
VSchuppan-TIME-2013-full.pdf

Extracting Unsatisfiable Cores for LTL via
Temporal Resolution

(full version; r828, November 15, 2013)

Viktor Schuppan
Email: Viktor.Schuppan@gmx.de

Abstract—Unsatisfiable cores (UCs) are a well established
means for debugging in a declarative setting. Still, tools that
perform automated extraction of UCs for LTL are scarce. Using
resolution graphs to extract UCs is common in many domains.
In this paper we construct and optimize resolution graphs for
temporal resolution as implemented in the temporal resolution-
based solver TRP++ and we use them to extract UCs for
propositional LTL. We implement our method in TRP++, and we
experimentally evaluate it. Source code of our tool is available.

Index Terms—LTL; unsatisfiable cores; vacuity; temporal
resolution;

I. INTRODUCTION

A. Motivation

Debugging is an activity that many hardware and software
developers spend a fair amount of time on. When faced with
some input that induces an undesired behavior it is typically
suggested to minimize that failure-inducing input in order to
simplify identification of the problem (e.g., [ZH02]). Corre-
sponding research has been performed, e.g., in linear program-
ming (e.g., [CD91]), constraint satisfaction (e.g., [Bak+93]),
compilers (e.g., [Wha94]), SAT (e.g., [BS01]), declarative
specifications (e.g., [Shl+03]), and LTL satisfiability (e.g.,
[Sch12]) and realizability (e.g., [Cim+08]).

LTL [Pnu77,Eme90] and its relatives are important speci-
fication languages for reactive systems (e.g., [EF06]) and for
business processes (e.g., [PA06]). Experience in verification
as well as in synthesis has lead to specifications themselves
becoming objects of analysis. Beer et al. report [Bee+01] that
in their experience “[...] during the first formal verification
runs of a new hardware design, typically 20 % of formulas
are found to be trivially valid, and that trivial validity always
points to a real problem in either the design or its specification
or environment.”. In a work on LTL synthesis [Blo+07] Bloem
et al. state that “[...] writing a complete formal specification
[...] was not trivial.” and “Although this approach removes the
need for verification [...] the specification itself still needs to
be validated.”.

Typically, a specification is expected to be satisfiable. If
it turns out to be unsatisfiable, finding a reason for unsat-
isfiability can help with the ensuing debugging. Frequently,
such reason for unsatisfiability is taken to be a part of
the unsatisfiable specification that is by itself unsatisfiable
(e.g., [Sch12,Bak+93,CD91]); this is called an unsatisfiable
core (UC) (e.g., [Sch12,GN03,ZM03b,Hoo99]). Less simplis-
tic ways to examine an LTL specification φ exist [Pil+06],

and understanding their results also benefits from availability
of UCs. First, one can ask whether a certain scenario φ′,
given as an LTL formula, is permitted by φ. That is the case
iff φ ∧ φ′ is satisfiable. Second, one can check whether φ
ensures a certain LTL property φ′′. φ′′ holds in φ iff φ∧¬φ′′
is unsatisfiable. In the first case, if the scenario turns out
not to be permitted by the specification, a UC can help to
understand which parts of the specification and the scenario
are responsible for that. In the second case a UC can show
which parts of the specification imply the property. Moreover,
if there are parts of the property that are not part of the UC,
then those parts of the property could be strengthened without
invalidating the property in the specification; i.e., the property
is vacuously satisfied (e.g., [Sim+10,Bee+01,KV03,Arm+03,
GC04,Fis+08,Kup06]). UCs are therefore an important part
of design methods for embedded systems (e.g., [Pil+06]) as
well as for business processes (e.g., [Awa+12]). Note that
specifications of real world systems may be 100s of pages
long (e.g., [Chi+10]). Hence, providing automated support for
obtaining a UC in case such a specification turns out to be
unsatisfiable is crucial.

UCs also have applications in avoiding the exploration of
parts of a search space that can be known not to contain
a solution for reasons “equivalent” to the reasons for pre-
vious failures (e.g., [Cla+03,Cim+07]) and in certifying the
correctness of a result of unsatisfiability (e.g., [VG02,GN03,
ZM03b]). While our results also benefit these applications, we
focus on debugging below.

Despite their relevance interest in UCs for LTL has been
somewhat limited (e.g., [Cim+07,Sch12,HH11,HSH12]). In
particular, publicly available tools that automatically extract
fine-grained UCs for propositional LTL are scarce.

B. Temporal Resolution as a Basis

Extracting UCs is often possible using any solver for the
logic under consideration by weakening subformulas one by
one and using the solver to test whether the weakened formula
is still unsatisfiable (e.g., [MS10]). While that is simple to
implement, repeated testing for preservation of unsatisfiability
may impose a significant run time burden. Hence, it is interest-
ing to investigate methods to extract UCs from a single run of
a solver. Extracting UCs from resolution graphs is common
in SAT (e.g., [VG02]). A resolution method (e.g., [BG01,
Rob65]) for LTL, temporal resolution (TR), was suggested

mailto:Viktor.Schuppan@gmx.de

by Fisher [Fis91,FDP01] and implemented in TRP++ [HK04,
HK03,trp++]. TRP++ is available as source code [trp++].

