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Abstract—We propose an enhanced notion of unsatisfiable
cores for QBF in prenex CNF that weakens universal to existen-
tial quantifiers in addition to the traditional removal of clauses.
We can thus obtain unsatisfiable cores that are semantically
different from those obtained by the traditional notion; this gives
rise to explanations — and, via hitting set duality, diagnoses — of
unsatisfiability that are not provided by traditional unsatisfiable
cores. We use a source-to-source transformation on QBF that
reduces the weakening of universal to existential quantifiers to
the removal of clauses. This enables any tool or method that
can compute unsatisfiable cores of the traditional notion to
also compute unsatisfiable cores of our enhanced notion. We
implement our approach in the QBF solver DepQBF, and we
experimentally evaluate it on a subset of QBFLIB. Several case
studies illustrate that interesting information can be learned from
our enhanced notion of unsatisfiable cores.


I. INTRODUCTION


a) Motivation and Contributions: Many important prob-
lems can be naturally encoded as quantified Boolean formulas
(QBF), e.g., two-player games (e.g., [1]), variants of planning
(e.g., [2]), satisfiability of modal logic K [3], and several
problems in knowledge representation (e.g., [4]) and formal
methods (e.g., [5]); for a more extensive list see [6]. Unsatis-
fiable cores have become a fundamental concept in applied
logic. For example, they are commonly taken to represent
causes of and serve as explanations of unsatisfiability in
various logics (e.g., [7]–[11]), and they are used as building
blocks to obtain advanced explanations of unsatisfiability (e.g.,
[12]) and to diagnose (e.g., [13]) and repair (e.g., [14])
unsatisfiability. Existing work on unsatisfiable cores for QBF
in prenex conjunctive normal form (PCNF) weakens formulas
by removing clauses [10], [15]–[17].


In this paper we propose an enhanced notion of unsatisfiable
cores for QBF in PCNF that, in addition to removing clauses,
weakens universal to existential quantifiers (Section III). Our
enhanced notion of unsatisfiable cores can represent causes
and lead to explanations of unsatisfiability that are different
from any one that can be obtained from an unsatisfiable core
of the traditional notion (Section IV). Moreover, via the well-
known hitting set duality (e.g., [13]; for a generic formulation
see [18]), this induces diagnoses and repairs for unsatisfiability
that cannot be obtained when using the traditional notion
of unsatisfiable cores. On a less rigorous, but nevertheless
practically relevant note, an unsatisfiable core, in which the
set of quantifiers that has been weakened from universal to
existential has some unexpected characteristics, may provide
the initial ”hunch” to the user that something may not be


quite right in the QBF under consideration. In Section V
we show that if in an unsatisfiable QBF in PCNF no clause
can be removed without making the result satisfiable, then
also no universal quantifier can be weakened to an existen-
tial one without losing unsatisfiability. Then we extend the
PSPACE-completeness result for minimally unsatisfiable cores
of the traditional notion [15] to our enhanced notion (Section
VI). We describe a transformation of QBF in PCNF such
that weakening of universal to existential quantifiers can be
performed by removing clauses in the transformed formula
(Sections VII,VIII). That allows to obtain unsatisfiable cores in
our enhanced notion by first applying the transformation, then
using existing tools and methods to compute an unsatisfiable
core by removing clauses, and finally mapping back the result
to an unsatisfiable core in the enhanced notion. Next we
provide some hints on how to interpret unsatisfiable cores
(Section IX). We implement our approach in DepQBF [19]
(Section X), and we experimentally evaluate it on a subset
of QBFLIB [20] (Section XII). Using a number of case
studies including two-player games [1], conformant planning
[21], and satisfiability of modal logic K [3] we illustrate that
interesting information can be learned from our enhanced
notion of unsatisfiable cores (Section XI). Our experiments
show that on instances from QBFLIB unsatisfiable cores of our
enhanced notion can be computed and that indeed universal
quantifications are weakened to existential ones.


b) Related Work: Work on improving algorithms for
solving QBF has referred to weakening universal to existential
quantifiers as “quantifier abstraction” [22] and “existential
abstraction” [23].
QBFDD [24] allows quantifier manipulations when minimiz-


ing failure-inducing input.
[25] introduces the concept of soft variables, which are


variables that may be placed at different positions of the prefix
of a QBF subject to a preference function. The authors then
define the optimization problem of finding a placement for the
soft variables that maximizes the preference function while
maintaining satisfiability of the resulting QBF. They use a
transformation, which can be seen as a generalized version
of our transformation in Section VII, to reduce their problem
to a weighted partial MaxQBF problem. (We discovered our
transformation independently.) They implement their approach
in quantom [26]. Our work differs from [25] as follows.
[25] searches for a still satisfiable result, while we search
for a still unsatisfiable result. While the two are related via
hitting set duality, the approaches are complementary, and
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often one is used as part of a method to obtain the other
([16] is an example). In [25] the authors make no connection
to unsatisfiable cores. [25] finds a maximum solution, while
we (optionally) find a minimal solution. [25] leaves the matrix
unchanged, whereas we (optionally) also weaken the matrix.


When debugging unsatisfiable Alloy models Shlyakhter et
al. [27] point out which values of bound variables are irrelevant
to the unsatisfiability. For a Boolean variable p in some for-
mula ∀p.f [p] this corresponds to weakening f [⊥/p]∧ f [>/p]
to f [⊥/p] or to f [>/p] — which can be achieved by removing
clauses with occurrences of p of the suitable polarity and,
hence, by the traditional notion —, whereas we can addition-
ally weaken to f [⊥/p] ∨ f [>/p].


Finally, our work is in the spirit of efforts investigating the
aspect of granularity in unsatisfiable cores and related notions;
examples include [11], [12], [28]–[34].


II. PRELIMINARIES


We consider QBF in PCNF (e.g., [6], [35]); any QBF can
be transformed into an equivalent QBF in PCNF (e.g., [35]).


We assume a set of variables V ; variables are denoted by
the letter p. The Boolean constants are ⊥ (false) and > (true).
Literals are variables, ⊥, >, or their negations, denoted ¬;
we write literals as the letter l. A clause (l1 ∨ . . . ∨ ln) is a
disjunction of literals, denoted by the letter c. In clauses we
use implication → as an abbreviation as usual. A conjunctive
normal form (CNF) formula c1 ∧ . . . ∧ cn is a conjunction of
clauses; CNF formulas are denoted by the letter C. When
convenient we view clauses as sets of literals and CNF
formulas as sets of clauses. A variable p is pure in a CNF
formula C, if it occurs only non-negated or only negated in
C. IB = {0, 1} is the set of Booleans. An assignment v for
C is a mapping from V to IB. Then the evaluation of a CNF
formula under an assignment and (un)satisfiability of a CNF
formula are defined as usual.
∀ and ∃ denote universal and existential quantifiers, respec-


tively. We use the letter Q to represent quantifiers. Let Q1, . . .,
Qn ∈ {∀,∃} be quantifiers, let p1, . . . , pn ∈ V be pairwise
different variables, and let C be a CNF formula whose
variables are contained in p1, . . . , pn. Then Q1p1 . . . Qnpn.C
is a QBF in PCNF with prefix Q1p1 . . . Qnpn and matrix C.
Prefixes are written as the letter Π. The alternation depth
of a QBF in PCNF is one plus the number of alternations
between ∀ and ∃ in the prefix. If Π.C is a QBF in PCNF
and p ∈ V , then (Π.C)[⊥/p] (resp. (Π.C)[>/p]) denotes the
QBF in PCNF that is obtained from Π.C by replacing every
occurrence of p in C with ⊥ (resp. >). Satisfiability of a QBF
in PCNF is then defined as follows. ∀pΠ.C is satisfiable iff
(Π.C)[⊥/p] and (Π.C)[>/p] are satisfiable. ∃pΠ.C is satisfi-
able iff (Π.C)[⊥/p] or (Π.C)[>/p] are satisfiable. Deciding
the satisfiability of a QBF in PCNF is PSPACE-complete [36];
the satisfiability problems for QBF in PCNF with alternation
depth at most i ∈ N and either ∀ or ∃ as the first quantifier
yield complete problems for the i-th level of the polynomial
hierarchy ΠP


i and ΣP
i , respectively [37], [38].


