PSPACE-completeness result for minimally unsatisfiable cores
of the traditional notion [15] to our enhanced notion (Section
VI). We describe a transformation of QBF in PCNF such
that weakening of universal to existential quantifiers can be
performed by removing clauses in the transformed formula
(Sections VII,VIII). That allows to obtain unsatisfiable cores in
our enhanced notion by first applying the transformation, then
using existing tools and methods to compute an unsatisfiable
core by removing clauses, and finally mapping back the result
to an unsatisfiable core in the enhanced notion. Next we
provide some hints on how to interpret unsatisfiable cores
(Section IX). We implement our approach in DepQBF [19]
(Section X), and we experimentally evaluate it on a subset
of OBFLIB [20] (Section XII). Using a number of case
studies including two-player games [1], conformant planning
[21], and satisfiability of modal logic K [3] we illustrate that
interesting information can be learned from our enhanced
notion of unsatisfiable cores (Section XI). Our experiments
show that on instances from QBFLIB unsatisfiable cores of our
enhanced notion can be computed and that indeed universal
quantifications are weakened to existential ones.

b) Related Work: Work on improving algorithms for
solving QBF has referred to weakening universal to existential
quantifiers as “quantifier abstraction” [22] and “existential
abstraction” [23].

QBFDD [24] allows quantifier manipulations when minimiz-
ing failure-inducing input.

[25] introduces the concept of soft variables, which are
variables that may be placed at different positions of the prefix
of a QBF subject to a preference function. The authors then
define the optimization problem of finding a placement for the
soft variables that maximizes the preference function while
maintaining satisfiability of the resulting QBF. They use a
transformation, which can be seen as a generalized version
of our transformation in Section VII, to reduce their problem
to a weighted partial MaxQBF problem. (We discovered our
transformation independently.) They implement their approach
in quantom [26]. Our work differs from [25] as follows.
[25] searches for a still satisfiable result, while we search
for a still unsatisfiable result. While the two are related via
hitting set duality, the approaches are complementary, and
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often one is used as part of a method to obtain the other
([16] is an example). In [25] the authors make no connection
to unsatisfiable cores. [25] finds a maximum solution, while
we (optionally) find a minimal solution. [25] leaves the matrix
unchanged, whereas we (optionally) also weaken the matrix.

When debugging unsatisfiable Alloy models Shlyakhter et
al. [27] point out which values of bound variables are irrelevant
to the unsatisfiability. For a Boolean variable p in some for-
mula Vp. f[p] this corresponds to weakening f[.L/p] A f[T /p]
to f[L/p] or to f[T /p] — which can be achieved by removing
clauses with occurrences of p of the suitable polarity and,
hence, by the traditional notion —, whereas we can addition-
ally weaken to f[L/p]V f[T/p].

Finally, our work is in the spirit of efforts investigating the
aspect of granularity in unsatisfiable cores and related notions;
examples include [11], [12], [28]-[34].

II. PRELIMINARIES

We consider QBF in PCNF (e.g., [6], [35]); any QBF can
be transformed into an equivalent QBF in PCNF (e.g., [35]).

We assume a set of variables V'; variables are denoted by
the letter p. The Boolean constants are | (false) and T (true).
Literals are variables, 1, T, or their negations, denoted —;
we write literals as the letter [. A clause (I V...V 1,) is a
disjunction of literals, denoted by the letter c. In clauses we
use implication — as an abbreviation as usual. A conjunctive
normal form (CNF) formula ¢y A ... A ¢, is a conjunction of
clauses; CNF formulas are denoted by the letter C. When
convenient we view clauses as sets of literals and CNF
formulas as sets of clauses. A variable p is pure in a CNF
formula C, if it occurs only non-negated or only negated in
C. B = {0,1} is the set of Booleans. An assignment v for
C' is a mapping from V to IB. Then the evaluation of a CNF
formula under an assignment and (un)satisfiability of a CNF
formula are defined as usual.

V and 3 denote universal and existential quantifiers, respec-
tively. We use the letter () to represent quantifiers. Let Q1, . . .,
Q. € {V,3} be quantifiers, let p1,...,p, € V be pairwise
different variables, and let C be a CNF formula whose
variables are contained in pq,...,p,. Then Q1p; ... Qpp,.C
is a OBF in PCNF with prefix Q1p1 . .. Qnpn and matrix C.
Prefixes are written as the letter II. The alternation depth
of a QBF in PCNF is one plus the number of alternations
between V and 3 in the prefix. If II.C' is a QBF in PCNF
and p € V, then (IL.C)[L/p] (resp. (II.C')[T /p]) denotes the
QBF in PCNF that is obtained from II.C' by replacing every
occurrence of p in C' with L (resp. T). Satisfiability of a QBF
in PCNF is then defined as follows. VpIl.C is satisfiable iff
(I1.C)[L/p] and (II.C)[T /p] are satisfiable. IpII.C is satisfi-
able iff (II.C')[.L/p] or (II.C")[T /p| are satisfiable. Deciding
the satisfiability of a QBF in PCNF is PSPACE-complete [36];
the satisfiability problems for QBF in PCNF with alternation
depth at most ¢ € IN and either V or 3 as the first quantifier
yield complete problems for the i-th level of the polynomial
hierarchy 117" and %7, respectively [37], [38].

