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We introduce an enhanced notion of unsatisfiable cores for QBF in prenex CNF that

allows to weaken universal quantifiers to existential quantifiers in addition to the tradi-

tional removal of clauses. The resulting unsatisfiable cores can be different from those
of the traditional notion in terms of syntax, standard semantics, and proof-based se-

mantics. This not only gives rise to explanations of unsatisfiability but, via duality, also

leads to diagnoses and repairs of unsatisfiability that are not obtained with traditional
unsatisfiable cores. We use a source-to-source transformation on QBF in PCNF such that

the weakening of universal quantifiers to existential quantifiers in the original formula

corresponds to the removal of clauses in the transformed formula. This makes any tool
or method for the computation of unsatisfiable cores of the traditional notion available

for the computation of unsatisfiable cores of our enhanced notion. We implement our

approach as an extension to the QBF solver DepQBF, and we perform an extensive ex-
perimental evaluation on a subset of QBFLIB. We illustrate with several case studies that

helpful information can be provided by unsatisfiable cores of our enhanced notion.

Keywords: QBF; unsatisfiable cores; quantifier weakening.

1. Introduction

1.1. Motivation and contributions

Many important problems have natural encodings as QBF (quantified Boolean for-

mulas). Examples include two-player games [GR03,AGS05], variants of planning

[Rin99,Tur02], satisfiability of formulas in the modal logic K [PV03], and a number

of problems in knowledge representation [EETW00] and formal methods [AB00,

SB01]; for a more extensive list see [GMN09]. Unsatisfiable cores have been estab-

lished as a fundamental concept in applied logic with significant applications in

AI and formal methods. For example, in various logics unsatisfiable cores are used

to represent causes of unsatisfiability and to serve as explanations of unsatisfiabil-

ity [CD91,BS01,SC03,SSJ+03,YM05,Sch12], as building blocks to obtain advanced

explanations of unsatisfiability [KLM06], to diagnose unsatisfiability [Rei87], and
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to repair unsatisfiability [Sch05]. Previous work on unsatisfiable cores for QBF

in PCNF (prenex conjunctive normal form) removes clauses to weaken formulas

[YM05,KZ06,IJM13,LE15].

In this paper we present an enhanced notion of unsatisfiable cores for QBF in

PCNF that not only removes clauses from a QBF but also weakens universal quan-

tifiers to existential quantifiers (Section 3). We show that our enhanced notion of

unsatisfiable cores can represent causes and lead to explanations of unsatisfiability

that differ in terms of syntax as well as both standard and proof-based semantics

from any cause and explanation that can be obtained from an unsatisfiable core

of the traditional notion (Section 4). Moreover, via duality this gives rise to diag-

noses and repairs for unsatisfiability that are different from those obtained when

using the traditional notion of unsatisfiable cores (Section 7). On a more practical

rather than rigorously formal note, if a user finds that the set of quantifiers that has

been weakened from universal to existential in an unsatisfiable core exhibits some

unexpected characteristics, then this may provide her with the initial hunch that

there might be something off in the QBF under consideration. In Section 5 we prove

that if it is not possible to remove any clause from an unsatisfiable QBF in PCNF

without making the result satisfiable, then it is also not possible to weaken any

universal quantifier to an existential quantifier without losing unsatisfiability. We

then show that the PSPACE-completeness result for minimally unsatisfiable cores of

the traditional notion [KZ06] can be extended to our enhanced notion (Section 6).

In Sections 8 and 9 we present a transformation of QBF in PCNF such that weak-

ening of universal quantifiers to existential quantifiers in the original formula can be

achieved by removing clauses in the transformed formula. Using this transformation

we can obtain unsatisfiable cores of our enhanced notion in three steps: (i) apply

the transformation; (ii) use existing tools and methods to compute an unsatisfiable

core by removing clauses; and (iii) map back the result to an unsatisfiable core

of the enhanced notion. In Section 10 we provide hints that can help to interpret

unsatisfiable cores of our enhanced notion, and in Section 11 we classify univer-

sal quantifications into non-trivially, trivially, and not ∀-to-∃ reducible. We then

describe the implementation of our approach in DepQBF [LE17] in Section 12. We il-

lustrate with case studies including two-player games [GR03], conformant planning

[Rin07], and satisfiability of modal logic K [PV03] what kind of helpful information

our enhanced notion of unsatisfiable cores can provide to a user (Section 13). We

experimentally evaluate our approach on a subset of QBFLIB [GNPT] (Section 14).

Our experiments show that it is feasible to compute unsatisfiable cores of our en-

hanced notion on QBFLIB instances and that weakening of universal quantifications

to existential quantifications does indeed occur.

A preliminary version of this paper appeared at ICTAI 2018 [Sch18]. This ex-

tended version contains the following major additions. (i) A discussion of related

work from QCSP (part of Section 1.2); (ii) an extension of some of our results to

the dual notion of enhanced satisfiable cores (Section 7); (iii) an argument that the
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transformation that we suggest in Section 8.1 does not push a formula into higher

levels of the polynomial hierarchy despite potentially significantly increasing the

alternation depth of a formula (Section 8.2); and (iv) a classification of universal

quantifications into non-trivially, trivially, and not ∀-to-∃ reducible including two

algorithms to underapproximate the set of non-trivially ∀-to-∃ reducible quantifica-

tions and a corresponding experimental evaluation (Section 11 and parts of Section

14).

1.2. Related work

QBF. Previous work on unsatisfiable cores for QBF in PCNF uses the traditional

notion of removal of clauses from the matrix [YM05,KZ06,IJM13,LE15].

Reimer et al. [RSMB14] propose soft variables, which — subject to a preference

function — may take different positions in the prefix of a QBF. They then define

the following optimization problem: find a placement for the soft variables that

makes the resulting QBF satisfiable and, among all such placements, maximizes the

valuation of the preference function. Reimer et al. reduce this optimization problem

to a weighted partial MaxQBF problem [CFLS93] with a transformation that can

be seen as a generalized version of the transformation that we propose in Section

8. (We discovered our transformation independently.) The authors implement their

ideas in the tool quantom [RPSB12]. The main differences between our work and

that of Reimer et al. [RSMB14] are as follows. When seen as a specification lan-

guage for sets of prefixes of QBF the notion of soft variables in Definition 1–3 of

Reimer et al. [RSMB14] is more powerful than our notion of cores in Definition 3.1.

Reimer et al. [RSMB14] are interested in satisfiable results, while we are mostly

concerned with unsatisfiable results. While the two are related via hitting set dual-

ity, the approaches are complementary, and often one is used as part of a method

to obtain the other (for an example see [IJM13]). Reimer et al. [RSMB14] make no

connection to unsatisfiable cores. Reimer et al. [RSMB14] use a MaxSAT-based algo-

rithm [ZSM03]; we use a standard algorithm [Mar12] to obtain (optionally) minimal

clausal unsatisfiable cores. Reimer et al. [RSMB14] search for a maximum solution,

while we (optionally) search for a minimal solution. Reimer et al. [RSMB14] do not

modify the matrix, whereas we (optionally) also remove clauses from the matrix.

As a minor practical point, our approach does not require to enhance a QBF in

PCNF with additional information, thus making a large set of benchmarks directly

available.

Weakening universal to existential quantifiers has been called “quantifier ab-

straction” in a work on failed literal detection for QBF [LB11] and “existential

abstraction” in the context of generalizing Q-resolution [LES16]. QBFDD [BLB10,

qbfdd] allows quantifier manipulations when minimizing failure-inducing input.

QCSP. Ferguson and O’Sullivan [FO07] define a number of weakening operations

for QCSP (quantified constraint satisfaction problems) [Che04]. For universal quan-
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tifications they suggest to weaken a universal quantifier to an existential quantifier,

to shrink the domain a universal quantification is ranging over, and to move a

universal quantification to the left in the sequence of quantifications. They then

extend what is essentially an insertion-based algorithm [Mar12] to find minimal

unsatisfiable cores by Junker [Jun01,Jun04] to handle lattices of weakening opera-

tions. Clearly, the idea of weakening universal quantifiers to existential quantifiers

by Ferguson and O’Sullivan is the same as the main idea in this paper; in addition,

they propose two more weakening operations related to universal quantifications.

An obvious difference is that their work deals with QCSP, while we work on QBF

(for a comparative survey of the quantifier-free fragments see [BHZ06]). However,

more importantly, their work remains at a fairly abstract level, both conceptually

and algorithmically; in particular, they do not report on an implementation or ex-

perimental evaluation. Notice that for QBF in PCNF shrinking the domain of a

universal quantification can be achieved by removing clauses of the appropriate

polarity, i.e., by the traditional notion of unsatisfiable cores. In subsequent work

[MOQ15] Mehta et al. extend Ferguson and O’Sullivan’s work to take user pref-

erences between different minimal unsatisfiable cores into account; here, too, no

practical results are reported.

Bordeaux et al. [BCM09] generalize a number of properties from CSP to QCSP.

They investigate the relation between the validities of these properties in the quan-

tified case and in the case in which all universal quantifications have been weakened

to existential quantifications. They also mention other work in QCSP that uses

universal quantifications weakened to existential quantifications.

Various. Shlyakhter et al. [SSJ+03] support the debugging of unsatisfiable Alloy

models by pointing out values of bound variables that are not relevant to the un-

satisfiability. Let p be a Boolean variable in some formula ∀p.f [p]. The approach

by Shlyakhter et al. [SSJ+03] corresponds to weakening f [⊥/p] ∧ f [>/p] either to

f [⊥/p] or to f [>/p]. Notice that this can be achieved by the traditional notion: it

suffices to simply remove clauses with occurrences of p of the suitable polarity. We,

on the other hand, can additionally weaken to f [⊥/p] ∨ f [>/p].

Finally, our work shares the spirit of investigating the aspect of granu-

larity in various notions including: unsatisfiable cores for propositional logic

[KLM06,Sch16b], temporal logic [Sch12,Sch16a], and constraint programming

[GMP07,FO07]; equivalent formulas [GW11]; unrealizable cores [Sch12]; vacuity

[AFF+03,GC04]; justifications [KPG06,LPSV06,HPS08]; diagnoses [PQ13]; and re-

pair [KPSG06,DQF14]. For a uniform treatment of some such notions and their

relationships see the work [MJ14] on minimal sets over monotone predicates.

2. Preliminaries

We consider QBF in PCNF [KB09,GMN09]; using standard techniques any QBF

can be turned into an equivalent QBF in PCNF [KB09].
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Let V be a set of variables; we use the letter p to denote variables. ⊥ and >
are the Boolean constants false and true. A variable, a Boolean constant, or their

negation (denoted ¬) is a literal ; literals are written as the letter l. A disjunction of

literals (l1∨ . . .∨ ln) is a clause, which we denote by the letter c. We use implication

→ as syntactic sugar within clauses as usual. A conjunction of clauses c1∧ . . .∧cn is

a CNF (conjunctive normal form) formula; we write CNF formulas with the letter

C. We treat clauses as sets of literals and CNF formulas as sets of clauses when this

is convenient. A variable p that occurs only non-negated or only negated in a CNF

formula C is pure in C. IB = {0, 1} are the Booleans. A mapping v from V to IB

is an assignment for C. A literal l evaluates to 1 under v iff l = >, l = ¬⊥, l = p

and v(p) = 1, or l = ¬p and v(p) = 0. A clause c evaluates to 1 under v iff one or

more of its literals evaluate to 1 under v. The empty clause evaluates to 0. A CNF

formula C evaluates to 1 under v iff all of its clauses evaluate to 1 under v. The

empty CNF formula evaluates to 1. A CNF formula C is satisfiable if there exists

an assignment v such that C evaluates to 1 under v; otherwise, it is unsatisfiable.