III. ENHANCED UNSATISFIABLE CORES FOR QBF


In this section we add to the traditional notion of cores for
QBF in PCNF (henceforth called c-cores), which are obtained
by removing clauses, the notions of q-cores, which are ob-
tained by weakening universal to existential quantifiers, and of
qc-cores, which combine c-cores and q-cores. In Definition 1
we characterize c-, q-, and qc-cores. In Definitions 2 and 3 we
state natural extensions of proper cores and unsatisfiable cores
to q- and qc-cores. In Definition 4, we introduce quantifier-
minimally unsatisfiable cores in addition to the traditional
clause-minimally unsatisfiable cores. Let Π.C be a QBF in
PCNF.


Definition 1 (Core): 1) Let C ′ ⊆ C. Then Π.C ′ is a c-core
of Π.C. 2) Let Π = Q1p1 . . . Qnpn, Π′ = Q′1p1 . . . Q


′
npn be


prefixes such that, ∀1 ≤ i ≤ n: if Qi is ∃, then Q′i is ∃;
otherwise, Q′i ∈ {∀,∃}. Then Π′.C is a q-core of Π.C. 3) Let
Π.C ′ be a c-core of Π.C, and let Π′.C ′ be a q-core of Π.C ′.
Then Π′.C ′ is a qc-core of Π.C.


Definition 2 (Proper Core): Let Π′.C ′ be a qc-core (resp. c-
core, q-core) of Π.C such that Π′ 6= Π or C ′ 6= C. Then Π′.C ′


is a proper qc-core (resp. proper c-core, q-core) of Π.C.
Definition 3 (Unsatisfiable Core): Let Π′.C ′ be a qc-core


(resp. c-core, q-core) of Π.C such that Π′.C ′ is unsatisfiable.
Then Π′.C ′ is an unsatisfiable qc-core (resp. unsatisfiable c-
core, q-core) of Π.C.


Definition 4 (Minimal Unsatisfiability): Let Π.C be unsatis-
fiable such that there is no proper unsatisfiable c-core (resp. q-
core) of Π.C. Then Π.C is c-minimally unsatisfiable (resp. q-
minimally unsatisfiable).


Example 1: As an example consider Π.C = ∀p.(p)∧ (¬p).
Clearly, Π.C is unsatisfiable. Π.C has four c-cores Π.C,
∀p.(p), ∀p.(¬p), and ∀p.>. The first three are unsatisfiable
c-cores, the last three are proper c-cores, and the second and
third are both q- and c-minimally unsatisfiable.


Π.C has two q-cores Π.C and ∃p.(p)∧(¬p), both of which
are unsatisfiable. Only ∃p.(p) ∧ (¬p) is a proper q-core and
q-minimally unsatisfiable; it is also c-minimally unsatisfiable.


Any c-core or q-core is also a qc-core. ∃p.(p), ∃p.(¬p),
and ∃p.> are the only qc-cores of Π.C that are both proper
c-cores and proper q-cores of Π.C. However, none of them is
unsatisfiable.


IV. QC-CORES CAN BE DIFFERENT FROM C-CORES


In this paper we take the view that a minimally unsatisfiable
core represents a cause of unsatisfiability and gives rise to
an explanation of unsatisfiability. We now argue that our
enhanced notion of unsatisfiable qc-cores for QBF in PCNF
can identify additional causes of unsatisfiability (giving rise
to additional explanations of unsatisfiability) that are indeed
different from the ones identified by the traditional notion of
unsatisfiable c-cores.


We consider ∀p.(p)∧ (¬p) from Example 1 with q- and c-
minimally unsatisfiable qc-cores ∀p.(p), ∀p.(¬p), and ∃p.(p)∧
(¬p). Clearly, the q-core ∃p.(p)∧(¬p) is syntactically different
from the c-cores ∀p.(p) and ∀p.(¬p). However, in general,
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syntactic differences may carry little meaning; we therefore
proceed to discuss differences based on semantics.


One semantics for unsatisfiable QBF is given by tree
refutations [39], [40]. A tree refutation for an unsatisfiable
QBF Π.C is a tree such that (i) its non-leaf nodes are labeled
with variables in Π (the labeling of leaf nodes is irrelevant);
(ii) its edges are labeled with Booleans (representing assign-
ments to the variables that are labeling their source nodes);
(iii) every node labeled with a universally quantified variable
has one outgoing edge labeled with either 0 or 1; (iv) every
node labeled with an existentially quantified variable has two
outgoing edges labeled with 0 and 1, respectively; (v) on every
path from the root to a leaf node the sequence of labels on
the non-leaf nodes is identical to the sequence of variables
given by the prefix Π; and (vi) on every path from the root
to a leaf node the induced assignment to the variables in Π
falsifies C. Intuitively, a tree refutation shows how to choose
the assignment to the universally quantified variables in order
to falsify Π.C.
∀p.(p) has one tree refutation with the root node labeled p


and its single outgoing edge labeled 0. ∃p.(p)∧ (¬p) has one
tree refutation with the root node labeled p and two outgoing
edges labeled 0 and 1. Clearly, the tree refutation for ∃p.(p)∧
(¬p) differs from the one for ∀p.(p). The two tree refutations
correspond to different ways to explain the unsatisfiability of
∀p.(p) ∧ (¬p): for ∀p.(p) assigning 0 to p falsifies (p); for
∃p.(p)∧(¬p) each assignment to p falsifies one of the clauses
(p) and (¬p). The case of ∀p.(¬p) is analogous.


Let C1, C2 be two different matrices that have the same
sets of satisfying assignments. For any prefix Π such that
Π.C1 and Π.C2 are unsatisfiable, the sets of tree refutations
for Π.C1 and Π.C2 are identical. I.e., tree refutations are
not always sufficient to distinguish unsatisfiable cores. In that
case we may turn to proof-theoretic semantics, which can
be more discriminating [41]. We can, for example, compare
unsatisfiable QBFs in PCNF in terms of their sets of Q-
resolution proofs of unsatisfiability [42]. This, too, can be used
to show a semantic difference between ∃p.(p)∧ (¬p), ∀p.(p),
and ∀p.(¬p).


V. C-MINIMAL UNSATISFIABILITY IMPLIES Q-MINIMAL
UNSATISFIABILITY


In this section we show that any c-minimally unsatisfiable
core is also q-minimally unsatisfiable.