ITI. ENHANCED UNSATISFIABLE CORES FOR QBF

In this section we add to the traditional notion of cores for
QBF in PCNF (henceforth called c-cores), which are obtained
by removing clauses, the notions of g-cores, which are ob-
tained by weakening universal to existential quantifiers, and of
gc-cores, which combine c-cores and g-cores. In Definition 1|
we characterize c-, g-, and qc-cores. In Definitions 2 and 3 we
state natural extensions of proper cores and unsatisfiable cores
to g- and qc-cores. In Definition 4, we introduce quantifier-
minimally unsatisfiable cores in addition to the traditional
clause-minimally unsatisfiable cores. Let II.C' be a QBF in
PCNFE.

Definition 1 (Core): 1) Let C' C C. Then I1.C" is a c-core
of I.C. 2) Let IT = Q1p1 ... Qnpn, II' = Qp1 ... Q\pn be
prefixes such that, V1 < ¢ < n: if @; is 3, then Q) is I;
otherwise, Q; € {V¥,3}. Then I'.C' is a g-core of I1.C. 3) Let
I1.C" be a c-core of II.C, and let IT".C" be a g-core of II.C".
Then IT'.C" is a gc-core of T1.C.

Definition 2 (Proper Core): Let II'.C" be a qc-core (resp. c-
core, g-core) of I1.C such that II' # IT or C’ # C. Then II'.C’
is a proper qc-core (resp. proper c-core, q-core) of I1.C'.

Definition 3 (Unsatisfiable Core): Let II'.C" be a qc-core
(resp. c-core, g-core) of II.C' such that II'.C" is unsatisfiable.
Then IT'.C" is an unsatisfiable gc-core (resp. unsatisfiable c-
core, g-core) of II.C'.

Definition 4 (Minimal Unsatisfiability): Let I1.C' be unsatis-
fiable such that there is no proper unsatisfiable c-core (resp. g-
core) of II.C. Then I1.C' is c-minimally unsatisfiable (resp. q-
minimally unsatisfiable).

Example 1: As an example consider II.C' = Vp.(p) A (—p).
Clearly, II.C' is unsatisfiable. II.C' has four c-cores II.C,
Vp.(p), ¥p.(—p), and Vp.T. The first three are unsatisfiable
c-cores, the last three are proper c-cores, and the second and
third are both g- and c-minimally unsatisfiable.

I1.C has two g-cores I1.C and 3p.(p) A (—p), both of which
are unsatisfiable. Only Jp.(p) A (—p) is a proper g-core and
g-minimally unsatisfiable; it is also c-minimally unsatisfiable.

Any c-core or g-core is also a qc-core. Ip.(p), Ip.(—p),
and dp.T are the only gc-cores of II.C' that are both proper
c-cores and proper g-cores of II1.C'. However, none of them is
unsatisfiable. O

IV. QC-CoORES CAN BE DIFFERENT FROM C-CORES

In this paper we take the view that a minimally unsatisfiable
core represents a cause of unsatisfiability and gives rise to
an explanation of unsatisfiability. We now argue that our
enhanced notion of unsatisfiable qc-cores for QBF in PCNF
can identify additional causes of unsatisfiability (giving rise
to additional explanations of unsatisfiability) that are indeed
different from the ones identified by the traditional notion of
unsatisfiable c-cores.

We consider Vp.(p) A (—p) from Example 1 with g- and c-
minimally unsatisfiable qc-cores Vp.(p), ¥p.(—p), and 3p.(p) A
(—p). Clearly, the g-core Ip.(p)A(—p) is syntactically different
from the c-cores Vp.(p) and Vp.(—p). However, in general,



syntactic differences may carry little meaning; we therefore
proceed to discuss differences based on semantics.

One semantics for unsatisfiable QBF is given by tree
refutations [39], [40]. A tree refutation for an unsatisfiable
QBF II.C is a tree such that (i) its non-leaf nodes are labeled
with variables in II (the labeling of leaf nodes is irrelevant);
(ii) its edges are labeled with Booleans (representing assign-
ments to the variables that are labeling their source nodes);
(iii) every node labeled with a universally quantified variable
has one outgoing edge labeled with either 0 or 1; (iv) every
node labeled with an existentially quantified variable has two
outgoing edges labeled with 0 and 1, respectively; (v) on every
path from the root to a leaf node the sequence of labels on
the non-leaf nodes is identical to the sequence of variables
given by the prefix II; and (vi) on every path from the root
to a leaf node the induced assignment to the variables in II
falsifies C. Intuitively, a tree refutation shows how to choose
the assignment to the universally quantified variables in order
to falsify II.C.

Vp.(p) has one tree refutation with the root node labeled p
and its single outgoing edge labeled 0. Ip.(p) A (—p) has one
tree refutation with the root node labeled p and two outgoing
edges labeled 0 and 1. Clearly, the tree refutation for Ip.(p) A
(—p) differs from the one for Vp.(p). The two tree refutations
correspond to different ways to explain the unsatisfiability of
Vp.(p) A (—p): for Vp.(p) assigning O to p falsifies (p); for
Jp.(p) A (—p) each assignment to p falsifies one of the clauses
(p) and (—p). The case of Vp.(—p) is analogous.

Let Cq, Cy be two different matrices that have the same
sets of satisfying assignments. For any prefix II such that
II.Cy and II.C5 are unsatisfiable, the sets of tree refutations
for II.C'; and II.C are identical. l.e., tree refutations are
not always sufficient to distinguish unsatisfiable cores. In that
case we may turn to proof-theoretic semantics, which can
be more discriminating [41]. We can, for example, compare
unsatisfiable QBFs in PCNF in terms of their sets of Q-
resolution proofs of unsatisfiability [42]. This, too, can be used
to show a semantic difference between Ip.(p) A (—p), ¥p.(p),
and Vp.(—p).