TR lends itself as a basis for extracting UCs for LTL for
two reasons. First, the TR-based solver TRP++ proved to be
competitive in a recent evaluation of solvers for LTL satisfi-
ability, in particular on unsatisfiable instances (see pp. 51–55
of the full version of [SD11]). Second, a TR proof naturally
induces a resolution graph, which provides a clean frame-
work for extracting a UC. Note, that while the BDD-based
solver NuSMV [Cim+02] also performed well on unsatisfiable
instances in [SD11], the BDD layer makes extraction of a UC
more involved. On the other hand, the tableau-based solvers
LWB [Heu+95] and pltl [pltl] provide access to a proof of
unsatisfiability comparable to TR, yet tended to perform worse
on unsatisfiable instances in [SD11].

C. Contributions

In this paper we make the following contributions. We
construct resolution graphs for TR for propositional LTL as
implemented in TRP++, and we use them to extract UCs.
Note that TR is significantly more complex than propositional
resolution. Hence, we use the specifics of TR in TRP++ to
optimize the construction of resolution graphs. The temporal
aspect also allows to extract more fine-grained information
from the resolution graph; this is exploited in a companion
paper [Sch13], which this paper provides the basis for. We
implement our method in TRP++, and we experimentally
evaluate it. We make the source code of our solver available.

D. Relation to Vacuity

Conceptually, under the frequently legitimate assumption
that a system description can be translated into an LTL
formula, our results extend to vacuity for LTL [GC04,Bee+01,
KV03,Arm+03,Sim+10,Fis+08,Kup06]. Due to space con-
straints we refer to App. D for details.

E. Related Work

In [Cim+07] Cimatti et al. perform extraction of UCs for
PSL to accelerate a PSL satisfiability solver by performing
Boolean abstraction. Their notion of UCs is coarser than
ours and their solver is based on BDDs and on SAT. An
investigation of notions of UCs for LTL including the relation
between UCs and vacuity is performed in [Sch12]. No imple-
mentation or experimental results are reported, and TR is not
considered. Hantry et al. suggest a method to extract UCs for
LTL in a tableau-based solver [HH11]. No implementation or
experiments are reported. Awad et al. [Awa+12] use tableaux
to extract UCs in the context of synthesizing business process
templates. The description of the method is sketchy and incom-
plete, the notion of UC appears to be one of a subset of a set
of formulas, and no detailed experimental evaluation is carried
out. In [HSH12] the decision and search problems for minimal
UCs for LTL are shown to be PSPACE- and FPSPACE-
complete, respectively. In [CMT11] Cimatti et al. show how
to prove and explain unfeasibility of message sequence charts
for networks of hybrid automata. They consider a different

(π, i) |= 1, 6|= 0
(π, i) |= p ⇔ p ∈ π[i]
(π, i) |= ¬ψ ⇔ (π, i) 6|= ψ
(π, i) |= Xψ ⇔ (π, i + 1) |= ψ

(π, i) |= ψ ∨ ψ′ ⇔ (π, i) |= ψ or (π, i) |= ψ′

(π, i) |= ψ ∧ ψ′ ⇔ (π, i) |= ψ and (π, i) |= ψ′

(π, i) |= ψUψ′ ⇔ ∃i′ ≥ i . ((π, i′) |= ψ′ ∧ ∀i ≤ i′′ < i′ . (π, i′′) |= ψ)

(π, i) |= ψRψ′ ⇔ ∀i′ ≥ i . ((π, i′) |= ψ′ ∨ ∃i ≤ i′′ < i′ . (π, i′′) |= ψ)

(π, i) |= Fψ ⇔ ∃i′ ≥ i . (π, i′) |= ψ

(π, i) |= Gψ ⇔ ∀i′ ≥ i . (π, i′) |= ψ

Fig. 1. Semantics of LTL. π is a word in (2AP)ω , i is a time point in N.
π satisfies φ iff (π, 0) |= φ.

specification language and use an SMT-based algorithm. Some
work deals with unrealizable rather than unsatisfiable cores.
[Cim+08] handles specifications in GR(1), which is a proper
subset of LTL. Könighofer et al. present methods to help
debugging unrealizable specifications by extracting unrealiz-
able cores and simulating counterstrategies [KHB09] as well
as performing error localization using model-based diagnosis
[KHB10]. Raman and Kress-Gazit [RKG11] present a tool
that points out unrealizable cores in the context of robot
control. [Sch12] explores more fine-grained notions of unre-
alizable cores than [Cim+08,KHB09]. In vacuity Simmonds
et al. [Sim+10] use SAT-based bounded model checking (e.g.,
[Bie+99,Bie09]) for vacuity detection. They only consider k-
step vacuity, i.e., taking into account bounded model checking
runs up to a bound k, and leave the problem of removing the
bound k open. For a more extensive discussion on the relation
between vacuity and UCs for LTL we refer to App. D and
[Sch12].