Theorem 1: Let Π.C be a c-minimally unsatisfiable QBF
in PCNF such that every universally quantified variable in Π
occurs in some clause in C. Then Π.C is also q-minimally
unsatisfiable. The converse is not true.


Proof: The first part is an immediate consequence of the
following Lemma 1. An example that the converse is not true
is ∃p∃p′ . (p) ∧ (¬p) ∧ (p′).


Lemma 1: Let


Π.C = Q1p1 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qnpn.


c1 ∧ . . . ∧ ci−1 ∧ ci ∧ ci+1 ∧ . . . ∧ cm


be a QBF in PCNF such that pl occurs in ci, let Π′.C ′ be
obtained from Π.C by changing ∀pl to ∃pl in Π, and let Π′′.C ′′


be obtained from Π.C by removing ci from C. If Π′.C ′ is
unsatisfiable, then so is Π′′.C ′′.


Proof: By induction over l. For the base case let l−1 = 0.
By assumption Π′.C ′ = ∃plQl+1pl+1 . . . Qnpn.C


′ is unsatis-
fiable. Let Π′l+1 = Ql+1pl+1 . . . Qnpn. Expanding ∃pl gives
unsatisfiability of both (Π′l+1.C


′)[⊥/pl] and (Π′l+1.C
′)[>/pl].


Without limitation of generality let pl occur non-negated in
ci. Hence, (Π′l+1.C


′′)[>/pl] is also unsatisfiable. Finally, by
the definition of ∀, ∀plΠ′l+1.C


′′ = Π′′.C ′′ is unsatisfiable as
desired.


For the inductive case let l − 1 > 0. First let Q1 = ∃. By
assumption


Π′.C ′ = ∃p1Q2p2 . . . Ql−1pl−1∃plQl+1pl+1 . . . Qnpn.C
′


is unsatisfiable. Let


Π′2,∃ = Q2p2 . . . Ql−1pl−1∃plQl+1pl+1 . . . Qnpn and
Π′2,∀ = Q2p2 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qnpn.


Expanding ∃p1 gives unsatisfiability of both (Π′2,∃.C
′)[⊥/p1]


and (Π′2,∃.C
′)[>/p1]. With the inductive assumption both


(Π′2,∀.C
′′)[⊥/p1], and (Π′2,∀.C


′′)[>/p1] are unsatisfiable as
well. Finally, by the definition of ∃, ∃p1Π′2,∀.C


′′ = Π′′.C ′′ is
unsatisfiable as desired. The case of Q1 = ∀ is similar.


One might think that Theorem 1 would cast doubt on
the usefulness of q- or qc-cores, as it shows that essentially
any c-minimally unsatisfiable c-core is also a q-minimally
unsatisfiable c-core (and qc-core). However, as shown in
Section IV, qc-cores can represent causes of unsatisfiability of
a formula (and give rise to corresponding explanations) that
none of the c-cores represents.


VI. COMPLEXITY


Let CMF, QMF, and QCMF denote the sets of c-minimally
unsatisfiable QBF in PCNF, q-minimally unsatisfiable QBF in
PCNF, and CMF ∩ QMF, respectively. CMF has been shown
to be PSPACE-complete in [15]. In this section we extend this
result to QMF and QCMF.


Theorem 2: QMF and QCMF are PSPACE-complete.
Proof: Membership of QMF and QCMF in PSPACE is


obvious. For PSPACE-hardness of QMF let


Π.C = Q1p1 . . . Qmpm.c1 ∧ . . . ∧ cn


be a QBF in PCNF. Let Π′.C be obtained from Π.C by remov-
ing those universal quantifications from Π whose variables do
not occur in any clause of C. Let


Π′′.C ′′ = Π′∀p′1 . . . ∀p′n.(c1 ∨ p′1) ∧ . . . ∧ (cn ∨ p′n)


with p′1 . . . p
′
n fresh. Clearly, the size of Π′′.C ′′ is linear in


the size of Π.C. Using Theorem 1 it is a simple exercise to
show that Π.C is in CMF iff Π′′.C ′′ is in QMF. Thus, QMF
is PSPACE-hard. The proof for QCMF is similar.
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VII. A2AECC: Q- AND QC-CORES AS C-CORES


We now describe a source-to-source transformation on QBF
in PCNF that allows to cast q- and qc-cores as c-cores. Let
Π.C be a QBF in PCNF. For each universally quantified vari-
able pi in Π.C the transformation replaces the quantification
∀pi in the prefix Π with ∀p′i∃pi, where p′i is a fresh variable,
and conjoins the matrix C with two clauses (pi → p′i) and
(p′i → pi). Hence, the acronym A2AECC.


Definition 5 (A2AECC): Let Π.C = Q1p1 . . . Qnpn.C. Let
p′1, . . . , p


′
n be fresh. Let, for all 1 ≤ i ≤ n,


a2ae(Qipi) =


{
∀p′i∃pi if Qi = ∀
∃pi otherwise,


and


a2cc(Qipi) =


{
(pi → p′i) ∧ (p′i → pi) if Qi = ∀
> otherwise.


Then


a2aecc(Π.C) = a2ae(Q1p1) . . . a2ae(Qnpn).


(
∧


1≤i≤n


a2cc(Qipi)) ∧ C.


Let Π.C be an unsatisfiable QBF in PCNF. Definition 5
allows to compute an unsatisfiable q- or qc-core Π′.C ′ of
Π.C by computing an unsatisfiable c-core of a2aecc(Π.C)
as follows.


1) Let Πa2aecc.Ca2aecc = a2aecc(Π.C).
2) Compute an unsatisfiable c-core Πa2aecc.C


′
a2aecc of


Πa2aecc.Ca2aecc.
3) Let C ′ = C if a q-core is desired, and let C ′ = C ∩


C ′a2aecc if a qc-core is desired.
4) Obtain Π′ from Π by replacing each quantification Qipi


in Π with Q′ipi where


Q′i =



∃ if (Qi = ∃) or (Qi = ∀ and


C ′a2aecc ∩ {(pi → p′i), (p
′
i → pi)} = ∅),


∀ otherwise.


The correctness of this procedure is established in Theorem
3 below. Its proof uses the following Lemma 2, which is
immediate by the semantics of QBF.


Lemma 2: Let


Π.C = Q1p1 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qmpm.


c1 ∧ . . . ∧ cn


be a QBF in PCNF. Let p′l be fresh. Let


Π′.C ′ = Q1p1 . . . Ql−1pl−1∀p′l∃plQl+1pl+1 . . . Qmpm.


(pl → p′l) ∧ (p′l → pl) ∧ c1 ∧ . . . ∧ cn.


Then Π.C is satisfiable iff Π′.C ′ is satisfiable.
Theorem 3: Let Π.C be a QBF in PCNF. Let P be a subset


of the universally quantified variables in Π. Let Π′ be obtained
from Π by weakening ∀p to ∃p for all p ∈ P . Let


Πa2aecc.Ca2aecc = a2aecc(Π.C)


and let


C ′a2aecc = Ca2aecc \
⋃
p∈P
{(p→ p′), (p′ → p)}.


Then 1) Π′.C is a q-core of Π.C. 2) Πa2aecc.C
′
a2aecc


is a c-core of Πa2aecc.Ca2aecc. 3) Π′.C is satisfiable iff
Πa2aecc.C


′
a2aecc is satisfiable.