V. C-MINIMAL UNSATISFIABILITY IMPLIES Q-MINIMAL
UNSATISFIABILITY

In this section we show that any c-minimally unsatisfiable
core is also g-minimally unsatisfiable.

Theorem 1: Let II.C' be a c-minimally unsatisfiable QBF
in PCNF such that every universally quantified variable in IT
occurs in some clause in C. Then II.C is also gq-minimally
unsatisfiable. The converse is not true.

Proof: The first part is an immediate consequence of the
following Lemma 1. An example that the converse is not true
is 3pIp" . (p) A (=p) A (p'). L

Lemma 1: Let

ILC =Qip1 ... QP 1VPiQiy1Pis1 - - - QuPn.
CLN. .. NCANCGNCH1 N ... Ney,

be a QBF in PCNF such that p; occurs in c¢;, let II'.C’ be
obtained from II.C' by changing Vp; to 3p; in I1, and let T1".C"
be obtained from II.C' by removing ¢; from C. If II'.C" is
unsatisfiable, then so is II”.C".
Proof: By induction over (. For the base case let {—1 = 0.

By assumption II'.C" = 3p;Qi11p141 - - - Qupn.C’ is unsatis-
fiable. Let I}, | = Qi41pi41 - - Qnpn. Expanding Jp; gives
unsatisfiability of both (IT} ,.C")[L/p;] and (1T} ,.C")[T /pi].
Without limitation of generality let p; occur non-negated in
c;. Hence, (II;,,.C")[T /pi] is also unsatisfiable. Finally, by
the definition of V, Vplﬂg_i_l.C” = II".C" is unsatisfiable as
desired.

For the inductive case let [ — 1 > 0. First let ¢ = 3. By
assumption

I'.C' = 3p1Qaps . .. Qu-1pi-13IP1Qu41P141 - - - Qupn-C’

is unsatisfiable. Let

53 =Qap2... Qi_1pi—13IMQis1pi41 - - - Qupn and
Iy = Qapa ... Qurpi—1YD1Qu1p141 - - - Qubn-

Expanding Jp; gives unsatisfiability of both (I 5.C")[L/p1]
and (II3 5.C")[T/p1]. With the inductive assumption both
(I y.C")[L/p1], and (II5,.C")[T /p:1] are unsatisfiable as
well. Finally, by the definition of 3, 3p1H’27v.C” =1I1".C" is
unsatisfiable as desired. The case of @J; =V is similar. [ ]

One might think that Theorem 1 would cast doubt on
the usefulness of q- or qc-cores, as it shows that essentially
any c-minimally unsatisfiable c-core is also a g-minimally
unsatisfiable c-core (and qc-core). However, as shown in
Section IV, qc-cores can represent causes of unsatisfiability of
a formula (and give rise to corresponding explanations) that
none of the c-cores represents.

VI. COMPLEXITY

Let CMF, QMF, and QCMF denote the sets of c-minimally
unsatisfiable QBF in PCNF, g-minimally unsatisfiable QBF in
PCNF, and CMF N QMF, respectively. CMF has been shown
to be PSPACE-complete in [15]. In this section we extend this
result to QMF and QCMF.

Theorem 2: QMF and QCMF are PSPACE-complete.

Proof: Membership of QMF and QCMF in PSPACE is
obvious. For PSPACE-hardness of QMF let

ILC =@Qp1...QmbPm-ci A... Ny

be a QBF in PCNF. Let IT'.C be obtained from II.C' by remov-
ing those universal quantifications from II whose variables do
not occur in any clause of C. Let

n".c” =1'vp)...vp,, (et VP A A(en VD)

with p} ...p], fresh. Clearly, the size of II”.C"” is linear in
the size of II.C. Using Theorem 1 it is a simple exercise to
show that II.C' is in CMF iff IT”.C" is in QMF. Thus, QMF
is PSPACE-hard. The proof for QCMF is similar. [ ]



VII. A2AECC: Q- AND QC-CORES AS C-CORES

We now describe a source-to-source transformation on QBF
in PCNF that allows to cast g- and qc-cores as c-cores. Let
II.C be a QBF in PCNF. For each universally quantified vari-
able p; in II.C' the transformation replaces the quantification
Vp; in the prefix II with Vp,3p;, where p} is a fresh variable,
and conjoins the matrix C' with two clauses (p; — p.) and
(p} — p;). Hence, the acronym A2AECC.

Definition 5 (A2AECC): Let I1.C' = Q1p;1 ... Qnpy.C. Let
pl,-..,p, be fresh. Let, for all 1 < i <mn,

Vpidp, if Q; =V
a2ae(Qip;) = pipi 1 Q .
dp; otherwise,
and
i = D) AP —p) ifQi=V
GQCC(Qipi): (pL pz) (pz pl) 1 Qz ‘
T otherwise.
Then

a2aecc(I.C) = a2ae(Q1p1) - - . a2ae(Qnpy)-
( /\ a2cc(Qqp;)) A C.
1<i<n

Let I1.C be an unsatisfiable QBF in PCNF. Definition 5
allows to compute an unsatisfiable q- or qc-core IT'.C" of
I1.C by computing an unsatisfiable c-core of a2aecc(I1.C)
as follows.

1) Let Mu20ece-Cazacee = a2aecc(I1.C).

2) Compute an unsatisfiable c-core Ila2aece-Chogece

of

Ha2aecc~Ca2aecc-
3) Let ¢/ = C if a g-core is desired, and let C' = C' N

’ . - .
Clogece if @ qec-core is desired.