∀ denotes the universal quantifier, and ∃ denotes the existential quantifier, re-

spectively. We represent quantifiers with the letter Q. If Q1, . . ., Qn ∈ {∀,∃} are

quantifiers, if p1, . . . , pn ∈ V are pairwise different variables, and if C is a CNF

formula whose variables are contained in p1, . . . , pn, then Q1p1 . . . Qnpn.C is a QBF

in PCNF. Q1p1 . . . Qnpn is called the prefix, and C is called the matrix of the QBF.

We write prefixes as the letter Π. Let Π.C be a a QBF in PCNF. Its alternation

depth ad(Π.C) is defined as one plus the number of alternations between ∀ and ∃ in

Π. For p ∈ V (Π.C)[⊥/p] (resp. (Π.C)[>/p]) denotes the QBF in PCNF in which Π

is unchanged and every occurrence of p in C is replaced with ⊥ (resp. >). We can

now define the satisfiability of a QBF in PCNF as follows. ∀pΠ.C (resp. ∃pΠ.C) is

satisfiable iff (Π.C)[⊥/p] and (resp. or) (Π.C)[>/p] are satisfiable. The satisfiability

problem for QBF in PCNF is PSPACE-complete [SM73]; deciding the satisfiability

of a QBF in PCNF with alternation depth at most i ∈ N and ∀ (resp. ∃) as the first

quantifier is a ΠP
i -complete (resp. ΣP

i -complete) problem [Sto76,Wra76], where ΠP
i

and ΣP
i denote the i-th level of the polynomial hierarchy.

3. Enhanced Unsatisfiable Cores for QBF

In this section we introduce our enhanced notions of unsatisfiable cores for QBF. We

complement the traditional notion of cores for QBF in PCNF (from now on called

c-cores), which weakens only the matrix by removing clauses, with the notions of q-

cores, which weakens only the prefix by turning universal quantifiers into existential

quantifiers, and of qc-cores, which combines both kinds of weakening. First, we

formally define c-, q-, and qc-cores (Definition 3.1). Then, we naturally extend the

definitions of proper cores and unsatisfiable cores to q- and qc-cores (Definitions 3.2

and 3.3). Finally, we add the criterion of quantifier-minimal unsatisfiability to the

traditional criterion of clause-minimal unsatisfiability (Definition 3.4). Let Π.C be
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a QBF in PCNF.

Definition 3.1. (Core)

(1) Let C ′ ⊆ C. Then Π.C ′ is a c-core of Π.C.

(2) Let Π = Q1p1 . . . Qnpn, Π′ = Q′1p1 . . . Q
′
npn be prefixes such that, ∀1 ≤ i ≤

n: if Qi is ∃, then Q′i is ∃; otherwise, Q′i ∈ {∀,∃}. Then Π′.C is a q-core of

Π.C.

(3) Let Π.C ′ be a c-core of Π.C, and let Π′.C ′ be a q-core of Π.C ′. Then Π′.C ′

is a qc-core of Π.C.

Some authors (e.g., Lonsing and Egly [LE15]) remove quantifications from the

prefix of a c-core if the quantified variables cease to occur in the matrix of the c-core.

In our implementation we do this as a generic postprocessing step and, therefore,

we opt to keep our exposition simple and omit this step from Definition 3.1.

Definition 3.2. (Proper Core) Let Π′.C ′ be a qc-core (resp. c-core, q-core) of

Π.C such that Π′ 6= Π or C ′ 6= C. Then Π′.C ′ is a proper qc-core (resp. proper

c-core, q-core) of Π.C.

Definition 3.3. (Unsatisfiable Core) Let Π′.C ′ be a qc-core (resp. c-core, q-

core) of Π.C such that Π′.C ′ is unsatisfiable. Then Π′.C ′ is an unsatisfiable qc-core

(resp. unsatisfiable c-core, q-core) of Π.C.

If Π′.C ′ is an unsatisfiable c-, q-, or qc-core of Π.C, then Π.C is unsatisfiable.

Definition 3.4. (Minimal Unsatisfiability) Let Π.C be unsatisfiable such that

there is no proper unsatisfiable c-core (resp. q-core) of Π.C. Then Π.C is c-minimally

unsatisfiable (resp. q-minimally unsatisfiable).

Example 3.1. As an example consider Π.C = ∀p.(p) ∧ (¬p). Π.C is obviously

unsatisfiable. It has four c-cores: Π.C, ∀p.(p), ∀p.(¬p), and ∀p.>. Π.C, ∀p.(p), and

∀p.(¬p) are unsatisfiable c-cores of Π.C; ∀p.(p), ∀p.(¬p), and ∀p.> are proper c-cores

of Π.C; and ∀p.(p) and ∀p.(¬p) are both q- and c-minimally unsatisfiable.

Π.C has two q-cores: Π.C and ∃p.(p)∧(¬p). Both are unsatisfiable. ∃p.(p)∧(¬p)

is the only proper q-core of Π.C and the only q-minimally unsatisfiable q-core of

Π.C. ∃p.(p) ∧ (¬p) is also c-minimally unsatisfiable.

Any c-core and any q-core is also a qc-core. Π.C has three qc-cores that are both

proper c-cores and proper q-cores of Π.C: ∃p.(p), ∃p.(¬p), and ∃p.>. All of them

are satisfiable. �

4. QC-Cores Can Be Different From C-Cores

Unsatisfiable cores are commonly taken to be causes and/or explanations of unsat-

isfiability [CD91,BS01,SC03,SSJ+03,YM05,Sch12]. Some authors prefer minimally

or minimum cardinality unsatisfiable cores [CD91,LM04,SC03,TCJ08], and some
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authors use unsatisfiable cores as building blocks of more advanced explanations

[KLM06]. In this paper we take the view that a minimally unsatisfiable core repre-

sents a cause of unsatisfiability and gives rise to an explanation of unsatisfiability.

We now show that our enhanced notion of unsatisfiable qc-cores for QBF in PCNF

can identify additional causes of unsatisfiability (giving rise to additional explana-

tions of unsatisfiability) that differ not only in terms of syntax but also in terms

of both standard and proof-based semantics from the causes of unsatisfiability that

are identified by the traditional notion of unsatisfiable c-cores.

We continue with ∀p.(p)∧ (¬p) from Example 3.1. ∀p.(p)∧ (¬p) has three q- and

c-minimally unsatisfiable qc-cores ∀p.(p), ∀p.(¬p), and ∃p.(p)∧ (¬p). Obviously, the

unsatisfiable q-core ∃p.(p)∧(¬p) differs syntactically from both unsatisfiable c-cores

∀p.(p) and ∀p.(¬p). However, in general, the significance of syntactic differences may

be limited; therefore, in the following we discuss differences in terms of semantics.

A standard semantics for unsatisfiable QBF are tree refutations [Gel12,CFL+06].

Let Π.C be an unsatisfiable QBF. Intuitively, a tree refutation for Π.C shows which

values to assign to the universally quantified variables in Π in order to falsify Π.C.

A tree refutation for Π.C is a tree with the following properties.

(1) The labels of non-leaf nodes are variables in Π; the labels of leaf nodes are

irrelevant.

(2) The labels of edges are Booleans; they represent assignments to the variables

that are labeling their source nodes.

(3) If a node is labeled with a universally quantified variable, then it has one

outgoing edge; it is labeled with either 0 or 1.

(4) If a node is labeled with an existentially quantified variable, then it has two

outgoing edges; one is labeled with 0, the other with 1.

(5) On every path from the root to a leaf node the sequence of labels on the

non-leaf nodes matches the sequence of variables in the prefix Π.

(6) On every path from the root to a leaf node the assignment to the variables

in Π that is induced by the path falsifies C.

∀p.(p) has a single tree refutation. Its root node is labeled p. The root node has

a single outgoing edge labeled 0. ∃p.(p) ∧ (¬p) has a single tree refutation as well.

Its root node is also labeled p. Here, the root node has two outgoing edges, labeled

0 and 1. Clearly, the tree refutations for ∀p.(p) and ∃p.(p)∧ (¬p) are different. They

correspond to different ways to explain why ∀p.(p)∧(¬p) is unsatisfiable. For ∀p.(p)

setting p to 0 falsifies (p). For ∃p.(p)∧ (¬p) setting p to 0 falsifies (p), while setting

p to 1 falsifies (¬p). The reasoning for ∀p.(¬p) is analogous.

Let C1 and C2 be two matrices that are different but have the same sets of sat-

isfying assignments. For any prefix Π, if Π.C1 and Π.C2 are unsatisfiable, then their

sets of tree refutations are identical. I.e., tree refutations cannot always distinguish

unsatisfiable cores. In that case we can use proof-theoretic semantics instead, which

can be more discriminating [Fra14]. For example, we can assign to each unsatisfiable

QBF in PCNF the set of its Q-resolution proofs of unsatisfiability [KKF95]. Then
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we can compare two unsatisfiable cores in terms of their sets of Q-resolution proofs

of unsatisfiability. Q-resolution essentially allows for two operations (we omit some

details and assume a working knowledge of resolution): (i) resolve two clauses on

an existentially quantified literal; and (ii) remove a universally quantified literal l

from a clause c if there is no existentially quantified literal in c that occurs to the

right of the variable of l in the prefix. Then a QBF in PCNF is unsatisfiable iff the

empty clause can be derived via Q-resolution [KKF95].

Using Q-resolution, ∀p.(p) is proved to be unsatisfiable by removing p from (p).

Also using Q-resolution, ∃p.(p)∧ (¬p) is proved to be unsatisfiable by resolving (p)

with (¬p). Hence, ∀p.(p) and ∃p.(p)∧ (¬p) have different sets of Q-resolution proofs

of unsatisfiability. The reasoning for ∀p.(¬p) is analogous.

5. C-Minimal Unsatisfiability Implies Q-Minimal Unsatisfiability

In this section we show that any c-minimally unsatisfiable core is also q-minimally

unsatisfiable.

Theorem 5.1. Let Π.C be a c-minimally unsatisfiable QBF in PCNF such that

every universally quantified variable in Π occurs in some clause in C. Then Π.C is

also q-minimally unsatisfiable. The converse is not true.

Proof. The first part directly follows from Lemma 5.1 below. A counterexample

to disprove the converse is

Π.C = ∃p1∃p2∀p3 . (p1 → p3) ∧ (p3 → p1) ∧ (p2 → p3) ∧ (p3 → p2).

Π.C is clearly q-minimally unsatisfiable; however, removing any clause from C re-

sults in a proper c-core of Π.C, i.e., Π.C is not c-minimally unsatisfiable. This

concludes the proof.