Proof: Claims 1, 2 follow directly from Definition 1. We
prove claim 3 by induction on the cardinality of P . The base
case |P | = 0 follows by repeated application of Lemma 2.
For the inductive case assume that the claim holds for any
P with |P | = n. Now let P = {p1, . . . , pn+1}. Let Π′′ be
obtained from Π by weakening ∀pn+1 in Π to ∃pn+1. Let
Π′′a2aecc.C


′′
a2aecc = a2aecc(Π′′.C). By inductive assumption


Π′.C is satisfiable iff


Π′′a2aecc.C
′′
a2aecc \


⋃
p∈{p1,...,pn}


{(p→ p′), (p′ → p)}


is satisfiable. By construction of C ′a2aecc and C ′′a2aecc we have


C ′a2aecc = C ′′a2aecc \
⋃


p∈{p1,...,pn}


{(p→ p′), (p′ → p)}.


Hence, Π′.C is satisfiable iff Π′′a2aecc.C
′
a2aecc is satisfiable.


Notice that Πa2aecc only differs from Π′′a2aecc by having
∀p′n+1∃pn+1 in place of ∃pn+1. Hence, as p′n+1 does not occur
in C ′a2aecc, Π′′a2aecc.C


′
a2aecc is satisfiable iff Πa2aecc.C


′
a2aecc


is satisfiable.
If a prefix Π has m universal quantifiers, then the alternation


depth of a2aecc(Π.C) is either 2m or 2m + 1. In the next
Section VIII we present a variant of the transformation that
does not affect alternation depth but has different semantics.


If a universally quantified variable p is pure in a matrix
C, then either (p′ → p) (if p occurs only non-negated in C)
or (p → p′) (if p occurs only negated in C) is a quantified
blocked clause [43] in a2aecc(Π.C) and can be eliminated.


If a solver for QBF in PCNF supports grouping of clauses
when extracting c-cores (e.g., [44], [45]), as does DepQBF
[17], then a clause group for each pair of clauses (pi →
p′i), (p


′
i → pi) introduced by Definition 5 can be used to ensure


that either none or both of (pi → p′i), (p
′
i → pi) are present


in a c-core of a2aecc(Π.C).
Example 2: As an example we revisit Π.C = ∀p.(p)∧ (¬p)


from Example 1. We have


a2aecc(Π.C) = ∀p′∃p.(p→ p′) ∧ (p′ → p) ∧ (p) ∧ (¬p).


The unsatisfiable c-cores


Π′.C ′1 = ∀p′∃p.(p→ p′) ∧ (p′ → p) ∧ (p) and
Π′.C ′2 = ∀p′∃p.(p→ p′) ∧ (p′ → p) ∧ (¬p)


of a2aecc(Π.C) correspond to the unsatisfiable c-cores ∀p.(p)
and ∀p.(¬p) of Π.C. The unsatisfiable c-core


Π′.C ′3 = ∀p′∃p.(p) ∧ (¬p)


of a2aecc(Π.C) corresponds to the unsatisfiable q-core
∃p.(p) ∧ (¬p) of Π.C. Contrary to Π′.C ′3, neither Π′.C ′1 nor
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Π′.C ′2 is c-minimally unsatisfiable; however, when treating
(p → p′), (p′ → p) as a clause group, then Π′.C ′1 and Π′.C ′2
are c-minimally unsatisfiable under a suitable definition of c-
minimality that takes clause groups into account.


The transformation in Definition 5, Theorem 3 is also of
theoretical interest. For example, it can be used to extend
the hitting set-based relationship [18] between unsatisfiable
subsets of clauses and co-satisfiable subsets of clauses (com-
plements of satisfiable subsets [18], i.e., diagnoses [13] and
repairs [14]) to a relationship between unsatisfiable q- or
qc-cores and suitably defined “co-satisfiable q- or qc-cores”
of QBF in PCNF. The latter induce an enhanced notion of
diagnosis and repair for QBF in PCNF that diagnoses and
repairs unsatisfiable QBF not only by removal of clauses but
also by weakening of universal to existential quantifiers.


VIII. A VARIANT OF A2AECC: REDUCING ALTERNATION
DEPTH BY REDUCING PRECISION


In this section we discuss a variant of the A2AECC trans-
formation that avoids the increase in alternation depth when
going from Π.C to a2aecc(Π.C), but underapproximates the
set of universal quantifiers that can be weakened to existential
ones in an unsatisfiable q- or qc-core of Π.C.


Let Π.C be a QBF in PCNF with n universal quantifiers
and alternation depth m. Let ∀pi,1 . . . ∀pi,ni be a maximal
sequence, called a block, of universal quantifications in Π.
Definition 5 turns this block into ∀p′i,1∃pi,1 . . . ∀p′i,ni


∃pi,ni
.


Overall, this increases the alternation depth of a2aecc(Π.C)
compared to Π.C by 2 · n−m (+1, if Π starts with ∃).


Consider a variant of Definition 5, denoted a2aecc′,
that instead turns each block of universal quantifications
∀pi,1 . . . ∀pi,ni


into ∀p′i,1 . . . ∀p′i,ni
∃pi,1 . . . ∃pi,ni


. Now the
increase in alternation depth from Π.C to a2aecc′(Π.C)
is at most 1. Moreover, by considering the respective
tree refutations (see Section IV), it is easy to see
that a2aecc(Π.C) is unsatisfiable iff a2aecc′(Π.C)
is unsatisfiable. As shown in Theorem 3, removing
(pi,i′ → p′i,i′)∧(p′i,i′ → pi,i′) from a2aecc(Π.C) corresponds
to weakening ∀pi,1 . . . ∀pi,i′−1∀pi,i′∀pi,i′+1 . . . ∀pi,ni


to ∀pi,1 . . . ∀pi,i′−1∃pi,i′∀pi,i′+1 . . . ∀pi,ni in Π.C. In
contrast, it is straightforward to prove that removing
(pi,i′ → p′i,i′)∧(p′i,i′ → pi,i′) from a2aecc′(Π.C) corresponds
to weakening ∀pi,1 . . . ∀pi,i′−1∀pi,i′∀pi,i′+1 . . . ∀pi,ni


to
∀pi,1 . . . ∀pi,i′−1∀pi,i′+1 . . . ∀pi,ni


∃pi,i′ in Π.C.
By the semantics of QBF the unsatisfiability of a c-core of


a2aecc′(Π.C) implies the unsatisfiability of the corresponding
c-core of a2aecc(Π.C). For an example that the converse is
not true consider Π.C = ∀p1∀p2.(p1 → p2) ∧ (p2 → p1).
Weakening ∀p1 to ∃p1 in Π.C results in ∃p1∀p2.(p1 → p2)∧
(p2 → p1), which is unsatisfiable. Correspondingly, in line
with Theorem 3, removing (p1 → p′1) ∧ (p′1 → p1) from
a2aecc(Π.C) yields the unsatisfiable


∀p′1∃p1∀p′2∃p2.(p2 → p′2)∧(p′2 → p2)∧(p1 → p2)∧(p2 → p1).