4) Obtain IT' from IT by replacing each quantification Q;p;
in IT with Q}p; where
3 if (Qi=3) or (Q; =V and
Q;, = C{ﬁaeccm{(pi %p;)’(p; —>pl)} = @),
V otherwise.

The correctness of this procedure is established in Theorem
3 below. Its proof uses the following Lemma 2, which is
immediate by the semantics of QBF.

Lemma 2: Let

ILC = Qp1 ..  Quo1pi—1YPi1Qi+1Pi+1 - - - @mPm-
ciN...Ncp
be a QBF in PCNE. Let p; be fresh. Let
II'.C' = Qip1 ... Qo110 I QuiaPis1 - - - QP
(=) AP —=p)ANer Ao Acn.

Then I1.C' is satisfiable iff II'.C" is satisfiable.

Theorem 3: Let I1.C' be a QBF in PCNF. Let P be a subset
of the universally quantified variables in II. Let IT' be obtained
from II by weakening Vp to Jp for all p € P. Let

Ha2aecc~0a2aecc = G2U,€CC(H.C)

and let

a2acce = Cazaece \ U {p—9p), 0 =)}
peP

Then 1) II'.C' is a qg-core of IL.C. 2) Maouece-Chogece
is a c-core of Il,agece-Cazaece. 3) II'.C is satisfiable iff
Ia2qece-Chogece 18 satisfiable.

Proof: Claims 1, 2 follow directly from Definition 1. We
prove claim 3 by induction on the cardinality of P. The base
case |P| = 0 follows by repeated application of Lemma 2.
For the inductive case assume that the claim holds for any
P with |P| = n. Now let P = {p1,...,pnt1}. Let II” be
obtained from II by weakening Vp,1 in II to Ip,41. Let
I " = a2aecc(Il”.C). By inductive assumption

a2aecc* - a2aecc
II'.C is satisfiable iff
HgZaccc'CtlzIQaecc \ U {(p - p/)’ (p/ — p)}
pe{pl 7-“71771}
is satisfiable. By construction of C/,, ... and Cls,... We have

{o—=p),0 —=p}

/ 27/ \
a2aecc — “a2aecc

y . .
voaece-Cuoaece 18 satisfiable.
"

Notice that IT,24ecc only differs from II),,... by having
Vp;, +13Pn+1 in place of Ip,, 1. Hence, as pj, , ; does not occur
in O;Qaecc’ HgZaecc'Ct/z&lecc is satisfiable iff HG2G€CC'C:1211€CC
is satisfiable. [ ]
If a prefix II has m universal quantifiers, then the alternation
depth of a2aecc(I1.C') is either 2m or 2m + 1. In the next
Section VIII we present a variant of the transformation that
does not affect alternation depth but has different semantics.
If a universally quantified variable p is pure in a matrix
C, then either (p’ — p) (if p occurs only non-negated in C)
or (p — p') (if p occurs only negated in C) is a quantified
blocked clause [43] in a2aecc(II.C') and can be eliminated.
If a solver for QBF in PCNF supports grouping of clauses
when extracting c-cores (e.g., [44], [45]), as does DepQBF
[17], then a clause group for each pair of clauses (p; —
p;), (p; — p;) introduced by Definition 5 can be used to ensure
that either none or both of (p; — p.), (p} — p;) are present
in a c-core of a2aecc(II.C).
Example 2: As an example we revisit I1.C' = Vp.(p) A (—p)
from Example 1. We have

Hence, II'.C is satisfiable iff II”

a2aecc(Il.C) = Vp'Ap.(p = p) A (0" — p) A (p) A (—p).
The unsatisfiable c-cores
II'.Cy =Vp'3p.(p = p') A (0 — p) A (p) and
II.Cy = Vp'3p.(p = p') A (' = p) A (=)

of a2aecc(11.C) correspond to the unsatisfiable c-cores Vp.(p)
and Vp.(—p) of II.C. The unsatisfiable c-core

II'.C% = Vp'3p.(p) A (—p)

of a2aecc(I.C") corresponds to the unsatisfiable g-core
Ip.(p) A (—p) of TI.C. Contrary to IT'.C%, neither II'.C' nor



IT'.CY% is c-minimally unsatisfiable; however, when treating
(p—=p),(p — p) as a clause group, then II".C] and II'.C}
are c-minimally unsatisfiable under a suitable definition of c-
minimality that takes clause groups into account. O

The transformation in Definition 5, Theorem 3 is also of
theoretical interest. For example, it can be used to extend
the hitting set-based relationship [18] between unsatisfiable
subsets of clauses and co-satisfiable subsets of clauses (com-
plements of satisfiable subsets [18], i.e., diagnoses [13] and
repairs [14]) to a relationship between unsatisfiable q- or
gc-cores and suitably defined “co-satisfiable q- or qc-cores”
of QBF in PCNF. The latter induce an enhanced notion of
diagnosis and repair for QBF in PCNF that diagnoses and
repairs unsatisfiable QBF not only by removal of clauses but
also by weakening of universal to existential quantifiers.

VIII. A VARIANT OF A2AECC: REDUCING ALTERNATION
DEPTH BY REDUCING PRECISION

In this section we discuss a variant of the A2AECC trans-
formation that avoids the increase in alternation depth when
going from II.C' to a2aecc(I1.C'), but underapproximates the
set of universal quantifiers that can be weakened to existential
ones in an unsatisfiable g- or qc-core of I1.C'.