Lemma 5.1. Let

Π.C = Q1p1 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qnpn . c1 ∧ . . . ∧ ci−1 ∧ ci ∧ ci+1 ∧ . . . ∧ cm

be a QBF in PCNF such that pl occurs in ci, let Π′.C ′ be obtained from Π.C by

changing ∀pl to ∃pl in Π, and let Π′′.C ′′ be obtained from Π.C by removing ci from

C. If Π′.C ′ is unsatisfiable, then so is Π′′.C ′′.

Proof. By induction over l. For the base case let l − 1 = 0. By assumption

Π′.C ′ = ∃plQl+1pl+1 . . . Qnpn . c1 ∧ . . . ∧ ci−1 ∧ ci ∧ ci+1 ∧ . . . ∧ cm

is unsatisfiable. Expanding ∃pl gives unsatisfiability of both

(Ql+1pl+1 . . . Qnpn.c1 ∧ . . . ∧ ci−1 ∧ ci ∧ ci+1 ∧ . . . ∧ cm)[⊥/pl],

and

(Ql+1pl+1 . . . Qnpn.c1 ∧ . . . ∧ ci−1 ∧ ci ∧ ci+1 ∧ . . . ∧ cm)[>/pl].
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Without limitation of generality let pl occur non-negated in ci. Hence,

(Ql+1pl+1 . . . Qnpn.c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ cm)[>/pl]

is also unsatisfiable. Finally, by the semantics of ∀pl,

∀plQl+1pl+1 . . . Qnpn.c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ cm

is unsatisfiable as desired.

For the inductive case let l − 1 > 0. First let Q1 = ∃. By assumption

Π′.C ′ = ∃p1Q2p2 . . . Ql−1pl−1∃plQl+1pl+1 . . . Qnpn.c1∧ . . .∧ci−1∧ci∧ci+1∧ . . .∧cm

is unsatisfiable. Expanding ∃p1 gives unsatisfiability of both

(Q2p2 . . . Ql−1pl−1∃plQl+1pl+1 . . . Qnpn.c1 ∧ . . . ∧ ci−1 ∧ ci ∧ ci+1 ∧ . . . ∧ cm)[⊥/p1],

and

(Q2p2 . . . Ql−1pl−1∃plQl+1pl+1 . . . Qnpn.c1 ∧ . . . ∧ ci−1 ∧ ci ∧ ci+1 ∧ . . . ∧ cm)[>/p1].

With the inductive assumption both

(Q2p2 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qnpn.c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ cm)[⊥/p1],

and

(Q2p2 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qnpn.c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ cm)[>/p1]

are unsatisfiable as well. Finally, by the semantics of ∃p1,

∃p1Q2p2 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qnpn.c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ cm

is unsatisfiable as desired.

Now let Q1 = ∀. By assumption

Π′.C ′ = ∀p1Q2p2 . . . Ql−1pl−1∃plQl+1pl+1 . . . Qnpn.c1∧ . . .∧ci−1∧ci∧ci+1∧ . . .∧cm

is unsatisfiable. Expanding ∀p1 gives unsatisfiability of

(Q2p2 . . . Ql−1pl−1∃plQl+1pl+1 . . . Qnpn.c1 ∧ . . . ∧ ci−1 ∧ ci ∧ ci+1 ∧ . . . ∧ cm)[⊥/p1]

or

(Q2p2 . . . Ql−1pl−1∃plQl+1pl+1 . . . Qnpn.c1 ∧ . . . ∧ ci−1 ∧ ci ∧ ci+1 ∧ . . . ∧ cm)[>/p1].

Without limitation of generality let the first part ⊥/p1 be unsatisfiable. Hence, with

the inductive assumption,

(Q2p2 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qnpn.c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ cm)[⊥/p1]

is unsatisfiable. Finally, by the semantics of ∀p1,

∀p1Q2p2 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qnpn.c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ cm

is unsatisfiable as desired. This concludes the proof.
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It is tempting to think that Theorem 5.1 would call into question the usefulness

of unsatisfiable q- or qc-cores, because it proves that essentially any c-minimally un-

satisfiable c-core is already a q-minimally unsatisfiable c-core (and qc-core). How-

ever, Theorem 5.1 does not preclude the existence of additional (possibly c- and

q-minimally) unsatisfiable q- and qc-cores that are different from any unsatisfiable

c-core; in fact, the existence of such cores has been shown in Section 4.

6. Complexity

Let CMF denote the set of c-minimally unsatisfiable QBF in PCNF, let QMF denote

the set of q-minimally unsatisfiable QBF in PCNF, and let QCMF denote CMF ∩
QMF. Kleine-Büning and Zhao established PSPACE-completeness of CMF [KZ06].

Here we extend this result to QMF and QCMF.

Theorem 6.1. QMF and QCMF are PSPACE-complete.

Proof. Clearly, QMF and QCMF are in PSPACE. We show PSPACE-hardness of

QMF by a reduction from CMF. Let

Π.C = Q1p1 . . . Qmpm.c1 ∧ . . . ∧ cn

be a QBF in PCNF. Construct Π′.C from Π.C by removing those universal quan-

tifications from Π whose variables do not occur in C. Let

Π′′.C ′′ = Π′∀p′1 . . . ∀p′n.(c1 ∨ p′1) ∧ . . . ∧ (cn ∨ p′n)

where p′1 . . . p
′
n are fresh. The size of Π′′.C ′′ is obviously linear in the size of Π.C.

We show that Π.C is in CMF iff Π′′.C ′′ is in QMF. First assume that Π.C is in

CMF. Then Π′.C is also in CMF and, by Theorem 5.1, in QMF. Hence, Π′′.C ′′ is

in QMF as well. Now assume that Π.C is not in CMF. If Π.C is satisfiable, then so

is Π′′.C ′′; thus, Π′′.C ′′ 6∈ QMF. Let Π.C be unsatisfiable. Clearly, Π′.C is also not

in CMF. For some 0 ≤ i ≤ n let ci be a clause that can be removed from C without

making the resulting QBF satisfiable. Then

Π′∀p′1 . . . ∀p′i−1∃p′i∀p′i+1 . . . ∀p′n.(c1 ∨ p′1) ∧ . . . ∧ (cn ∨ p′n),

which is a proper q-core of Π′′.C ′′, is unsatisfiable. Hence, Π′′.C ′′ is not in QMF.

Thus, we have PSPACE-hardness of QMF. The proof for PSPACE-hardness of QCMF

is similar. This concludes the proof.

7. The Dual Notion: Enhanced Satisfiable Cores

We now briefly discuss the dual notion of satisfiable cores. As stated before, unsat-

isfiable cores help to explain the unsatisfiability of a formula. While that already

is very useful, it is often necessary to modify the unsatisfiable formula such that it

becomes satisfiable, e.g., when the formula is part of a system description and its

unsatisfiability indicates the presence of contradictory requirements. Our definition
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of enhanced unsatisfiable cores for QBF in PCNF can easily be extended for this

purpose by aiming for cores that are satisfiable rather than unsatisfiable. a b

We begin by supplying straightforward definitions of satisfiable cores (Definition

7.1) and maximally satisfiable cores (Definition 7.2). The latter differs from the cor-

responding definition of minimally unsatisfiable cores in Definition 3.4 in that it

has to explicitly limit the strengthening to those quantifications that were universal

and those clauses that were present in the original QBF. The following Example

7.1 then shows that indeed semantically different satisfiable cores can be obtained

using our enhanced notion of satisfiable cores. Hence, not only can our enhanced

notion of cores for QBF in PCNF produce strictly larger sets of explanations for

unsatisfiability than the traditional notion, but it can also generate strictly larger

sets of diagnoses, repairs, and repaired formulas. We conclude this section by show-

ing in Theorem 7.1 a dual result to Theorem 5.1. While in the next Section 8 we

still consider satisfiable cores as well as unsatisfiable cores, extending the remainder

of this paper to satisfiable cores is left as future work. Let Π.C be a QBF in PCNF.

Definition 7.1. (Satisfiable Core) Let Π′.C ′ be a qc-core (resp. c-core, q-core) of

Π.C such that Π′.C ′ is satisfiable. Then Π′.C ′ is a satisfiable qc-core (resp. satisfiable

c-core, q-core) of Π.C.

Definition 7.2. (Maximally Satisfiable Core) Let x ∈ {c, q, qc}. Let Π′.C ′ be

a satisfiable x-core of Π.C. Let there be no satisfiable qc-core Π′′.C ′′ of Π.C such

that Π′.C ′ is a proper c-core (resp. q-core) of Π′′.C ′′. Then Π′.C ′ is a c-maximally

satisfiable (resp. q-maximally satisfiable) x-core of Π.C.

Example 7.1. We continue Example 3.1 with Π.C = ∀p.(p) ∧ (¬p). Π.C has one

satisfiable c-core ∀p.> and three satisfiable qc-cores ∃p.(p), ∃p.(¬p), and ∃p.>. ∀p.>,

∃p.(p), and ∃p.(¬p) are both q- and c-maximally satisfiable cores of Π.C. The q-

and c-maximally satisfiable qc-cores ∃p.(p) and ∃p.(¬p) of Π.C can be shown to be

semantically different from the only c-maximally satisfiable c-core ∀p.> of Π.C in

a similar fashion as has been done for unsatisfiable cores in Section 4. �

Theorem 7.1. Let Π′.C ′ be a satisfiable qc-core of Π.C such that every variable

that occurs universally quantified in Π and existentially quantified in Π′ also occurs

aIn parts of the literature in a set-based setting the complements of satisfiable subsets (cores) are
referred to as diagnoses [Rei87] and sometimes as repair (solutions) [KPSG06]; in that sense our

satisfiable cores constitute repaired formulas.
bIt is well known that unsatisfiable cores and satisfiable cores are also connected via hitting set
duality (e.g., [Rei87]; for a generic formulation see Slaney [Sla14]). Roughly speaking, in a set-

based setting a hitting set of the set of all unsatisfiable subsets of some set S is the complement

of a satisfiable subset of S. This provides an additional avenue to obtain the enhanced notions of
satisfiable q- and qc-cores from the enhanced notions of unsatisfiable q- and qc-cores: For QBF in

PCNF the matrix already is a set of clauses. The prefix can easily be treated as a set by considering

non-weakened universal quantifications as present in the set and universal-weakened-to-existential
quantifications as absent from the set; alternatively, the transformation in Section 8 can be applied.
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in some clause in C \ C ′. If Π′.C ′ is c-maximally satisfiable, then it is also q-

maximally satisfiable. The converse is not true.

Proof. The first part is easily obtained by repeated application of the following

Lemma 7.1. As a counterexample for the second part consider

Π.C = ∃p1∃p2∀p3 . (p1 → p3) ∧ (p3 → p1) ∧ (p2 → p3) ∧ (p3 → p2)

with satisfiable qc-core

Π′.C ′ = ∃p1∃p2∃p3 . (p1 → p3) ∧ (p3 → p1).

Clearly, Π′.C ′ is a q-maximally satisfiable core of Π.C, and p3 occurs in both,

(p2 → p3) or (p3 → p2); conjoining (p2 → p3) or (p3 → p2) with Π′ does not make

the result unsatisfiable. This concludes the proof.