On the other hand, removing (p1 → p′1) ∧ (p′1 → p1) from
a2aecc′(Π.C) leads to


∀p′1∀p′2∃p1∃p2.(p2 → p′2)∧(p′2 → p2)∧(p1 → p2)∧(p2 → p1),


which is satisfiable, as is ∀p2∃p1.(p1 → p2) ∧ (p2 → p1).
We finally discuss a different perspective on the semantics


of a2aecc′. a2aecc considers the positions of quantifications
within a quantifier block as fixed, i.e., a block of universal
quantifications is treated as a list of quantifications. How-
ever, the semantics of QBF allows to arbitrarily shuffle the
quantifications within a quantifier block without affecting
the satisfiability of the resulting QBF. Hence, a quantifier
block can also be seen as a set of quantifications. In the
light of that, a2aecc′ can be interpreted as employing the
set semantics of a quantifier block and push the universal
quantifications that have been weakened to existential ones
to the right of their quantifier block (i.e., towards the inside of
the QBF). We call the semantics obtained when using a2aecc
list semantics and the semantics obtained when using a2aecc′


set-inner semantics. List semantics takes a very conservative
approach in that it assigns maximal meaning to the order
of the quantifications in a quantifier block, whereas set-inner
semantics is very relaxed and assigns no meaning to the order
of quantifications in a quantifier block at all. Keep in mind
that, while — as mentioned above — shuffling quantifications
inside a quantifier block is a satisfiability-preserving operation,
as shown by the example in the previous paragraph weakening
universal quantifications to existential ones is not the same in
list and in set-inner semantics.


IX. INTERPRETING UNSATISFIABLE Q- AND QC-CORES


We now explain that the weakening of a universal to
an existential quantifier in an unsatisfiable core may have
different reasons and that it is easier to judge the significance
of a weakening in an unsatisfiable core if the core is c-minimal.


Let Π.C be an unsatisfiable QBF in PCNF and consider an
unsatisfiable q- or qc-core Π′.C ′ of Π.C. Assume that some
∀p in Π has been weakened to ∃p in Π′. Let C ′′ be a subset
of C ′ such that Π′.C ′′ is c-minimally unsatisfiable (such C ′′


obviously exists). Distinguish two cases. First, assume that p
occurs in some clause c in C ′′. Then there is a cause of the
unsatisfiability of Π.C that requires c, including its occurrence
of p, but needs p to be only existentially quantified (as it is in
Π′) rather than universally quantified (as it is in Π). Second,
assume that there is no such clause. Then the weakening of
∀p to ∃p in Π′ is due to the fact that the unsatisfiability of
Π.C does not require any clause that contains p or ¬p.


Notice that in a q- or qc-core that is unsatisfiable but not
c-minimal both cases may occur simultaneously for different
choices of C ′′. Hence, the fact that ∀p has been weakened to
∃p in a non-c-minimally unsatisfiable q- or qc-core Π′.C ′ of
Π.C should be interpreted with some care. Moreover, if ∀p has
been weakened to ∃p in a c-minimally unsatisfiable q- or qc-
core Π′.C ′, then it should be checked whether C ′ contains p
or not (if not, our implementation removes ∃p from Π′ during
postprocessing).
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Example 3: As an example consider


Π.C = ∀p1∀p2∀p3∃p4.(p1 → p2) ∧ (p2 → p1) ∧ (p3 → p4)


and a (non-c-minimally) unsatisfiable qc-core of Π.C


Π′.C ′ = ∃p1∀p2∃p3∃p4.(p1 → p2) ∧ (p2 → p1) ∧ (p3 → p4).


Inspection of Π′.C ′ shows that its unsatisfiability is caused
by ∃p1∀p2.(p1 → p2) ∧ (p2 → p1), and that for its unsat-
isfiability it is sufficient for p1 to be existentially quantified.
Hence, the weakening of ∀p1 to ∃p1 in Π′.C ′ provides useful
additional information about the unsatisfiability of Π.C. On
the other hand, ∃p3∃p4.(p3 → p4) does not contribute to the
unsatisfiability of Π′.C ′. Hence, the fact that p3 is existentially
quantified in Π′.C ′ provides little information about the unsat-
isfiability of Π.C. Π′.C ′ has a single c-minimally unsatisfiable
c-core Π′.C ′′ = ∃p1∀p2∃p3∃p4.(p1 → p2) ∧ (p2 → p1).
Remember that in a c-minimally unsatisfiable core every
clause is required for unsatisfiability. As we can see, p1 occurs
in the matrix C ′′, while p3 does not.


X. IMPLEMENTATION


We implemented our ideas in DepQBF [19] version 6.03; we
call our version DepQBF-a2aecc. DepQBF-a2aecc takes
a QBF in PCNF Π.C as input. DepQBF-a2aecc can either
be used as a preprocessor to obtain a2aecc(Π.C), or it can
compute — optionally q- and c-minimally — unsatisfiable c-
cores, q-cores, or qc-cores of Π.C. DepQBF allows to declare
clause groups and, if a formula is found unsatisfiable, to obtain
the clause groups used to establish unsatisfiability [17]. We
use this to obtain an initial unsatisfiable c-core Π′.C ′ of Π.C
(for c-cores) or of a2aecc(Π.C) (for q- and qc-cores). For
c-cores Π′.C ′ can be output directly. For q-cores and qc-
cores Theorem 3 is applied to translate Π′.C ′ back into a
q- or qc-core of Π.C. If minimality is desired, then C ′ is
minimized using a deletion-based algorithm (e.g., [46]) with
clause set refinement (CSR) (e.g., [47]). Because of Theorem
1 minimization is first applied to the clauses introduced by
Definition 5 and then to the clauses from C; optionally, CSR
can also be restricted to be applied to the clauses introduced
by Definition 5 during the first phase of minimization.


XI. CASE STUDIES


In this section we discuss some case studies, which we
encountered during our experimental evaluation, that illustrate
how the weakening of universal to existential quantifiers in
unsatisfiable cores can trigger improved understanding of un-
satisfiable QBFs. The examples are taken from QBFLIB [20].


a) Winning Strategies in Two-Player Games: The
Gent-Rowley suite models variants of the well-known
Connect-4 game that are parameterized by the length of a
winning line and the width and height of the game board [1].
Some instances model whether player 1 can enforce a draw.
For some of these instances, with winning lines of length 2 on
boards with at least two rows and two columns, there exists
an unsatisfiable core in which all universal quantifiers have
been turned into existential ones. I.e., even if player 1 had full


control over the moves of player 2, she could not enforce a
draw. This is clear, because eventually there must be a winning
line of length 2 for one of the two players, which is confirmed
by the corresponding unsatisfiable core.


Moreover, for instances with longer winning lines and
on larger boards, we obtained unsatisfiable cores with only
a single universal quantifier left, which seemed odd (the
number of universal quantifiers in the input formula grows
with the maximal number of moves, i.e., the board size). Upon
inspection of the unsatisfiable cores it turned out that the game
is modeled in such a way that player 2 can spoil a draw by
playing an illegal move at her first turn, thus forcing a win of
player 1. This seems to be a fact that a user of the model in
[1] should be aware of.