Let I1.C be a QBF in PCNF with n universal quantifiers
and alternation depth m. Let Vp;;...Vp;,, be a maximal
sequence, called a block, of universal quantifications in II.
Definition 5 turns this block into Vp{,3pi1...Vp; .. 3pin,-
Overall, this increases the alternation depth of a2aecc(I1.C)
compared to I1.C' by 2 -n —m (41, if II starts with 3).

Consider a variant of Definition 5, denoted a2aecc’,
that instead turns each block of universal quantifications
VDig - VYPin, into Vp;y...Vp;, 3pi1...3pin,. Now the
increase in alternation depth from I1.C' to a2aecc (I1.C)
is at most 1. Moreover, by considering the respective

tree refutations (see Section IV), it is easy to see
that a2aecc(Il.C') is unsatisfiable iff a2aecd (I1.C)
is unsatisfiable. As shown in Theorem 3, removing

(piir = P 1) N(pi i — piir) from a2aecc(I1.C') corresponds
to Weakening Vpi,l - Vpi7i1_1Vpi’¢/Vpi,i/+1 .. .meh
to sz‘,l NN Vpi’i/,lﬂpi,i/Vpiyi/H PN vpz,nl in I1.C. In
contrast, it is straightforward to prove that removing
(pi,ir = i i )N} — piir) from a2aecc’ (I1.C') corresponds
to weakening me .. .Vpi,i/_1Vpi,,»/Vp,»7i/+1 R VPi,ni to
VDi1 - VDii —1YDs 741 -+ . VD4, 3P, in ILC.

By the semantics of QBF the unsatisfiability of a c-core of
a2aecc (I1.C) implies the unsatisfiability of the corresponding
c-core of a2aecc(Il.C'). For an example that the converse is
not true consider IL.C' = Vp1Vp2.(p1 — p2) A (p2 — p1).
Weakening Vp; to Jp; in I1.C results in 3p1Vps.(p1 — p2) A
(p2 — p1), which is unsatisfiable. Correspondingly, in line
with Theorem 3, removing (p1 — p}) A (p} — p1) from
a2aecc(I1.C') yields the unsatisfiable

VP31 Vps3p2.(p2 — o) A(py = p2)A(p1 — p2)A (P2 — p1).

On the other hand, removing (p; — p}) A (p} — p1) from
a2aecc (I1.C) leads to

VP Vpa3p13pe. (P2 — o) A(py — p2)A(pr — p2)A(p2 —= p1),

which is satisfiable, as is Vpodp1.(p1 — p2) A (p2 — p1).

We finally discuss a different perspective on the semantics
of a2aecc’. a2aecc considers the positions of quantifications
within a quantifier block as fixed, i.e., a block of universal
quantifications is treated as a [list of quantifications. How-
ever, the semantics of QBF allows to arbitrarily shuffle the
quantifications within a quantifier block without affecting
the satisfiability of the resulting QBF. Hence, a quantifier
block can also be seen as a set of quantifications. In the
light of that, a2aecc’ can be interpreted as employing the
set semantics of a quantifier block and push the universal
quantifications that have been weakened to existential ones
to the right of their quantifier block (i.e., towards the inside of
the QBF). We call the semantics obtained when using a2aecc
list semantics and the semantics obtained when using a2aecc’
set-inner semantics. List semantics takes a very conservative
approach in that it assigns maximal meaning to the order
of the quantifications in a quantifier block, whereas set-inner
semantics is very relaxed and assigns no meaning to the order
of quantifications in a quantifier block at all. Keep in mind
that, while — as mentioned above — shuffling quantifications
inside a quantifier block is a satisfiability-preserving operation,
as shown by the example in the previous paragraph weakening
universal quantifications to existential ones is not the same in
list and in set-inner semantics.

IX. INTERPRETING UNSATISFIABLE Q- AND QC-CORES

We now explain that the weakening of a universal to
an existential quantifier in an unsatisfiable core may have
different reasons and that it is easier to judge the significance
of a weakening in an unsatisfiable core if the core is c-minimal.

Let II.C' be an unsatisfiable QBF in PCNF and consider an
unsatisfiable - or qc-core II'.C" of II.C. Assume that some
Vp in II has been weakened to Jp in II'. Let C” be a subset
of C’ such that II'.C" is c-minimally unsatisfiable (such C”’
obviously exists). Distinguish two cases. First, assume that p
occurs in some clause ¢ in C”. Then there is a cause of the
unsatisfiability of II.C' that requires c, including its occurrence
of p, but needs p to be only existentially quantified (as it is in
IT) rather than universally quantified (as it is in II). Second,
assume that there is no such clause. Then the weakening of
Vp to dp in II' is due to the fact that the unsatisfiability of
I1.C does not require any clause that contains p or —p.

Notice that in a g- or qc-core that is unsatisfiable but not
c-minimal both cases may occur simultaneously for different
choices of C”. Hence, the fact that Vp has been weakened to
Jp in a non-c-minimally unsatisfiable - or qc-core II'.C" of
I1.C should be interpreted with some care. Moreover, if Vp has
been weakened to Jp in a c-minimally unsatisfiable q- or qc-
core II'.C", then it should be checked whether C’ contains p
or not (if not, our implementation removes Jp from II’ during
postprocessing).



Example 3: As an example consider

I1.C = Vp1Vp2Vp33ps.(p1 — p2) A (p2 = p1) A (p3 — pa)

and a (non-c-minimally) unsatisfiable qc-core of I1.C
II".C" = 3p1Vp23ps3pa.(p1 — p2) A (p2 = p1) A (p3 — pa).