Lemma 7.1. Let Π.C = Q1p1 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qnpn.C be a QBF in

PCNF. Let Π′.C ′ = Q′1p1 . . . Q
′
l−1pl−1∃plQ′l+1pl+1 . . . Q

′
npn.C

′ be a c-maximally

satisfiable qc-core of Π.C such that pl occurs in some clause in C \ C ′. Then

Π′′.C ′ = Q′1p1 . . . Q
′
l−1pl−1∀plQ′l+1pl+1 . . . Q

′
npn.C

′ is unsatisfiable.

Proof. Corollary of Lemma 5.1.

8. A2AECC: Q- and QC-Cores as C-Cores

We now present a source-to-source transformation on QBF in PCNF that allows to

cast q- and qc-cores of the original formula as c-cores of the transformed formula.

8.1. Definition and correctness

Let Π.C be a QBF in PCNF. For each universally quantified variable pi in Π.C the

transformation replaces the quantification ∀pi in the prefix Π with ∀p′i∃pi, where

p′i is a fresh variable, and conjoins the matrix C with two clauses (pi → p′i) and

(p′i → pi). Hence, the acronym A2AECC. This is formalized in Definition 8.1.

Definition 8.1. (A2AECC) Let Π.C = Q1p1 . . . Qnpn.C. Let p′1, . . . , p
′
n be fresh.

Let, for all 1 ≤ i ≤ n,

a2ae(Qipi) =

{
∀p′i∃pi if Qi = ∀
∃pi otherwise,

and

a2cc(Qipi) =

{
(pi → p′i) ∧ (p′i → pi) if Qi = ∀
> otherwise.

Then

a2aecc(Π.C) = a2ae(Q1p1) . . . a2ae(Qnpn).(
∧

1≤i≤n

a2cc(Qipi)) ∧ C.
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Let Π.C be an unsatisfiable QBF in PCNF. Definition 8.1 allows to reduce the

computation of an unsatisfiable q- or qc-core Π′.C ′ of Π.C to the computation of

an unsatisfiable c-core of a2aecc(Π.C) as follows.

(1) Apply the A2AECC-transformation: let Πa2aecc.Ca2aecc = a2aecc(Π.C).

(2) Compute an unsatisfiable c-core Πa2aecc.C
′
a2aecc of Πa2aecc.Ca2aecc.

(3) Compute the matrix C ′: let C ′ =

{
C if a q-core is desired,

C ∩ C ′a2aecc if a qc-core is desired.

(4) Compute the prefix Π′: take Π and replace each quantification Qipi in Π

with Q′ipi where

Q′i =

{
∃ if (Qi = ∃) or (Qi = ∀ and C ′a2aecc ∩ {(pi → p′i), (p

′
i → pi)} = ∅),

∀ otherwise.

For the dual case of satisfiable cores it its sufficient to compute a satisfiable c-core

in step (2) and to replace the comparison “= ∅” with “6= {(pi → p′i), (p
′
i → pi)}” in

step (4). I.e., the case of one clause remaining in the c-core Πa2aecc.C
′
a2aecc of the two

clauses introduced by the A2AECC-transformation for a universal quantification is

decided in favor of a universal quantification for unsatisfiable cores and in favor of

an existential quantification for satisfiable cores. In Theorem 8.1 below we prove

the correctness of the above procedure. The proof uses the following Lemma 8.1,

which directly follows from the semantics of QBF.

Lemma 8.1. Let

Π.C = Q1p1 . . . Ql−1pl−1∀plQl+1pl+1 . . . Qmpm.c1 ∧ . . . ∧ cn

be a QBF in PCNF. Let p′l be fresh. Let

Π′.C ′ = Q1p1 . . . Ql−1pl−1∀p′l∃plQl+1pl+1 . . . Qmpm.(pl → p′l)∧(p′l → pl)∧c1∧. . .∧cn.

Then Π.C is satisfiable iff Π′.C ′ is satisfiable.

Theorem 8.1. Let Π.C be a QBF in PCNF. Let P be a subset of the universally

quantified variables in Π. Let Π′ be obtained from Π by weakening ∀p to ∃p for all

p ∈ P . Let

Πa2aecc.Ca2aecc = a2aecc(Π.C)

and let

C ′a2aecc = Ca2aecc \
⋃
p∈P
{(p→ p′), (p′ → p)}.

Then

(1) Π′.C is a q-core of Π.C.

(2) Πa2aecc.C
′
a2aecc is a c-core of Πa2aecc.Ca2aecc.

(3) Π′.C is satisfiable iff Πa2aecc.C
′
a2aecc is satisfiable.
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Proof. Claims (1) and (2) are directly obtained from Definition 3.1. To prove

claim (3) proceed by induction on the cardinality of P . Establish the base case

|P | = 0 by repeated application of Lemma 8.1. For the inductive case assume that

the claim is true for every P such that |P | = n. Now let P = {p1, . . . , pn+1}; i.e.,

|P | = n + 1. Obtain Π′′ from Π by weakening ∀pn+1 in Π to ∃pn+1 in Π′′. Let

Π′′a2aecc.C
′′
a2aecc = a2aecc(Π′′.C). By the inductive assumption Π′.C and

Π′′a2aecc.C
′′
a2aecc \

⋃
p∈{p1,...,pn}

{(p→ p′), (p′ → p)}

are equisatisfiable. By the construction of C ′a2aecc and C ′′a2aecc we have

C ′a2aecc = C ′′a2aecc \
⋃

p∈{p1,...,pn}

{(p→ p′), (p′ → p)}.

Hence, Π′.C and Π′′a2aecc.C
′
a2aecc are equisatisfiable. Notice that Πa2aecc only differs

from Π′′a2aecc by having ∀p′n+1∃pn+1 instead of ∃pn+1. Moreover, p′n+1 does not occur

in C ′a2aecc. Hence, Π′′a2aecc.C
′
a2aecc and Πa2aecc.C

′
a2aecc are equisatisfiable. Finally,

with transitivity Π′.C is satisfiable iff Πa2aecc.C
′
a2aecc is satisfiable as desired. This

concludes the proof.

8.2. Complexity-theoretic considerations

Remember that determining the satisfiability of QBF in PCNF with alternation

depth m is a complete problem for the m-th level of the polynomial hierarchy

[Sto76,Wra76]. The following proposition is immediate from Definition 8.1.

Proposition 8.1. Let Π.C be a QBF in PCNF with m universally quantified vari-

ables. Then a2aecc(Π.C) has alternation depth 2m or 2m + 1.

Notice that Lemma 8.1 works in both directions, i.e., it can also be used to

turn Π′.C ′ in Lemma 8.1 into Π.C while preserving (un)satisfiability. Hence, we

can define a reverse transformation that, given a QBF in PCNF Π.C, checks oncec

for each universal quantifier in Π, whether that quantification is an instance of the

reverse direction of Lemma 8.1 and, if yes, replaces ∀p′i∃pi with ∀pi in Π and re-

moves (pi → p′i) and (p′i → pi) from C; we call the resulting reverse transformation

aecc2a. It is easy to see that aecc2a can be performed in deterministic polyno-

mial time and that, for any QBF Π.C, we have ad(aecc2a(Π.C)) ≤ ad(Π.C) and

ad(aecc2a(a2aecc(Π.C))) ≤ ad(Π.C). For m ≥ 1 let QBFm,∀ (resp. QBFm,∃) de-

note the set of all QBF in PCNF that either have alternation depth less than m, or

that have alternation depth m and ∀ (resp. ∃) as their first quantifier:

• QBFm,∀ = {Π.C | ad(Π.C) < m or (ad(Π.C) = m and Π = ∀p1Q2p2 . . .)}
• QBFm,∃ = {Π.C | ad(Π.C) < m or (ad(Π.C) = m and Π = ∃p1Q2p2 . . .)}

cI.e., if ∀p′i∃pi has been replaced with ∀pi, then ∀pi is not checked for replacement again.
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Then we have

Proposition 8.2. Let m ≥ 1.

(1) The satisfiability problem for QBFm,∀∪{a2aecc(Π.C) | Π.C ∈ QBFm,∀} is

in ΠP
m.

(2) The satisfiability problem for QBFm,∃∪{a2aecc(Π.C) | Π.C ∈ QBFm,∃} is

in ΣP
m.

Hence, while the A2AECC-transformation potentially significantly increases the

alternation depth of a QBF in PCNF, from a complexity-theoretic point of view

this does not push determining the satisfiability of QBF in PCNF into higher levels

of the polynomial hierarchy. In Section 9 we discuss a variant of the transformation

that does not affect alternation depth but has different semantics. For experimental

results we refer to Section 14.

8.3. Optimizations

Let a variable p be universally quantified in a prefix Π and pure in a matrix C.

If p occurs only non-negated (resp. negated) in C, then (p′ → p) (resp. (p → p′))

is a quantified blocked clause [BLS11] in a2aecc(Π.C) and can be eliminated from

a2aecc(Π.C).

If a solver for QBF in PCNF allows to group clauses for the computation of

unsatisfiable c-cores [NRS14,Nad10,LS08], as does DepQBF [LE15], then placing each

pair of clauses (pi → p′i), (p
′
i → pi) introduced by Definition 8.1 in a separate clause

group ensures that either none or both of (pi → p′i), (p
′
i → pi) are present in a c-core

of a2aecc(Π.C).

8.4. Example

Example 8.1. We use Π.C = ∀p.(p) ∧ (¬p) from Example 3.1 again. We have

a2aecc(Π.C) = ∀p′∃p.(p→ p′) ∧ (p′ → p) ∧ (p) ∧ (¬p).

The unsatisfiable c-core Π′.C ′1 = ∀p′∃p.(p → p′) ∧ (p′ → p) ∧ (p) of a2aecc(Π.C)

corresponds to the unsatisfiable c-core ∀p.(p) of Π.C; the unsatisfiable c-core

Π′.C ′2 = ∀p′∃p.(p→ p′)∧ (p′ → p)∧ (¬p) of a2aecc(Π.C) corresponds to the unsat-

isfiable c-core ∀p.(¬p) of Π.C; and the unsatisfiable c-core Π′.C ′3 = ∀p′∃p.(p)∧ (¬p)

of a2aecc(Π.C) corresponds to the unsatisfiable q-core ∃p.(p) ∧ (¬p) of Π.C. Π′.C ′3
is c-minimally unsatisfiable, while Π′.C ′1 and Π′.C ′2 are not; however, when using a

clause group for (p → p′), (p′ → p) as discussed above, then Π′.C ′1 and Π′.C ′2 are

c-minimally unsatisfiable as well under a suitable definition of c-minimality that

takes clause groups into account. �
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8.5. Discussion

The A2AECC-transformation in Definition 8.1, Theorem 8.1 is also of theoretical

interest in that it may enable to extend a result for clauses to include universal quan-

tifiers. For example, besides directly extending our enhanced notion of unsatisfiable

cores to satisfiable cores in Section 7, the A2AECC-transformation provides an ad-

ditional avenue to obtain the enhanced notions of satisfiable q- and qc-cores from

the enhanced notions of unsatisfiable q- and qc-cores via hitting set duality [Sla14]

on the sets of matrices of unsatisfiable c-cores of A2AECC-transformed formulas.