Finally, other instances model whether player 2 can enforce
a win. Again, we obtained an unsatisfiable core with only one
universal quantifier left. The core showed that the unsatisfiabil-
ity was caused by player 1 playing an illegal first move, which
should imply a win for player 2; this, however, is forbidden
by Eqn. 12. in [1]. This seems to warrant an investigation of
whether this way of modeling the game is indeed as intended.


b) Conformant Planning: The Rintanen/Sort-
ing_networks family encodes a set of problems such that
an instance with parameters d and l is satisfiable iff there exists
a sorting network of depth d that, for all input sequences of
length l, produces a sorted output sequence [21]. The instance
with d = 3, l = 6 is unsatisfiable. It yields an unsatisfiable
core in which the universal quantification over the first number
of the input sequence has been weakened to an existential
one. I.e., even if the ”planner” were allowed to freely choose
the first number of the input sequence, there would be no
sorting network. This is an interesting information in itself; it
additionally implies that there is also no sorting network of
depth 3 for input sequences of length 5.


c) Satisfiability of Modal Logic K: The Pan suite of
examples encodes the satisfiability of formulas in the modal
logic K as QBF [3]. In the QBF encoding universal quan-
tification runs over the values of an index variable, where
each value of the index variable activates a part of the
encoding that corresponds to a different ♦-subformula from
the original K formula. This is done to avoid repeating certain
subformulas in the resulting QBF, which keeps the complexity
of the translation from K to QBF polynomial rather than
exponential [3]. We obtained an unsatisfiable core for the
instance k_branch_p-2 in which a universal quantifier had
been weakened to an existential one. This showed that either
one of two ♦-subformulas in the input formula is sufficient to
obtain unsatisfiability.


d) Answer Set Programming: The Faber-Leone-
Maratea-Ricca/Strategic_Companies family of ex-
amples encodes the question of whether two fixed companies
out of a set of companies are strategic [48]. Instance x25.17
is unsatisfiable, which indicates that the companies under
consideration are indeed strategic. In the unsatisfiable core the
universal quantification over the variable for a third company
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has been weakened to an existential one, signaling that that
company, too, is strategic.


XII. EXPERIMENTAL EVALUATION


a) Setup and Benchmarks: We used one machine with
a Xeon E3-1245v5 CPU and 32 GB RAM running Ubuntu
16.04. Run time and memory limits were 300 s and 8 GB.
We selected 5342 instances from QBFLIB [20]. Instances
were chosen randomly such that equally many instances were
taken from each benchmark suite (subject to availability) and,
recursively within benchmark suites, equally many instances
from each subfamily. I.e., from benchmark suites with fewer
than 193 available instances all instances were included, and
from each of the remaining suites at least 193 instances were
used. We did not use any other selection criteria. Table I
shows some statistics. As we were interested in determining
the potential for weakening universal to existential quantifiers
in the examples, we did not use a preprocessor such as [43].
For our implementation, experimental data, and an extended
version of this paper with more tables and plots — some
partitioned by benchmark family or structural properties such
as number of universal quantifications or alternation depth —,
see http://schuppan.de/viktor/ictai18/.


TABLE I: Statistics of structural properties of the set of instances.


min. 1st quart. median 3rd quart. max. mean
number of ∀ 0 19.25 90 213 55,022 325.8
number of ∃ 1 477.5 2,239 7,215 2,202,774 18,980.3
alternation depth 1 2 3 6 1,141 17.7
num. of clauses 1 2,000 9,126.5 29,861.75 5,534,890 80,410.1
max. var. index 1 558.25 2,556.5 8,556.75 2,202,778 33,383.3


b) Extracting Unsatisfiable Cores: In our first set of
experiments we used DepQBF-a2aecc to extract unsatis-
fiable cores from the 2528 instances that were found to be
unsatisfiable.


In Table II we show how many universal quantifiers
could be weakened to existential ones relative to the number
of universal quantifiers in the original formula. Column 1
states which kind of unsatisfiable cores was extracted. “q”
(resp. “qc”) refers to q-cores (resp. qc-cores), “min” to q-
minimality for q-cores and to q-,c-minimality for qc-cores,
and “minsepcsr” to minimality with separate CSR. Column
2 states the number of solved instances. (For reference, the
corresponding numbers for c-cores and c-minimal c-cores are
1830 and 1682, respectively.) Column 3 lists the number
of solved instances that had no universal quantifiers. The
remaining columns state how many instances exhibited q- or
qc-cores whose share of weakened universal quantifiers falls
in the range from the first row; as during postprocessing our
implementation removes quantifications from the prefix whose
variables have no occurrences in the matrix, the numerator of
this fraction includes only weakened universal quantifications
whose variables still occur in some clause of the matrix
of the core. For example, for q-,c-minimal qc-cores with
separate CSR, there were 22 instances such that the number of
weakened universal quantifiers in the unsatisfiable core divided
by the number of universal quantifiers in the original formula


is in the interval [0.6, 0.8[. A number of instances exhibited
q-cores in which quite a large share of universal quantifiers
was weakened to existential ones; in the light of Section
IX note, though, that these cores need not be c-minimal.
Finding a qc-core in which a significant share of universal
quantifiers is weakened to existential ones seems to require
enabling minimization with separate CSR. Then also here
instances in which a fairly large share of universal quantifiers
is weakened to existential ones can be found; these cores are
c-minimal. Unsurprisingly, our data show that for q-cores,
q-minimal q-cores, and q-,c-minimal qc-cores with separate
CSR higher numbers of weakened universal quantifiers tend
to be obtained from original instances with higher numbers of
universal quantifiers.


In Figure 1 (a) we compare the sizes of q-,c-minimally
unsatisfiable qc-cores obtained with separate CSR with the
corresponding c-minimally unsatisfiable c-cores. We find that
the qc-cores obtained with CSR can be significantly larger than
the corresponding c-cores. This is not surprising: weakening a
universal to an existential quantifier corresponds to weakening
a conjunction to a disjunction, and proving unsatisfiability of
a disjunction requires both disjuncts, while proving unsatisfia-
bility of a conjunction requires only one conjunct. Remember
(see Section XI) that already the fact that a certain universal
quantifier has been weakened to an existential one may convey
valuable information. Our data also show that large increases
in core size tend to coincide with large numbers of weakened
universal quantifiers, which is expected.


In Figure 1 (b)–(e) we show the run time overhead that is
incurred by each step when going from no core extraction via
q-core extraction, qc-core extraction and q-,c-minimal qc-core
extraction to q-,c-minimal qc-core extraction with separate
CSR. The relation of the run times between no core extraction
and q-core extraction is quite variable (b). While moving
from q-cores to qc-cores incurs only a moderate overhead (c),
adding minimization (d) and, on top of that, separate CSR (e)
are quite costly. Notice that (b) involves solving the original
versus solving the A2AECC-transformed instance; although
the increase in alternation depth of the transformed instance
depends on twice the number of universal quantifiers minus the
alternation depth in the original instance, we did not observe
a clear corresponding dependence of the overhead in (b).