Inspection of IT'.C" shows that its unsatisfiability is caused
by Ip1Vpa.(p1 — p2) A (p2 — p1), and that for its unsat-
isfiability it is sufficient for p; to be existentially quantified.
Hence, the weakening of Vp; to Jp; in II'.C" provides useful
additional information about the unsatisfiability of II.C'. On
the other hand, Ip33p4.(ps — p4) does not contribute to the
unsatisfiability of IT'.C". Hence, the fact that ps is existentially
quantified in II".C" provides little information about the unsat-
isfiability of II.C. IT.C" has a single c-minimally unsatisfiable
c-core II".C" = Ip1VpeIpsIpa.(p1 — p2) A (P2 — p1)-
Remember that in a c-minimally unsatisfiable core every
clause is required for unsatisfiability. As we can see, p; occurs
in the matrix C”, while p3 does not. O

X. IMPLEMENTATION

We implemented our ideas in DepQBF [19] version 6.03; we
call our version DepQBF-a2aecc. DepQBF-aZaecc takes
a QBF in PCNF II.C' as input. DepQBF—-a2aecc can either
be used as a preprocessor to obtain a2aecc(II.C'), or it can
compute — optionally g- and c-minimally — unsatisfiable c-
cores, g-cores, or qc-cores of I1.C. DepQBF allows to declare
clause groups and, if a formula is found unsatisfiable, to obtain
the clause groups used to establish unsatisfiability [17]. We
use this to obtain an initial unsatisfiable c-core II'.C" of I1.C'
(for c-cores) or of a2aecc(IL.C') (for g- and qc-cores). For
c-cores II'.C" can be output directly. For g-cores and qc-
cores Theorem 3 is applied to translate II'.C’ back into a
g- or gc-core of II.C. If minimality is desired, then C’ is
minimized using a deletion-based algorithm (e.g., [46]) with
clause set refinement (CSR) (e.g., [47]). Because of Theorem
1 minimization is first applied to the clauses introduced by
Definition 5 and then to the clauses from C'’; optionally, CSR
can also be restricted to be applied to the clauses introduced
by Definition 5 during the first phase of minimization.

XI. CASE STUDIES

In this section we discuss some case studies, which we
encountered during our experimental evaluation, that illustrate
how the weakening of universal to existential quantifiers in
unsatisfiable cores can trigger improved understanding of un-
satisfiable QBFs. The examples are taken from QBFLIB [20].

a) Winning Strategies in Two-Player Games: The
Gent—-Rowley suite models variants of the well-known
Connect-4 game that are parameterized by the length of a
winning line and the width and height of the game board [1].
Some instances model whether player 1 can enforce a draw.
For some of these instances, with winning lines of length 2 on
boards with at least two rows and two columns, there exists
an unsatisfiable core in which all universal quantifiers have
been turned into existential ones. L.e., even if player 1 had full

control over the moves of player 2, she could not enforce a
draw. This is clear, because eventually there must be a winning
line of length 2 for one of the two players, which is confirmed
by the corresponding unsatisfiable core.

Moreover, for instances with longer winning lines and
on larger boards, we obtained unsatisfiable cores with only
a single universal quantifier left, which seemed odd (the
number of universal quantifiers in the input formula grows
with the maximal number of moves, i.e., the board size). Upon
inspection of the unsatisfiable cores it turned out that the game
is modeled in such a way that player 2 can spoil a draw by
playing an illegal move at her first turn, thus forcing a win of
player 1. This seems to be a fact that a user of the model in
[1] should be aware of.

Finally, other instances model whether player 2 can enforce
a win. Again, we obtained an unsatisfiable core with only one
universal quantifier left. The core showed that the unsatisfiabil-
ity was caused by player 1 playing an illegal first move, which
should imply a win for player 2; this, however, is forbidden
by Eqn. 12. in [1]. This seems to warrant an investigation of
whether this way of modeling the game is indeed as intended.

b) Conformant Planning: The Rintanen/Sort-
ing_networks family encodes a set of problems such that
an instance with parameters d and [ is satisfiable iff there exists
a sorting network of depth d that, for all input sequences of
length [, produces a sorted output sequence [21]. The instance
with d = 3, [ = 6 is unsatisfiable. It yields an unsatisfiable
core in which the universal quantification over the first number
of the input sequence has been weakened to an existential
one. Le., even if the "planner” were allowed to freely choose
the first number of the input sequence, there would be no
sorting network. This is an interesting information in itself; it
additionally implies that there is also no sorting network of
depth 3 for input sequences of length 5.

¢) Satisfiability of Modal Logic K: The Pan suite of
examples encodes the satisfiability of formulas in the modal
logic K as QBF [3]. In the QBF encoding universal quan-
tification runs over the values of an index variable, where
each value of the index variable activates a part of the
encoding that corresponds to a different {-subformula from
the original K formula. This is done to avoid repeating certain
subformulas in the resulting QBF, which keeps the complexity
of the translation from K to QBF polynomial rather than
exponential [3]. We obtained an unsatisfiable core for the
instance k_branch_p-2 in which a universal quantifier had
been weakened to an existential one. This showed that either
one of two {-subformulas in the input formula is sufficient to
obtain unsatisfiability.

d) Answer Set Programming: The Faber-Leone-
Maratea-Ricca/Strategic_Companies family of ex-
amples encodes the question of whether two fixed companies
out of a set of companies are strategic [48]. Instance x25.17
is unsatisfiable, which indicates that the companies under
consideration are indeed strategic. In the unsatisfiable core the
universal quantification over the variable for a third company



has been weakened to an existential one, signaling that that
company, too, is strategic.