9. A Variant of A2AECC: Reducing Alternation Depth by

Reducing Precision

In this section we discuss a variant of the A2AECC-transformation. It avoids the

potentially large increase in alternation depth between Π.C and a2aecc(Π.C) (see

Proposition 8.1). However, it underapproximates the set of quantifiers that can be

weakened from universal to existential in an unsatisfiable q- or qc-core of Π.C.

Assume a QBF in PCNF Π.C that has n universal quantifiers and alternation

depth m. Assume further that ∀pi,1 . . . ∀pi,ni is a maximal sequence (called block)

of universal quantifications in Π. The A2AECC-transformation turns ∀pi,1 . . . ∀pi,ni

into ∀p′i,1∃pi,1 . . . ∀p′i,ni
∃pi,ni

. Overall, with Proposition 8.1, the increase in alterna-

tion depth caused by the A2AECC-transformation, ad(a2aecc(Π.C))− ad(Π.C), is

2 · n−m if Π.C starts with ∀ and 1 + 2 · n−m otherwise.

Let a2aecc′ denote the variant of Definition 8.1 that turns each block of universal

quantifications ∀pi,1 . . . ∀pi,ni
into ∀p′i,1 . . . ∀p′i,ni

∃pi,1 . . . ∃pi,ni
. Here, the increase

in alternation depth ad(a2aecc′(Π.C)) − ad(Π.C) is 0 or 1. Moreover, using tree

refutations (see Section 4), it is easy to see that a2aecc(Π.C) and a2aecc′(Π.C)

are equisatisfiable. As shown in Theorem 8.1, the removal of (pi,i′ → p′i,i′) ∧
(p′i,i′ → pi,i′) from a2aecc(Π.C) corresponds to weakening ∀pi,1 . . . ∀pi,i′−1∀pi,i′
∀pi,i′+1 . . . ∀pi,ni

to ∀pi,1 . . . ∀pi,i′−1∃pi,i′∀pi,i′+1 . . . ∀pi,ni
in Π.C. It is straightfor-

ward to show that the removal of (pi,i′ → p′i,i′) ∧ (p′i,i′ → pi,i′) from a2aecc′(Π.C)

instead corresponds to weakening ∀pi,1 . . . ∀pi,i′−1∀pi,i′∀pi,i′+1 . . . ∀pi,ni
to

∀pi,1 . . . ∀pi,i′−1∀pi,i′+1 . . . ∀pi,ni∃pi,i′ in Π.C.

By the semantics of QBF moving an existential quantification in the prefix to

the right weakens the QBF under consideration. Therefore, the unsatisfiability of

a c-core of a2aecc′(Π.C) implies the unsatisfiability of the corresponding c-core

of a2aecc(Π.C). The converse is not true, as can be seen by considering Π.C =

∀p1∀p2.(p1 → p2)∧(p2 → p1). Weakening ∀p1 to ∃p1 in Π.C leads to the unsatisfiable

∃p1∀p2.(p1 → p2) ∧ (p2 → p1). Correspondingly, removing (p1 → p′1) ∧ (p′1 → p1)

from a2aecc(Π.C) produces

∀p′1∃p1∀p′2∃p2.(p2 → p′2) ∧ (p′2 → p2) ∧ (p1 → p2) ∧ (p2 → p1),

which, in line with Theorem 8.1, is unsatisfiable as well. On the other hand, removing
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(p1 → p′1) ∧ (p′1 → p1) from a2aecc′(Π.C) produces

∀p′1∀p′2∃p1∃p2.(p2 → p′2) ∧ (p′2 → p2) ∧ (p1 → p2) ∧ (p2 → p1),

which is satisfiable, as is ∀p2∃p1.(p1 → p2) ∧ (p2 → p1).

To conclude this section we discuss an alternative perspective on the semantics

of a2aecc′. a2aecc takes the positions of quantifications within a quantifier block as

fixed; in other words, it regards a block of universal quantifications as an (ordered)

list of quantifications. Notice that this is by no means mandatory: by the semantics

of QBF arbitrarily shuffling the quantifications within a quantifier block does not

affect the satisfiability of the resulting QBF. Hence, in an alternative approach a

quantifier block could also be regarded as an (unordered) set of quantifications.

In the light of that, a2aecc′ can be interpreted as making use of the view of a

quantifier block as a set rather than as a list of quantifications and pushing those

quantifications that have been weakened from universal to existential to the right

of their quantifier block (i.e., towards the inside of the QBF). We call the semantics

induced by a2aecc list semantics and the semantics induced by a2aecc′ set-inner

semantics. List semantics acts very conservatively by assigning maximal meaning

to the order of the quantifications in a quantifier block, whereas set-inner semantics

acts very relaxed by assigning no meaning at all to the order of quantifications in a

quantifier block. Finally, remember that, as discussed above, while shuffling quan-

tifications within a block of quantifiers preserves satisfiability, weakening universal

to existential quantifications is not the same in list and in set-inner semantics.

10. Interpreting Unsatisfiable Q- and QC-Cores

We now explain that a universal quantifier may be weakened to an existential quan-

tifier in an unsatisfiable core for two quite different reasons and that it is easier to see

which of the two reasons caused a weakening if the core is c-minimally unsatisfiable.

Let Π.C be an unsatisfiable QBF in PCNF. Let Π′.C ′ be an unsatisfiable q- or

qc-core of Π.C. Let ∀p be a universal quantification in Π that has been weakened to

∃p in Π′. Finally, let C ′′ ⊆ C ′ such that Π′.C ′′ is c-minimally unsatisfiable (clearly,

such C ′′ exists). We distinguish two cases. In the first case p occurs in some clause

c in C ′′. Then Π′.C ′′ represents a cause of the unsatisfiability of Π.C in which c,

including its occurrence of p, is required but in which p only needs to be existentially

quantified (as it is in Π′) rather than universally quantified (as it is in Π). In the

second case p does not occur in any clause of C ′′. Then Π′.C ′′ represents a cause of

the unsatisfiability of Π.C in which p is not required at all; i.e., the quantification

of p could be removed from Π′ entirely.

Notice that in a q- or qc-core that is unsatisfiable but not c-minimally unsat-

isfiable both cases may apply for different choices of C ′′. Hence, if ∀p has been

weakened to ∃p in a non-c-minimally unsatisfiable q- or qc-core Π′.C ′ of Π.C, then

the weakening of ∀p to ∃p should be interpreted with some care. If, on the other

hand, ∀p has been weakened to ∃p in a c-minimally unsatisfiable q- or qc-core Π′.C ′
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of Π.C, then it should be checked whether C ′ contains p or not (if not, our imple-

mentation removes ∃p from Π′ during postprocessing) to determine which of the

two cases above applies.

Example 10.1. As an example consider

Π.C = ∀p1∀p2∀p3∃p4.(p1 → p2) ∧ (p2 → p1) ∧ (p3 → p4)

with a non-c-minimally unsatisfiable qc-core

Π′.C ′ = ∃p1∀p2∃p3∃p4.(p1 → p2) ∧ (p2 → p1) ∧ (p3 → p4).

We can see by inspection that the unsatisfiability of Π′.C ′ is caused by ∃p1∀p2.(p1 →
p2) ∧ (p2 → p1) and that, obviously, for the unsatisfiability of Π′.C ′ it is sufficient

that p1 is existentially quantified. Hence, the weakening of ∀p1 in Π.C to ∃p1 in

Π′.C ′ gives us useful additional information about the unsatisfiability of Π.C. On

the other hand, ∃p3∃p4.(p3 → p4) plays no role in the unsatisfiability of Π′.C ′.

Hence, the weakening of ∀p3 in Π.C to ∃p3 in Π′.C ′ gives us little to no information

about the unsatisfiability of Π.C. Π′.C ′ has only one c-minimally unsatisfiable core:

Π′.C ′′ = ∃p1∀p2∃p3∃p4.(p1 → p2) ∧ (p2 → p1). Remember that by definition every

clause in a c-minimally unsatisfiable core is essential for unsatisfiability. As we can

see, p1 does and p3 does not occur in the matrix C ′′. �

11. ∀-to-∃ Reducibility

We now lift the discussion of the previous Section 10 from a single unsatisfiable core

to the entire formula Π.C by partitioning the set of universally quantified variables

in Π into three sets as follows. The first set contains those universally quantified

variables p of Π for which a c-minimally unsatisfiable qc-core Π′.C ′ of Π.C exists

such that p is existentially quantified in Π′ and occurs in C ′; these are the variables

that can actually still be relevant for the unsatisfiability of Π.C when weakened from

universally to existentially quantified. The second set contains those universally

quantified variables of Π that can be weakened to existentially quantified variables

without making the result satisfiable, but for which no c-minimally unsatisfiable

qc-core Π′.C ′ of Π.C exists in which they are existentially quantified in Π′ and

occur in C ′; these are the variables that cannot be relevant for the unsatisfiability

of Π.C when weakened from universally to existentially quantified. Finally, the third

set contains those universally quantified variables of Π that cannot be weakened to

existentially quantified variables without making the result satisfiable.

Definition 11.1. (∀-to-∃ Reducibility) Let Π.C be unsatisfiable, and let ∀p
occur in Π.

(1) If there exists a c-minimally unsatisfiable qc-core Π′.C ′ of Π.C such that

∀p in Π has been weakened to ∃p in Π′ and such that p occurs in C ′, then

∀p is non-trivially ∀-to-∃ reducible in Π.C.
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(2) If ∀p is not non-trivially ∀-to-∃ reducible in Π.C but there exists an unsat-

isfiable q-core Π′.C of Π.C such that ∀p in Π has been weakened to ∃p in

Π′, then ∀p is trivially ∀-to-∃ reducible in Π.C.

(3) If there exists no unsatisfiable q-core Π′.C of Π.C in which ∀p has been

weakened to ∃p, then ∀p is not ∀-to-∃ reducible in Π.C.

Let p be a universally quantified variable in Π. If p is pure in C, then — because

of the pure literal rule for existentially quantified variables [GMN09] — ∀p is either

trivially or not ∀-to-∃ reducible in Π.C.

Example 11.1. We continue Example 10.1. In

Π.C = ∀p1∀p2∀p3∃p4.(p1 → p2) ∧ (p2 → p1) ∧ (p3 → p4)

p1 is non-trivially ∀-to-∃ reducible, p2 is not ∀-to-∃ reducible, and p3 is trivially

∀-to-∃ reducible. �

To better understand the potential for weakening universal quantifiers to exis-

tential quantifiers we are interested in computing which variables in an unsatisfiable

QBF Π.C are non-trivially ∀-to-∃ reducible. A precise result might require finding

all c-minimally unsatisfiable qc-cores of Π.C. We suggest two methods to under-

approximate the set of non-trivially ∀-to-∃ reducible variables. We start with the

second method. For each universal quantification ∀p in Π it performs the following

steps.

(1) Π′(i).C
′
(i) is obtained from Π.C by weakening ∀p to ∃p.