We also ran the experiments using set-inner instead of list
semantics. As expected, when using set-inner semantics, often
fewer universal quantifiers were weakened to existential ones.
However, despite lower alternation depth of the transformed
formula, we did not find an unambiguous performance advan-
tage for set-inner semantics.


c) Solving A2AECC-Transformed Versus Original In-
stances: In our second set of experiments we used Dep-
QBF-a2aecc as a preprocessor and ran the following QBF
solvers on the original and transformed instances: DepQBF
v. 6.03 [19], AIGSolve [49], CAQE v. qbfeval 2017 [50],
GhostQ v. 2017-07-26 [51], QESTO v. 1.0 [52], and RAReQS
v. 1.1 [51]. This allows for a partial evaluation of our proposed
methodology beyond DepQBF-a2aecc. Figure 1 (f)–(h)
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TABLE II: Number of instances whose number of weakened ∀ in the core divided by the number of ∀ in the original formula is in a range.


sol-
ved


no ∀ in
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[0.002,
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[0.004,
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[0.006,
0.008[


[0.008,
0.02[


[0.02,
0.04[


[0.04,
0.06[


[0.06,
0.08[


[0.08,
0.2[


[0.2,
0.4[


[0.4,
0.6[


[0.6,
0.8[


[0.8,
1[ 1


q 1649 21 465 1 4 4 13 46 11 8 95 159 305 96 291 130
q min 1139 21 195 5 5 6 37 82 250 96 266 176
qc 1551 21 1528 1 1
qc min 1441 21 1356 5 3 37 10 5 2 1 1
qc minsepcsr 927 21 580 1 3 9 42 101 37 9 20 44 27 22 11
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Fig. 1: (a) Comparing sizes of unsatisfiable cores [number of clauses]: x-axis: c-minimal c-cores, y-axis: q-,c-minimal qc-cores with separate
CSR. (b)–(e) Comparing run times for extracting unsatisfiable cores [seconds]: (b) x-axis: no cores, y-axis: q-cores; (c) x-axis: q-cores, y-
axis: qc-cores; (d) x-axis: qc-cores, y-axis: q-,c-minimal qc-cores; (e) x-axis: q-,c-minimal qc-cores, y-axis: q-,c-minimal qc-cores with
separate CSR. (f)–(h): Comparing run times for solving transformed (y-axis) versus original (x-axis) instances [seconds]: (f) DepQBF; (g)
AIGSolve; (h) CAQE. Red diagonal crosses are unsatisfiable and green horizontal-/vertical crosses are satisfiable instances. “n.s.” stands for
not solved. Scatter plots such as the above potentially suffer from overplotting, i.e., several benchmark instances resulting in the same x- and
y-coordinates cannot be distinguished in the plot. In our case the effect is most pronounced in the corners of the plot. We therefore replace
the crosses in the corners by the numbers of instances exhibiting the corresponding x- and y-coordinates. When two values are given, then
the red, upper value is for unsatisfiable and the green, lower value for satisfiable instances. For example, in (b) there are 115 instances that
were solved in 0.1 seconds by the method on the x-axis and remained unsolved by the method on the y-axis.


compare the run times for solving the transformed versus the
original instances for DepQBF, AIGSolve, and CAQE; the
picture for GhostQ is similar to that of AIGSolve, and
those for QESTO and RAReQS are largely similar to that
of CAQE. We observe that (i) the transformed instances can
be solved in many cases, (ii) the overhead for solving the
transformed instances depends on the solver, and (iii) some of
the transformed instances are solved faster than the original
instances by some solvers. For CAQE, QESTO, and, to a
lesser extent, RAReQS our data indicate a dependence of
the overhead of solving the transformed versus the original
instance on twice the number of universal quantifiers minus
the alternation depth in the original instance.


We also ran the experiments using set-inner instead of list
semantics. Only for RAReQS set-inner semantics resulted in a
fairly unambiguous performance advantage. AIGSolve and
GhostQ were affected comparatively little by the choice of
transformation, while for the remaining solvers no clear picture
arose.


d) quantom: Despite its differences quantom is the
most closely related tool. In our last set of experiments
we performed a preliminary comparison of both tools. We
used quantom to obtain a minimum cardinality set of uni-
versal quantifiers that, when weakened to existential ones,
make an unsatisfiable QBF satisfiable, and compared the
performance with extracting q-minimally unsatisfiable q-cores
with DepQBF-a2aecc (this compares minimum cardinality
diagnoses with minimal unsatisfiable cores, which are quite
different!). DepQBF-a2aecc (resp. quantom) was faster on
835 (resp. 81) instances, with large differences both ways.


XIII. CONCLUSIONS


We proposed a notion of unsatisfiable q- and qc-cores for
QBF in PCNF that weakens universal to existential quantifiers
in addition to removing clauses, leading to unsatisfiable cores
and, thus, explanations and diagnoses of unsatisfiability that
cannot be obtained from traditional c-cores. We used the
A2AECC-transformation to reduce obtaining unsatisfiable q-
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and qc-cores to obtaining unsatisfiable c-cores. We illustrated
with case studies that useful additional information can be
obtained from unsatisfiable qc-cores, and we demonstrated
in our experimental evaluation that our approach can suc-
cessfully compute unsatisfiable q- and qc-cores on examples
from QBFLIB. Potential future work includes analyzing how
the A2AECC-transformation and its variant affect different
solvers, obtaining unsatisfiable q- and qc-cores without using
a transformation, e.g., directly from a run of the solver, and
extending this work to logics with quantification beyond QBF.
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tified Boolean Formulas,” Inf. Comput., vol. 117, no. 1, 1995.


[43] A. Biere, F. Lonsing, and M. Seidl, “Blocked Clause Elimination for
QBF,” in CADE, ser. LNCS, vol. 6803. Springer, 2011.


[44] A. Nadel, “Boosting minimal unsatisfiable core extraction,” in FMCAD.
IEEE, 2010.


[45] M. H. Liffiton and K. A. Sakallah, “Algorithms for Computing Minimal
Unsatisfiable Subsets of Constraints,” J. Autom. Reasoning, vol. 40,
no. 1, 2008.


[46] J. Marques-Silva, “Computing Minimally Unsatisfiable Subformulas:
State of the Art and Future Directions,” Multiple-Valued Logic and Soft
Computing, vol. 19, no. 1-3, 2012.


[47] A. Belov, I. Lynce, and J. Marques-Silva, “Towards efficient MUS
extraction,” AI Commun., vol. 25, no. 2, 2012.


[48] W. Faber, N. Leone, M. Maratea, and F. Ricca, “Looking Back in DLV:
Experiments and Comparison to QBF Solvers,” in ASP, 2007.


[49] F. Pigorsch and C. Scholl, “An AIG-Based QBF-solver using SAT for
preprocessing,” in DAC. ACM, 2010.


[50] L. Tentrup, “On Expansion and Resolution in CEGAR Based QBF
Solving,” in CAV, ser. LNCS, vol. 10427. Springer, 2017.


[51] M. Janota, W. Klieber, J. Marques-Silva, and E. M. Clarke, “Solving
QBF with Counterexample Guided Refinement,” in SAT, ser. LNCS,
vol. 7317. Springer, 2012.


[52] M. Janota and J. Marques-Silva, “Solving QBF by Clause Selection,” in
IJCAI. AAAI Press, 2015.