XII. EXPERIMENTAL EVALUATION

a) Setup and Benchmarks: We used one machine with
a Xeon E3-1245v5 CPU and 32 GB RAM running Ubuntu
16.04. Run time and memory limits were 300 s and 8 GB.
We selected 5342 instances from QBFLIB [20]. Instances
were chosen randomly such that equally many instances were
taken from each benchmark suite (subject to availability) and,
recursively within benchmark suites, equally many instances
from each subfamily. L.e., from benchmark suites with fewer
than 193 available instances all instances were included, and
from each of the remaining suites at least 193 instances were
used. We did not use any other selection criteria. Table I
shows some statistics. As we were interested in determining
the potential for weakening universal to existential quantifiers
in the examples, we did not use a preprocessor such as [43].
For our implementation, experimental data, and an extended
version of this paper with more tables and plots — some
partitioned by benchmark family or structural properties such
as number of universal quantifications or alternation depth —,
see http://schuppan.de/viktor/ictail8/.

TABLE I: Statistics of structural properties of the set of instances.

min.  Ist quart. median 3rd quart. max. mean
number of V 0 19.25 90 213 55,022 325.8
number of 3 1 471.5 2,239 7,215 2,202,774  18,980.3
alternation depth 1 2 3 6 1,141 17.7
num. of clauses 1 2,000 9,126.5 29,861.75 5,534,800 80,410.1
max. var. index 1 558.25 2,556.5 8,556.75 2,202,778  33,383.3

b) Extracting Unsatisfiable Cores: In our first set of
experiments we used DepQBF-a2aecc to extract unsatis-
fiable cores from the 2528 instances that were found to be
unsatisfiable.

In Table I we show how many universal quantifiers
could be weakened to existential ones relative to the number
of universal quantifiers in the original formula. Column 1
states which kind of unsatisfiable cores was extracted. “q”
(resp. “qc”) refers to g-cores (resp. gc-cores), “min” to q-
minimality for g-cores and to g-,c-minimality for qc-cores,
and “minsepcsr” to minimality with separate CSR. Column
2 states the number of solved instances. (For reference, the
corresponding numbers for c-cores and c-minimal c-cores are
1830 and 1682, respectively.) Column 3 lists the number
of solved instances that had no universal quantifiers. The
remaining columns state how many instances exhibited g- or
gc-cores whose share of weakened universal quantifiers falls
in the range from the first row; as during postprocessing our
implementation removes quantifications from the prefix whose
variables have no occurrences in the matrix, the numerator of
this fraction includes only weakened universal quantifications
whose variables still occur in some clause of the matrix
of the core. For example, for g-,c-minimal qc-cores with
separate CSR, there were 22 instances such that the number of
weakened universal quantifiers in the unsatisfiable core divided
by the number of universal quantifiers in the original formula

is in the interval [0.6,0.8]. A number of instances exhibited
g-cores in which quite a large share of universal quantifiers
was weakened to existential ones; in the light of Section
IX note, though, that these cores need not be c-minimal.
Finding a qc-core in which a significant share of universal
quantifiers is weakened to existential ones seems to require
enabling minimization with separate CSR. Then also here
instances in which a fairly large share of universal quantifiers
is weakened to existential ones can be found; these cores are
c-minimal. Unsurprisingly, our data show that for g-cores,
g-minimal g-cores, and g-,c-minimal qc-cores with separate
CSR higher numbers of weakened universal quantifiers tend
to be obtained from original instances with higher numbers of
universal quantifiers.

In Figure 1 (a) we compare the sizes of g-,c-minimally
unsatisfiable qc-cores obtained with separate CSR with the
corresponding c-minimally unsatisfiable c-cores. We find that
the qc-cores obtained with CSR can be significantly larger than
the corresponding c-cores. This is not surprising: weakening a
universal to an existential quantifier corresponds to weakening
a conjunction to a disjunction, and proving unsatisfiability of
a disjunction requires both disjuncts, while proving unsatisfia-
bility of a conjunction requires only one conjunct. Remember
(see Section XI) that already the fact that a certain universal
quantifier has been weakened to an existential one may convey
valuable information. Our data also show that large increases
in core size tend to coincide with large numbers of weakened
universal quantifiers, which is expected.

In Figure 1 (b)—(e) we show the run time overhead that is
incurred by each step when going from no core extraction via
g-core extraction, gc-core extraction and g-,c-minimal gc-core
extraction to g-,c-minimal qc-core extraction with separate
CSR. The relation of the run times between no core extraction
and g-core extraction is quite variable (b). While moving
from g-cores to qc-cores incurs only a moderate overhead (c),
adding minimization (d) and, on top of that, separate CSR (e)
are quite costly. Notice that (b) involves solving the original
versus solving the A2AECC-transformed instance; although
the increase in alternation depth of the transformed instance
depends on twice the number of universal quantifiers minus the
alternation depth in the original instance, we did not observe
a clear corresponding dependence of the overhead in (b).