(2) If Π′(i).C
′
(i) is satisfiable, then ∀p is not ∀-to-∃ reducible in Π.C and the

method moves on to the next universal quantification in Π.

(3) Π′(iii).C
′
(iii) is obtained from Π′(i).C

′
(i) by weakening a maximal set of univer-

sal quantifiers to existential quantifiers in Π′(i) and by removing a maximal

set of clauses without occurrences of p from C(i) such that the result is still

unsatisfiable.

(4) Π′(iv).C
′
(iv) is obtained from Π′(iii).C

′
(iii) by removing all clauses with occur-

rences of p from C ′(iii).

(5) If Π′(iv).C
′
(iv) is satisfiable, then ∀p is non-trivially ∀-to-∃ reducible in Π.C;

otherwise, ∀p is trivially or non-trivially ∀-to-∃ reducible in Π.C.

The first method, which is cheaper but reports “trivially or non-trivially” ∀-to-∃
reducible more often, omits step (3).

12. Implementation

We implemented the ideas presented in this paper as an extension of DepQBF [LE17]

version 6.03, which we call DepQBF-a2aecc. Given a QBF in PCNF Π.C, DepQBF-

-a2aecc can compute an — optionally q- and c-minimally — unsatisfiable c-core,

q-core, or qc-core of Π.C. Alternatively, DepQBF-a2aecc can act as a preprocessor
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to transform Π.C into a2aecc(Π.C). In both cases the variant of the A2AECC-

transformation discussed in Section 9 can be enabled as an option. DepQBF supports

the computation of unsatisfiable cores by permitting to place clauses in clause groups

and, for unsatisfiable formulas, indicating which clause groups were used to establish

unsatisfiability [LE15]. We utilize this to obtain an initial unsatisfiable c-core Π′.C ′

of Π.C (for c-cores) or of a2aecc(Π.C) (for q- and qc-cores). If an unsatisfiable c-

core is desired, then we output Π′.C ′ directly. If an unsatisfiable q-core or qc-core

is desired, then we translate Π′.C ′ back into an unsatisfiable q- or qc-core of Π.C

according to Theorem 8.1. If, in addition, a user requests a minimally unsatisfiable

core, then we employ a deletion-based algorithm [Mar12] with CSR (clause set

refinement) [BLM12] to minimize C ′; we use the DepQBF API [LE15] to dis- or enable

clause groups as needed in the repeated checks for satisfiability. Because of Theorem

5.1 we first minimize the clauses introduced by the A2AECC-transformation and

only after that the clauses of C; optionally, during the first phase of minimization,

we also restrict CSR to the clauses introduced by the A2AECC-transformation.

13. Case Studies

In this section we discuss four case studies from QBFLIB [GNPT], which we en-

countered during our experimental evaluation, that illustrate how the weakening

of universal quantifiers to existential quantifiers in unsatisfiable cores can cause

improved understanding of unsatisfiable QBF.

13.1. Winning strategies in two-player games

The Gent-Rowley suite models variants of the well-known Connect-4 game [GR03].

The parameters of an instance include the length of a winning line and the width

and the height of the game board. A subset of instances model whether player 1 has

a strategy to enforce a draw. Some of these instances with winning lines of length 2

on boards with at least two rows and two columns have unsatisfiable cores in which

all universal quantifiers have been weakened to existential quantifiers. This means

that player 1 would not be able to enforce a draw even if she were given full control

over the moves of player 2. This is clear, because eventually two pieces of the same

color will end up next to each other, either horizontally, vertically, or diagonally,

and, hence, form a winning line for one of the two players. The corresponding

unsatisfiable cores confirmed this.

Moreover, for instances with longer winning lines and on larger boards we ob-

tained unsatisfiable cores in which only one universal quantifier remained. This

seemed odd, as larger board sizes give rise to larger maximal numbers of moves,

which in turn induce larger numbers of universal quantifiers in the input formula.

Inspection of the unsatisfiable cores helped to understand that in the model of the

game in [GR03] player 2 can prevent a draw if she plays an illegal move at her first

turn, thereby ending the game with a win for player 1. This seems to be an aspect

of this model of the game that a user of this model of the game should be aware of.
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Finally, another subset of instances model whether player 2 has a strategy to

win. Again, we obtained an unsatisfiable core in which only one universal quantifier

remained. The unsatisfiable core revealed that player 1 caused the unsatisfiability

by playing an illegal first move; while this should imply a win for player 2, that is

ruled out by Eqn. 12. in [GR03]. This raises the question of whether this part of

the model of the game is indeed as intended.

13.2. Conformant planning

The Rintanen/Sorting networks family contains instances, parameterized by d

and l, which are satisfiable iff there exists a sorting network of depth d that, for

all input sequences of length l, produces a sorted output sequence [Rin07,BG00].

The instance for depth 3 and input sequences of length 6 is unsatisfiable. In the

resulting unsatisfiable core the universal quantification over the first number of the

input sequence has been turned into an existential quantification. This means that

there would be no such sorting network even if the ”planner” were able to freely

choose the first number of the input sequence. This is an interesting fact to know

in itself; moreover, it implies that there is already no sorting network of depth 3 for

input sequences of length 5.

13.3. Satisfiability of modal logic K

The Pan suite of examples encodes formulas in the modal logic K as equisatisfiable

QBF [PV03,BHS00]. In the QBF encoding universal quantification ranges over the

values of an index variable. Each value of the index variable activates a different part

of the encoding, which corresponds to a different ♦-subformula of the K formula.

This avoids the repetition of certain subformulas in the resulting QBF, which is

needed to keep the complexity of the translation from K to QBF polynomial instead

of exponential [PV03]. In an unsatisfiable core that we obtained for the instance

k branch p-2 a universal quantifier had been turned into an existential quantifier.

This signals that it is sufficient to retain either one of two ♦-subformulas in the

input formula to obtain unsatisfiability.

13.4. Answer set programming

The Faber-Leone-Maratea-Ricca/Strategic Companies family of examples en-

codes the question of whether two selected companies from a set of companies are

strategic [FLMR07,LPF+06,CEG97]. Instance x25.17 turned out to be unsatisfi-

able. This means that the two companies under consideration are indeed strategic.

In the corresponding unsatisfiable core the universal quantifier for the variable for a

third company had been weakened to an existential quantifier. This indicates that

that company is strategic as well.
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14. Experimental Evaluation

14.1. Setup and benchmarks

We used a single machine equipped with a Xeon E3-1245v5 CPU and 32 GB RAM,

utilizing 3 out of 4 physical cores for our experiments. The operating system was

Ubuntu 16.04. Run time and memory limits were 300 s and 8 GB. The experiments

took about 2.5 months on our machine.

Our set of benchmarks consists of 5342 instances from QBFLIB [GNPT]. We

chose instances randomly from the set of all QBFLIB instances such that the same

number of instances was taken from each benchmark suite (subject to availability)

and, recursively within benchmark suites, the same number of instances from each

subfamily (for the selection algorithm see Appendix A). As a result, if a benchmark

suite had fewer than 193 available instances, then we included all instances; other-

wise, we used at least 193 instances. We did not employ any other selection criteria.

Table 1 shows the resulting number of instances per benchmark suite; “solved”

means solved by any solver in any of our experiments. Table 2 shows the minimum,

first quartile, medium, third quartile, maximum, and mean values of the number of

universal quantifiers, the number of existential quantifiers, the alternation depth,

the number of clauses, and the maximum variable index for our benchmark set. We

did not apply a preprocessor such as bloqqer [BLS11] to the instances, because we

were interested in determining the potential for weakening universal to existential

quantifiers in the instances as they were originally included in QBFLIB.

For our implementation, our experimental data, and more tables and plots, par-

titioned by benchmark family or structural properties such as number of universal

quantifications or alternation depth, see http://schuppan.de/viktor/ijait20/.

In the tables and plots below “n.s.” abbreviates not solved. In plots red diagonal

crosses represent unsatisfiable and green horizontal/vertical crosses represent satisfi-

able instances. Scatter plots such as Figure 2 (a) potentially suffer from overplotting,

when different benchmark instances are assigned the same x- and y-coordinates and

cannot be distinguished in the plot. In our case the effect tends to be worst in the

corners of the plot. We therefore replace the crosses in the corners with the numbers

of instances exhibiting the corresponding x- and y-coordinates. When two values

are given, then the red, upper value stands for unsatisfiable and the green, lower

value stands for satisfiable instances. For example, in Figure 2 (a) there are 804

instances that remained unsolved by both methods.

14.2. Extracting unsatisfiable cores

In our first set of experiments we extracted unsatisfiable cores with DepQBF-a2aecc

from the 2528 instances that were found to be unsatisfiable. In Section 13 we already

described some of the unsatisfiable qc-cores that we obtained in more detail.

In the upper two sections of Table 3 we show how many universal quantifiers

could be weakened to existential quantifiers as a share of the number of univer-

http://schuppan.de/viktor/ijait20/
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Table 1. Number of instances per benchmark suite.

all solved unsatisfiable solved satisfiable

Akshay-Chakraborty-John-Shah-Rabe 20 2 16
Amendola-Ricca-Truszczynski 112 9 7

Ansotegui 38 12 11

Ayari 71 48 23
Basler 193 75 118

Biere 194 25 159

Cashmore-Fox-Giunchiglia 150 110 40
Castellini 169 112 57

Chen-Interian 194 16 0

Diptarama-Jordan-Shinohara 14 11 2
Egly-Seidl-Tompits-Woltran-Zolda 194 97 78

Faber-Leone-Maratea-Ricca 194 128 7

Gent-Rowley 193 142 10
Herbstritt 194 157 27

Interian 193 24 69
Jordan-Kaiser 194 83 87

Katz 20 8 8

Klieber 30 15 6
Kontchakov 136 70 66

Kronegger-Pfandler-Pichler 194 133 44

Lahiri-Seshia 3 1 2
Lee-Jiang 5 2 3

Letombe 194 85 107

Letz 14 9 5
Ling 8 3 5

Mangassarian-Veneris 170 60 71

MayerEichberger-Saffidine 113 3 35
Messinger 63 0 9

Miller-Marin 194 189 5
Miller-Scholl-Becker 194 160 18

Mneimneh-Sakallah 180 44 123

Narizzano 193 78 115
Palacios 24 9 14

Pan 194 89 98

Peitl 10 10 0
Preusser 12 0 9

qbfeval12 17 8 9

Rabe 14 3 0
Rintanen 131 55 71

Sauer-Reimer 193 42 142

Scholl-Becker 64 30 25
Seidl 194 194 0

Tacchella 193 122 70
Tentrup 74 17 29

Wintersteiger 194 38 96

sum 5342 2528 1896

sal quantifiers in the original formula. In column 1 we state the kind of unsat-

isfiable cores that were extracted. “q” (resp. “qc”) stands for unsatisfiable q-cores

(resp. qc-cores), “min” stands for q-minimality for unsatisfiable q-cores and for both
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Table 2. Statistics about structural properties of the benchmark set.