9



http://scholar.google.com/scholar?q=%22Encoding+Connect-4+Using+Quantified+Boolean+Formulae%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Encoding+Connect-4+Using+Quantified+Boolean+Formulae%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Constructing+Conditional+Plans+by+a+Theorem-Prover%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Optimizing+a+BDD-Based+Modal+Solver%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Solving+Advanced+Reasoning+Tasks+Using+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Solving+Advanced+Reasoning+Tasks+Using+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Bounded+Model+Construction+for+Monadic+Second-Order+Logics%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Bounded+Model+Construction+for+Monadic+Second-Order+Logics%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Reasoning+with+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Reasoning+with+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Locating+Minimal+Infeasible+Constraint+Sets+in+Linear+Programs%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Locating+Minimal+Infeasible+Constraint+Sets+in+Linear+Programs%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Restoring+Satisfiability+or+Maintaining+Unsatisfiability+by+finding+small+Unsatisfiable+Subformulae%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Restoring+Satisfiability+or+Maintaining+Unsatisfiability+by+finding+small+Unsatisfiable+Subformulae%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Non-Standard+Reasoning+Services+for+the+Debugging+of+Description+Logic+Terminologies%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Non-Standard+Reasoning+Services+for+the+Debugging+of+Description+Logic+Terminologies%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Validating+the+result+of+a+Quantified+Boolean+Formula+(QBF)+solver%3A+theory+and+practice%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Validating+the+result+of+a+Quantified+Boolean+Formula+(QBF)+solver%3A+theory+and+practice%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Towards+a+notion+of+unsatisfiable+and+unrealizable+cores+for+LTL%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Towards+a+notion+of+unsatisfiable+and+unrealizable+cores+for+LTL%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Categorisation+of+Clauses+in+Conjunctive+Normal+Forms%3A+Minimally+Unsatisfiable+Sub-clause-sets+and+the+Lean+Kernel%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Categorisation+of+Clauses+in+Conjunctive+Normal+Forms%3A+Minimally+Unsatisfiable+Sub-clause-sets+and+the+Lean+Kernel%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Categorisation+of+Clauses+in+Conjunctive+Normal+Forms%3A+Minimally+Unsatisfiable+Sub-clause-sets+and+the+Lean+Kernel%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22A+Theory+of+Diagnosis+from+First+Principles%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Diagnosing+Terminologies%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Minimal+False+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Minimal+False+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Quantified+Maximum+Satisfiability%3A+A+Core-Guided+Approach%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Quantified+Maximum+Satisfiability%3A+A+Core-Guided+Approach%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Incrementally+Computing+Minimal+Unsatisfiable+Cores+of+QBFs+via+a+Clause+Group+Solver+API%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Incrementally+Computing+Minimal+Unsatisfiable+Cores+of+QBFs+via+a+Clause+Group+Solver+API%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Set-theoretic+duality%3A+A+fundamental+feature+of+combinatorial+optimisation%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Set-theoretic+duality%3A+A+fundamental+feature+of+combinatorial+optimisation%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22DepQBF+6.0%3A+A+Search-Based+QBF+Solver+Beyond+Traditional+QCDCL%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22DepQBF+6.0%3A+A+Search-Based+QBF+Solver+Beyond+Traditional+QCDCL%22&hl=en&lr=&btnG=Search

http://www.qbflib.org/

http://www.qbflib.org/

http://scholar.google.com/scholar?q=%22Asymptotically+Optimal+Encodings+of+Conformant+Planning+in+QBF%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Asymptotically+Optimal+Encodings+of+Conformant+Planning+in+QBF%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Failed+Literal+Detection+for+QBF%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Q-Resolution+with+Generalized+Axioms%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Q-Resolution+with+Generalized+Axioms%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Automated+Testing+and+Debugging+of+SAT+and+QBF+Solvers%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Automated+Testing+and+Debugging+of+SAT+and+QBF+Solvers%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22QBF+with+Soft+Variables%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22QBF+with+Soft+Variables%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Enhanced+Integration+of+QBF+Solving+Techniques%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Enhanced+Integration+of+QBF+Solving+Techniques%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Debugging+Overconstrained+Declarative+Models+Using+Unsatisfiable+Cores%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Debugging+Overconstrained+Declarative+Models+Using+Unsatisfiable+Cores%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Beyond+Asserted+Axioms%3A+Fine-Grain+Justifications+for+OWL-DL+Entailments%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Beyond+Asserted+Axioms%3A+Fine-Grain+Justifications+for+OWL-DL+Entailments%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Repairing+Unsatisfiable+Concepts+in+OWL+Ontologies%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Repairing+Unsatisfiable+Concepts+in+OWL+Ontologies%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22MUST%3A+Provide+a+Finer-Grained+Explanation+of+Unsatisfiability%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22MUST%3A+Provide+a+Finer-Grained+Explanation+of+Unsatisfiability%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Elimination+of+Redundancy+in+Ontologies%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Behavioral+Diagnosis+of+LTL+Specifications+at+Operator+Level%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Behavioral+Diagnosis+of+LTL+Specifications+at+Operator+Level%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Extracting+unsatisfiable+cores+for+LTL+via+temporal+resolution%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Extracting+unsatisfiable+cores+for+LTL+via+temporal+resolution%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Enhancing+unsatisfiable+cores+for+LTL+with+information+on+temporal+relevance%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Enhancing+unsatisfiable+cores+for+LTL+with+information+on+temporal+relevance%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Theory+of+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Theory+of+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Word+Problems+Requiring+Exponential+Time%3A+Preliminary+Report%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Word+Problems+Requiring+Exponential+Time%3A+Preliminary+Report%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22The+Polynomial-Time+Hierarchy%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Complete+Sets+and+the+Polynomial-Time+Hierarchy%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Contributions+to+the+Theory+of+Practical+Quantified+Boolean+Formula+Solving%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Contributions+to+the+Theory+of+Practical+Quantified+Boolean+Formula+Solving%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Representing+Policies+for+Quantified+Boolean+Formulae%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22The+Granularity+of+Meaning+in+Proof-Theoretic+Semantics%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Resolution+for+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Resolution+for+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Blocked+Clause+Elimination+for+QBF%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Blocked+Clause+Elimination+for+QBF%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Boosting+minimal+unsatisfiable+core+extraction%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Algorithms+for+Computing+Minimal+Unsatisfiable+Subsets+of+Constraints%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Algorithms+for+Computing+Minimal+Unsatisfiable+Subsets+of+Constraints%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Computing+Minimally+Unsatisfiable+Subformulas%3A+State+of+the+Art+and+Future+Directions%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Computing+Minimally+Unsatisfiable+Subformulas%3A+State+of+the+Art+and+Future+Directions%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Towards+efficient+MUS+extraction%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Towards+efficient+MUS+extraction%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Looking+Back+in+DLV%3A+Experiments+and+Comparison+to+QBF+Solvers%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Looking+Back+in+DLV%3A+Experiments+and+Comparison+to+QBF+Solvers%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22An+AIG-Based+QBF-solver+using+SAT+for+preprocessing%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22An+AIG-Based+QBF-solver+using+SAT+for+preprocessing%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22On+Expansion+and+Resolution+in+CEGAR+Based+QBF+Solving%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22On+Expansion+and+Resolution+in+CEGAR+Based+QBF+Solving%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Solving+QBF+with+Counterexample+Guided+Refinement%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Solving+QBF+with+Counterexample+Guided+Refinement%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Solving+QBF+by+Clause+Selection%22&hl=en&lr=&btnG=Search



		I Introduction

		II Preliminaries

		III Enhanced Unsatisfiable Cores for QBF

		IV QC-Cores Can Be Different From C-Cores

		V C-Minimal Unsatisfiability Implies Q-Minimal Unsatisfiability

		VI Complexity

		VII A2AECC: Q- and QC-Cores as C-Cores

		VIII A Variant of A2AECC: Reducing Alternation Depth by Reducing Precision

		IX Interpreting Unsatisfiable Q- and QC-Cores

		X Implementation

		XI Case Studies

		XII Experimental Evaluation

		XIII Conclusions

		Acknowledgments

		References