We also ran the experiments using set-inner instead of list
semantics. As expected, when using set-inner semantics, often
fewer universal quantifiers were weakened to existential ones.
However, despite lower alternation depth of the transformed
formula, we did not find an unambiguous performance advan-
tage for set-inner semantics.

c) Solving A2AECC-Transformed Versus Original In-
stances: In our second set of experiments we used Dep-—
QBF-a2aecc as a preprocessor and ran the following QBF
solvers on the original and transformed instances: DepQBF
v. 6.03 [19], AIGSolve [49], CAQE v. gbfeval 2017 [50],
GhostQ v. 2017-07-26 [51], QESTO v. 1.0 [52], and RAReQS
v. 1.1 [51]. This allows for a partial evaluation of our proposed
methodology beyond DepQBF-a2aecc. Figure 1 (f)-(h)
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TABLE II: Number of instances whose number of weakened V in the core divided by the number of V in the original formula is in a range.

sol- no V in [0.002. [0.004, [0.006, [0.008, [0.02, [0.04, [0.06, [0.08, [02, [04, [0.6, [0S,

ved input 0.004[ 0.006] 0008] 002 004 006 008 02 04 06 038 1[ !
q 1649 21 465 1 4 4 13 46 11 8 95 159 305 96 291 130
q min 1139 21 195 5 5 6 37 82 250 9 266 176
qe 1551 21 1528 1 1
qc min 1441 21 1356 5 3 37 10 5 2 1 1
qc minsepesr 927 21 580 1 3 9 42 101 37 9 20 44 27 2 11

[#clauses]

(a) (b)

qc
depgbf-a2aecc q [seconds]

bf.

Pq
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(e)

qc minsepcsr

depqbf a2aecc [seconds]
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sl 9
100 300n.s.
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depgbf-a2aecc gc min [seconds] depqbf original [seconds]

Fig. 1: (a) Comparing sizes of unsatisfiable cores [number of clauses]:

(d)

depgbf-a2aecc qc [seconds]

depgbf-a2aecc qc min [seconds]

10 100 300n.s. 0.1 1 10 100 300n.s.

depgbf-a2aecc q [seconds] depqbf-a2aecc qc [seconds]

300

(® (h)

aigsolve a2aecc [seconds]
cage a2aecc [seconds]

0 0
100 300n.s. 100 300n.s.

1 10 10

aigsolve original [seconds] cage original [seconds]

X-axis: c-minimal c-cores, y-axis: q-,c-minimal qc-cores with separate

CSR. (b)—(e) Comparing run times for extracting unsatisfiable cores [seconds]: (b) x-axis: no cores, y-axis: g-cores; (c) x-axis: g-cores, y-
axis: gc-cores; (d) x-axis: qc-cores, y-axis: g-,c-minimal qc-cores; (e) x-axis: g-,c-minimal qc-cores, y-axis: q-,c-minimal gc-cores with
separate CSR. (f)—(h): Comparing run times for solving transformed (y-axis) versus original (x-axis) instances [seconds]: (f) DepQBF; (g)
AIGSolve; (h) CAQE. Red diagonal crosses are unsatisfiable and green horizontal-/vertical crosses are satisfiable instances. “n.s.” stands for
not solved. Scatter plots such as the above potentially suffer from overplotting, i.e., several benchmark instances resulting in the same x- and
y-coordinates cannot be distinguished in the plot. In our case the effect is most pronounced in the corners of the plot. We therefore replace
the crosses in the corners by the numbers of instances exhibiting the corresponding x- and y-coordinates. When two values are given, then
the red, upper value is for unsatisfiable and the green, lower value for satisfiable instances. For example, in (b) there are 115 instances that
were solved in 0.1 seconds by the method on the x-axis and remained unsolved by the method on the y-axis.

compare the run times for solving the transformed versus the
original instances for DepQBF, AIGSolve, and CAQE; the
picture for GhostQ is similar to that of AIGSolve, and
those for QESTO and RAReQS are largely similar to that
of CAQE. We observe that (i) the transformed instances can
be solved in many cases, (ii) the overhead for solving the
transformed instances depends on the solver, and (iii) some of
the transformed instances are solved faster than the original
instances by some solvers. For CAQE, QESTO, and, to a
lesser extent, RAReQS our data indicate a dependence of
the overhead of solving the transformed versus the original
instance on twice the number of universal quantifiers minus
the alternation depth in the original instance.

We also ran the experiments using set-inner instead of list
semantics. Only for RAReQS set-inner semantics resulted in a
fairly unambiguous performance advantage. AIGSolve and
GhostQ were affected comparatively little by the choice of
transformation, while for the remaining solvers no clear picture
arose.

d) quantom: Despite its differences quantom is the
most closely related tool. In our last set of experiments
we performed a preliminary comparison of both tools. We
used quantom to obtain a minimum cardinality set of uni-
versal quantifiers that, when weakened to existential ones,
make an unsatisfiable QBF satisfiable, and compared the
performance with extracting q-minimally unsatisfiable gq-cores
with DepQBF-a2aecc (this compares minimum cardinality
diagnoses with minimal unsatisfiable cores, which are quite
different!). DepQBF-a2aecc (resp. quantom) was faster on
835 (resp. 81) instances, with large differences both ways.

XIII. CONCLUSIONS

We proposed a notion of unsatisfiable gq- and qc-cores for
QBF in PCNF that weakens universal to existential quantifiers
in addition to removing clauses, leading to unsatisfiable cores
and, thus, explanations and diagnoses of unsatisfiability that
cannot be obtained from traditional c-cores. We used the
A2AECC-transformation to reduce obtaining unsatisfiable g-



and gc-cores to obtaining unsatisfiable c-cores. We illustrated
with case studies that useful additional information can be
obtained from unsatisfiable qc-cores, and we demonstrated
in our experimental evaluation that our approach can suc-
cessfully compute unsatisfiable g- and qc-cores on examples
from QBFLIB. Potential future work includes analyzing how
the A2AECC-transformation and its variant affect different
solvers, obtaining unsatisfiable q- and qc-cores without using
a transformation, e.g., directly from a run of the solver, and
extending this work to logics with quantification beyond QBF.
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