min. 1st quartile median 3rd quartile max. mean

all (n = 5342)

number of ∀ 0 19.25 90 213 55,022 325.8
number of ∃ 1 477.5 2,239 7,215 2,202,774 18,980.3

alternation depth 1 2 3 6 1,141 17.7

number of clauses 1 2,000 9,126.5 29,861.75 5,534,890 80,410.1
max. variable index 1 558.25 2,556.5 8,556.75 2,202,778 33,383.3

solved unsatisfiable (n = 2528)

number of ∀ 0 20 81.5 189 55,022 313.8

number of ∃ 1 622 2,993 8,332.5 2,202,774 23,311.2

alternation depth 1 3 3 12 781 25.9
number of clauses 5 2,274 11,207.5 35,299 5,534,890 104,313.6

max. variable index 5 764.25 3,287.5 9,880 2,202,778 42,507.8

solved satisfiable (n = 1896)

number of ∀ 0 12 63 232 10,404 314.8

number of ∃ 1 408.75 1,338.5 4,707 1,112,278 7,802.7
alternation depth 1 2 3 4 133 6.3

number of clauses 1 1,525.25 5,007 18,777 2,812,458 35,569.7
max. variable index 1 458 1,592.5 5,605.5 1,112,282 15,112.6

q- and c-minimality for unsatisfiable qc-cores, and “minsepcsr” stands for q- and

c-minimality with separate CSR. “list” refers to list semantics and “set-inner” refers

to set-inner semantics in the A2AECC-transformation (see Section 9). In column 2

we list how many instances of each kind were solved (this is the sum of the remain-

ing columns). For reference, the corresponding numbers for c-cores and c-minimal

c-cores are 1830 and 1682, respectively. In column 3 we provide the number of solved

instances that had no universal quantifiers to begin with. In the remaining columns

we show for how many instances we obtained unsatisfiable q- or qc-cores whose share

of weakened universal quantifiers lies in the range that is stated in row 1. Notice

that the numerator of this fraction includes only weakened universal quantifications

whose variables still occur in some clause of the matrix of the unsatisfiable core,

because our implementation removes quantifications from the prefix whose variables

have no occurrences in the matrix during postprocessing. For example, for q- and

c-minimally unsatisfiable qc-cores with separate CSR we found 22 instances such

that the number of weakened universal quantifiers in the unsatisfiable core divided

by the number of universal quantifiers in the original formula is between 0.6 (in-

clusive) and 0.8 (exclusive). For a number of instances we obtained unsatisfiable

q-cores in which the share of universal quantifiers that had been weakened to exis-

tential quantifiers is quite large; we remark, though, that these cores need not be

c-minimally unsatisfiable (cf. Section 10). Finding an unsatisfiable qc-core in which

a significant share of universal quantifiers has been weakened to existential quanti-

fiers apparently requires to enable minimization with separate CSR. Then also here
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we found instances in which a fairly large share of universal quantifiers had been

weakened to existential quantifiers (these cores are c-minimally unsatisfiable). Un-

surprisingly, Figure 1 shows that for unsatisfiable q-cores, q-minimally unsatisfiable

q-cores, and q- and c-minimally unsatisfiable qc-cores with separate CSR we tend

to obtain higher numbers of weakened universal quantifiers from original instances

with higher numbers of universal quantifiers.
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Fig. 1. Number of universal quantifiers weakened to existential quantifiers depending on the
number of universal quantifiers in the original formula: (a): unsatisfiable q-cores; (b): q-minimally

unsatisfiable q-cores; (c): q- and c-minimally unsatisfiable qc-cores; (d): q- and c-minimally unsat-

isfiable qc-cores with separate CSR.

In the lower section of Table 3 we show how many universal quantifiers were

found to be non-trivially ∀-to-∃ reducible relative to the number of universal quan-

tifiers in the original formula, where “enuma2e1” refers to the first and “enuma2e2”

to the second method from Section 11. Inspection of our data shows that, as ex-

pected, the second method finds more non-trivially ∀-to-∃ reducible quantifiers than

the first method.

In Figure 2 (a) we compare the sizes of q- and c-minimally unsatisfiable qc-cores

obtained with separate CSR with the sizes of c-minimally unsatisfiable c-cores in

terms of number of clauses. We find that, for the same input formula, the former

can be significantly larger than the latter. This is not surprising: turning a universal

quantification into an existential quantification amounts to turning a conjunction

into a disjunction, and establishing the unsatisfiability of a disjunction requires

both disjuncts while establishing the unsatisfiability of a conjunction requires only

one conjunct. Keep in mind (cf. Section 13) that already the mere fact that a cer-
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Fig. 2. (a) Comparing the sizes of unsatisfiable cores [number of clauses]: x-axis: c-minimally

unsatisfiable c-cores, y-axis: q- and c-minimally unsatisfiable qc-cores with separate CSR. (b)

Ratio of the core sizes [numbers of clauses] between q- and c-minimally unsatisfiable qc-cores with
separate CSR and c-minimally unsatisfiable c-cores (y-axis) depending on the number of universal

quantifications weakened to existential quantifications in the q- and c-minimally unsatisfiable qc-

core with separate CSR (x-axis); only pairs for which both unsatisfiable cores were obtained are
included.

tain universal quantifier has been weakened to an existential quantifier may convey

valuable information, irrespective of the remainder of the unsatisfiable core under

consideration. Figure 2 (b) shows that large increases in unsatisfiable core size tend

to coincide with large numbers of weakened universal quantifiers, which is expected.

In Figure 3 (a)–(f) we show the run time overhead that is incurred by each step

when going from no unsatisfiable core extraction via unsatisfiable c-core extraction

to c-minimally unsatisfiable c-core extraction and from no unsatisfiable core ex-

traction via unsatisfiable q-core extraction, unsatisfiable qc-core extraction and q-

and c-minimally unsatisfiable qc-core extraction to q- and c-minimally unsatisfiable

qc-core extraction with separate CSR. Unsatisfiable c-core extraction incurs limited

costs (a); minimization comes with a high overhead (b). The relation of the run times

between no unsatisfiable core extraction and unsatisfiable q-core extraction is quite

variable (c). Moving from unsatisfiable q-core extraction to unsatisfiable qc-core ex-

traction incurs only a moderate overhead (d). In contrast, additionally requiring q-

and c-minimality (e) and, on top of that, using separate CSR (f) are quite costly. In

Figure 3 (g)–(l) we show the corresponding plots for memory; memory usage turned

out not to be a problem for DepQBF-a2aecc. Notice that (b) involves solving the

original versus solving the A2AECC-transformed instance; although the A2AECC-

transformation essentially increases the alternation depth by twice the number of

universal quantifiers minus the alternation depth in the original instance, we did

not observe a clear corresponding dependence of the overhead in (b) (see Figure 4).

We repeated the above experiments with set-inner instead of list semantics. As

expected, when using set-inner semantics, often fewer universal quantifiers were

weakened to existential quantifiers. However, despite the potentially lower alterna-

tion depth of the transformed formula with set-inner semantics, we did not find an

unambiguous performance advantage for set-inner semantics (see Figure 5).
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Fig. 3. (a)–(f) Comparing the run times for extracting unsatisfiable cores in list semantics [sec-
onds]: (a) x-axis: no unsatisfiable cores, y-axis: unsatisfiable c-cores; (b) x-axis: unsatisfiable c-

cores, y-axis: c-minimally unsatisfiable c-cores; (c) x-axis: no unsatisfiable cores, y-axis: unsatisfi-
able q-cores; (d) x-axis: unsatisfiable q-cores, y-axis: unsatisfiable qc-cores; (e) x-axis: unsatisfiable
qc-cores, y-axis: q- and c-minimally unsatisfiable qc-cores; (f) x-axis: q- and c-minimally unsat-

isfiable qc-cores, y-axis: q- and c-minimally unsatisfiable qc-cores with separate CSR. (g)–(l): as

(a)–(f) but for memory [Bytes].
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Fig. 4. Ratio of the run times [seconds] between unsatisfiable q-core extraction and no un-

satisfiable core extraction (y-axis) depending on the increase in alternation depth between the
original and the A2AECC-transformed instances (x-axis); only pairs for which both instances

were solved are included. Using gbutils (see [gbutils]) we obtained Kendall’s rank correlation
coefficient τ = 0.17 at p = 3.1 · 10−25.

14.3. Solving A2AECC-transformed versus original instances

Our method for extracting unsatisfiable q- and qc-cores as described in Section

8 consists of a preprocessing step that applies the A2AECC-transformation, ex-

traction of unsatisfiable c-cores, and a postprocessing step that maps unsatisfiable

c-cores back to unsatisfiable q- or qc-cores. This makes it possible to investigate

the impact of the preprocessing step not only on DepQBF-a2aecc but also on other

QBF solvers, thus allowing for a partial evaluation of our proposed methodology

beyond DepQBF-a2aecc. Therefore, in our second set of experiments, we used Dep-

QBF-a2aecc as a preprocessor and ran the following QBF solvers on both the original

and the A2AECC-transformed instances: DepQBF v. 6.03 [LE17,depqbf], AIGSolve

[PS10,aigsolve], CAQE v. qbfeval 2017 [Ten17,caqe], GhostQ v. 2017-07-26 [JKMC12,

ghostq], QESTO v. 1.0 [JM15,qesto], and RAReQS v. 1.1 [JKMC12,rareqs]. Table 4

shows the numbers of solved instances, and Figure 6 (a)–(f) compare the run times

for solving the A2AECC-transformed versus the original instances with DepQBF (a),

AIGSolve (b), CAQE (c), GhostQ (d), QESTO (e), and RAReQS (f). We observe that

Table 4. Solving A2AECC-transformed versus original instances: number of (un-)solved in-
stances. The best value per column is in bold font, and “vbs” is the virtual best solver.

original A2AECC list A2AECC set-inner

unsat sat n.s. unsat sat n.s. unsat sat n.s.

DepQBF 1911 1293 2138 1556 980 2806 1589 974 2779

AIGSolve 1655 1445 2242 1663 1448 2231 1670 1447 2225
CAQE 2091 1154 2097 1666 921 2755 1413 670 3259

GhostQ 1831 1275 2236 1829 1280 2233 1818 1282 2242
QESTO 1793 995 2554 1387 826 3129 1149 528 3665
RAReQS 1900 942 2500 1106 519 3717 1201 519 3622

vbs 2496 1866 980 2374 1787 1181 2333 1789 1220

(i) the A2AECC-transformed instances can be solved in many cases, (ii) the over-
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Fig. 5. (a)–(d) Comparing the run times for extracting unsatisfiable cores in list semantics (x-
axis) vs. set-inner semantics (y-axis) [seconds]: (a) unsatisfiable q-cores; (b) unsatisfiable qc-cores;

(c) q- and c-minimally unsatisfiable qc-cores; (d) q- and c-minimally unsatisfiable qc-cores with

separate CSR. (e)–(h): as (a)–(d) but for memory [Bytes].

head for solving the A2AECC-transformed instances depends on the solver, and

(iii) some of the A2AECC-transformed instances are solved faster than the original

instances by some solvers. Only AIGSolve and QESTO ran into memory out on a

larger number of instances; the number of memory outs reached up to 25 % of the

number of time outs. For plots see Figure 6 (g)–(l). For CAQE, QESTO, and, to a

lesser extent, RAReQS our data indicate a dependence of the overhead of solving the

A2AECC-transformed versus the original instance on twice the number of universal

quantifiers minus the alternation depth in the original instance (see Figure 7).

We repeated the experiments with set-inner instead of list semantics (see Figure

8). Only for RAReQS set-inner semantics resulted in a fairly unambiguous perfor-

mance advantage. AIGSolve and GhostQ were affected comparatively little by the

choice of semantics, while for the remaining solvers no clear picture arose.
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Fig. 6. (a)–(f): Comparing the run times for solving original (x-axis) versus A2AECC-transformed
(y-axis) instances [seconds]: (a) DepQBF; (b) AIGSolve; (c) CAQE; (d) GhostQ; (e) QESTO; (f) RAReQS.

(g)–(l): as (a)–(f) but for memory [Bytes].

14.4. quantom

In our last set of experiments we performed a preliminary comparison of DepQBF-

-a2aecc with quantom, which, despite its differences, is the most closely related

tool. We used quantom to obtain a minimum cardinality set of universal quantifiers

such that the weakening of all quantifiers in this set from universal to existential
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Fig. 8. (a)–(f) Comparing the run times for solving A2AECC-transformed instances in list se-
mantics (x-axis) vs. set-inner semantics (y-axis) [seconds]: (a) DepQBF; (b) AIGSolve; (c) CAQE; (d)

GhostQ; (e) QESTO; (f) RAReQS. (g)–(l): as (a)–(f) but for memory [Bytes].

makes the QBF under consideration satisfiable. We then compared the performance

of quantom on this task with the performance of DepQBF-a2aecc on extracting a q-

minimally unsatisfiable q-core. Note that this compares finding minimum cardinality

diagnoses with finding minimal unsatisfiable cores, which are quite different tasks!

In Figure 9 we show the results. DepQBF-a2aecc was faster on 835 instances, while

quantom was faster on 81 instances, with some large differences both ways.
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Fig. 9. Comparing the run times for finding q-minimally unsatisfiable q-cores with DepQBF-

-a2aecc (x-axis) with finding minimum cardinality sets of universal quantifiers whose weakening

to existential quantifiers results in satisfiability (y-axis) [seconds].

15. Conclusions

We introduced a notion of q- and qc-cores for QBF in PCNF that not only removes

clauses but also weakens universal quantifiers to existential quantifiers. We showed

that this leads to unsatisfiable cores and, thus, explanations, diagnoses, and repairs

of unsatisfiability that cannot be obtained from traditional unsatisfiable c-cores.

We used the A2AECC-transformation on QBF in PCNF to cast q- and qc-cores as

c-cores. We illustrated with case studies that helpful additional information can be

learned from unsatisfiable qc-cores. We demonstrated through an experimental eval-

uation that our approach can successfully compute unsatisfiable q- and qc-cores on

examples from QBFLIB. Potential future work includes analyzing how the A2AECC-

transformation affects different solvers, finding a method to obtain unsatisfiable q-

and qc-cores without using the A2AECC-transformation such as directly from a run

of the solver, and extending this work to logics with quantification beyond QBF.
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Boolean Formulas”. In: Inf. Comput. 117.1 (1995), pp. 12–18. doi: 10.1006/
inco.1995.1025 (cit. on pp. 7, 8).

[KLM06] O. Kullmann, I. Lynce, and J. Marques-Silva. “Categorisation of Clauses in
Conjunctive Normal Forms: Minimally Unsatisfiable Sub-clause-sets and the
Lean Kernel”. In: Theory and Applications of Satisfiability Testing - SAT
2006, 9th International Conference, Seattle, WA, USA, August 12-15, 2006,
Proceedings. Ed. by A. Biere and C. P. Gomes. Vol. 4121. Lecture Notes
in Computer Science. Springer, 2006, pp. 22–35. isbn: 3-540-37206-7. doi:
10.1007/11814948_4 (cit. on pp. 1, 4, 7).

[KPG06] A. Kalyanpur, B. Parsia, and B. C. Grau. “Beyond Asserted Axioms: Fine-
Grain Justifications for OWL-DL Entailments”. In: Proceedings of the 2006
International Workshop on Description Logics (DL2006), Windermere, Lake

https://doi.org/10.1007/978-3-540-88564-1_21
https://doi.org/10.1007/978-3-540-88564-1_21
http://scholar.google.com/scholar?q=%22Quantified+Maximum+Satisfiability%3A+A+Core-Guided+Approach%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Quantified+Maximum+Satisfiability%3A+A+Core-Guided+Approach%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-642-39071-5_19
http://scholar.google.com/scholar?q=%22Solving+QBF+with+Counterexample+Guided+Refinement%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Solving+QBF+with+Counterexample+Guided+Refinement%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/978-3-642-31612-8_10
http://scholar.google.com/scholar?q=%22Solving+QBF+by+Clause+Selection%22&hl=en&lr=&btnG=Search
http://ijcai.org/Abstract/15/052
http://scholar.google.com/scholar?q=%22QuickXplain%3A+Conflict+Detection+for+Arbitrary+Constraint+Propagation+Algorithms%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22QuickXplain%3A+Conflict+Detection+for+Arbitrary+Constraint+Propagation+Algorithms%22&hl=en&lr=&btnG=Search
http://www.lirmm.fr/~bessiere/ws_ijcai01/junker.ps.gz
http://scholar.google.com/scholar?q=%22QUICKXPLAIN%3A+Preferred+Explanations+and+Relaxations+for+Over-Constrained+Problems%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22QUICKXPLAIN%3A+Preferred+Explanations+and+Relaxations+for+Over-Constrained+Problems%22&hl=en&lr=&btnG=Search
http://www.aaai.org/Library/AAAI/2004/aaai04-027.php
http://www.aaai.org/Library/AAAI/2004/aaai04-027.php
http://scholar.google.com/scholar?q=%22Theory+of+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search
https://doi.org/10.3233/978-1-58603-929-5-735
https://doi.org/10.3233/978-1-58603-929-5-735
http://scholar.google.com/scholar?q=%22Resolution+for+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Resolution+for+Quantified+Boolean+Formulas%22&hl=en&lr=&btnG=Search
https://doi.org/10.1006/inco.1995.1025
https://doi.org/10.1006/inco.1995.1025
http://scholar.google.com/scholar?q=%22Categorisation+of+Clauses+in+Conjunctive+Normal+Forms%3A+Minimally+Unsatisfiable+Sub-clause-sets+and+the+Lean+Kernel%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Categorisation+of+Clauses+in+Conjunctive+Normal+Forms%3A+Minimally+Unsatisfiable+Sub-clause-sets+and+the+Lean+Kernel%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Categorisation+of+Clauses+in+Conjunctive+Normal+Forms%3A+Minimally+Unsatisfiable+Sub-clause-sets+and+the+Lean+Kernel%22&hl=en&lr=&btnG=Search
https://doi.org/10.1007/11814948_4
http://scholar.google.com/scholar?q=%22Beyond+Asserted+Axioms%3A+Fine-Grain+Justifications+for+OWL-DL+Entailments%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Beyond+Asserted+Axioms%3A+Fine-Grain+Justifications+for+OWL-DL+Entailments%22&hl=en&lr=&btnG=Search


2020-06-17 18:33 WSPC/INSTRUCTION FILE ucqbfa2aecc-ijait19

REFERENCES 39

District, UK, May 30 - June 1, 2006. Ed. by B. Parsia, U. Sattler, and D.
Toman. Vol. 189. CEUR Workshop Proceedings. CEUR-WS.org, 2006. url:
http://ceur-ws.org/Vol-189/submission_30.pdf (cit. on p. 4).

[KPSG06] A. Kalyanpur, B. Parsia, E. Sirin, and B. C. Grau. “Repairing Unsatisfi-
able Concepts in OWL Ontologies”. In: The Semantic Web: Research and
Applications, 3rd European Semantic Web Conference, ESWC 2006, Budva,
Montenegro, June 11-14, 2006, Proceedings. Ed. by Y. Sure and J. Domingue.
Vol. 4011. Lecture Notes in Computer Science. Springer, 2006, pp. 170–184.
isbn: 3-540-34544-2. doi: 10.1007/11762256_15 (cit. on pp. 4, 11).
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Appendix A. Selection of Benchmarks

We briefly describe how we obtained our set of benchmarks instances. There were

three main goals.

(1) The set of benchmarks instances should be randomized at the lowest (leaf-)

level of the benchmark family tree.

(2) The set of benchmarks instances should give equal weight to the immediate

subfamilies of each (inner) node of the benchmark family tree, as long as

each subfamily has enough members.

(3) It should be possible to continue supplying slices of benchmark instances

to the server running the experiments until the time for running the ex-

periments is up — without knowing in advance when that is or how many

slices will be run until then.

To achieve these goals we created a queue of benchmark instances as described

below that, when traversed from head to any point between head and tail, ensures

the first two goals to a reasonable extent. We then split the benchmark queue

into slices of size 25 and fed the slices in ascending order to the server running

the experiments. We ran slices 1 through 214. Finally, we removed 8 benchmark

instances in which at least one variable occurred both universally and existentially

quantified in the prefix. For full details we refer to our experimental data, which

includes the shell scripts used, and which is available from http://schuppan.de/

viktor/ijait20/.

Figure 10 shows the algorithm used to generate the queue of benchmark in-

stances. It is called with the root node of the benchmark family tree as argument.

In that tree each node represents a (sub)family of benchmark instances; a leaf node

holds a set of benchmark instances; and an inner node holds no benchmark in-

stances but has a non-emtpy set of child nodes. The algorithm uses the following

subroutines.

is leaf node(node n) returns true iff n is a leaf node.

get instances(node n) returns the set of benchmark instances of leaf node n.

number of subfamilies(node n) returns the number of subfamilies of node n.

get subfamily(node n, natural i) returns the node corresponding to the i-th sub-

family of node n.

empty queue() returns the empty queue.

dequeue(queue q) takes a non-empty queue q, dequeues its first element, and re-

turns that element.

enqueue(queue q, element e) takes a queue q and an element e and enqueues e to

q.

enqueue queue(queue q1, queue q2) takes two queues q1 and q2 and returns the

concatenation of q1 and q2.

shuffle(queue q) takes a queue of benchmark instances q and returns a random

permutation of q.

http://schuppan.de/viktor/ijait20/
http://schuppan.de/viktor/ijait20/
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1 Function benchmark queue(node n): queue

2 if is leaf node (n) then

3 return shuffle (get instances (n));

4 else

5 k ←number of subfamilies (n);

6 for i ←1 to k do

7 queues subfamilies[i] ←benchmark queue (get subfamily (n,i));

8 end

9 queue ←empty queue ();

10 repeat

11 tmp ←empty queue ();

12 for i ←1 to k do

13 if queues subfamilies[i] 6= empty queue () then

14 enqueue (tmp, dequeue (queues subfamilies[i]));

15 end

16 end

17 enqueue queue (queue, shuffle (tmp));

18 until tmp = empty queue ();

19 return queue;

20 end

21 end

Fig. 10. Generating a queue of benchmark instances.
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