F. Structure of the Paper

Section II starts with preliminaries. TR and its clausal
normal form SNF are introduced in Sec. III. In Sec. IV we
describe the construction of a resolution graph and its use to
obtain a UC. The UCs obtained in Sec. IV are lifted from
SNF to LTL in Sec. V and minimized in Sec. VI. In Sec. VII
we provide examples that illustrate why these UCs are useful
and how to obtain them. We discuss our implementation and
experimental evaluation in Sec. VIII. Section IX concludes.
Due to space constraints some proofs are sketched or omitted
in the main part; these can be found in the appendices. For
our implementation, examples, and log files see [www].

II. PRELIMINARIES

We use a standard version of LTL, see, e.g., [Eme90]. Let
B be the set of Booleans, and let AP be a finite set of
atomic propositions. The set of LTL formulas is constructed
inductively as follows. The Boolean constants 0 (false), 1
(true) ∈ B and any atomic proposition p ∈ AP are LTL
formulas. If ψ, ψ′ are LTL formulas, so are ¬ψ (not), ψ ∨ψ′
(or), ψ ∧ ψ′ (and), Xψ (next time), ψUψ′ (until), ψRψ′

(releases), Fψ (finally), and Gψ (globally). We use ψ → ψ′

(implies) as an abbreviation for ¬ψ ∨ ψ′. For the semantics
of LTL see Fig. 1. An occurrence of a subformula ψ of an
LTL formula φ has positive polarity (+) if it appears under
an even number of negations in φ and negative polarity (−)
otherwise.

2

Input: A set of SNF clauses C.
Output: Unsat if C is unsatisfiable; sat otherwise.

M ← C; if 2 ∈M then return unsat;1
saturate(M); if 2 ∈M then return unsat;2
augment(M);3
saturate(M); if 2 ∈M then return unsat;4
M ′ ← ∅;5
while M ′ 6= M do6

M ′ ←M ;7
for c ∈ C . c is an eventuality clause do8

C′ ← {2};9
repeat10

initialize-BFS-loop-search-iteration(M , c, C′, L);11
saturate-step-xx(L);12
C′ ← {c′ ∈ L | c′ has empty X part};13
C′′ ← {(G(Q)) | (G((0) ∨ (X(Q ∨ l)))) ∈14
L generated by BFS-loop-it-init-c };

found ← subsumes(C′, C′′);15
until found or C′ = ∅ ;16
if found then17

derive-BFS-loop-search-conclusions(c, C′, M);18
saturate(M); if 2 ∈M then return unsat;19

return sat;20

Fig. 2. LTL satisfiability checking via TR in TRP++.

III. TEMPORAL RESOLUTION (TR)

In this section we describe TR [FDP01] as implemented
in TRP++ [HK03,HK04,trp++]. We first explain the clausal
normal form TR is based on. Then we provide a concise
description of TR as required for the purposes of this paper.

A. Separated Normal Form (SNF)

TR works on formulas in a clausal normal form called
separated normal form (SNF) [Fis91,FN92,FDP01]. For any
atomic proposition p ∈ AP p and ¬p are literals.
Let p1, . . . , pn, q1, . . . , qn′ , l with 0 ≤ n, n′ be literals
such that p1, . . . , pn and q1, . . . , qn′ are pairwise different.
Then (i) (p1 ∨ . . . ∨ pn) is an initial clause; (ii) (G((p1 ∨
. . . ∨ pn) ∨ (X(q1 ∨ . . . ∨ qn′)))) is a global clause; and
(iii) (G((p1 ∨ . . . ∨ pn) ∨ (F(l)))) is an eventuality clause. l
is called an eventuality literal. As usual an empty disjunction
(resp. conjunction) stands for 0 (resp. 1). () or (G()), denoted
2, stand for 0 or G(0) and are called empty clause. The
set of all SNF clauses is denoted C. Let c1, . . . , cn with
0 ≤ n be SNF clauses. Then

∧
1≤i≤n ci is an LTL formula

in SNF. Every LTL formula φ can be transformed into an
equisatisfiable formula φ′ in SNF [FDP01].

B. TR in TRP++

The production rules of TRP++ are shown in Tab. I. The
second column assigns a name to a production rule. The third
and fifth columns list the premises. The seventh column gives
the conclusion. Columns 4, 6, and 8 are described below.
Columns 9–11 become relevant only in later sections.

The algorithm in Fig. 2 provides a high level view of TR in
TRP++ [HK04]. The algorithm takes a set of starting clauses
C in SNF as input. It returns unsat if C is found to be unsatis-
fiable (by deriving 2) and sat otherwise. Resolution between
two initial or two global clauses or between an initial and
a global clause is performed by a straightforward extension
of propositional resolution (e.g., [Rob65,FM09,BG01]). The

corresponding production rules are listed next to saturation
in Tab. I. Given a set of SNF clauses C we say that one
saturates C if one applies these production rules to clauses in
C until no new clauses are generated. Resolution between a
set of initial and global clauses and an eventuality clause with
eventuality literal l requires finding a set of global clauses that
allows to infer conditions under which XG¬l holds. Such a
set of clauses is called a loop in ¬l . Loop search involves
all production rules in Tab. I except init-ii , init-in , step-nn , and
step-nx .

In line 1 the algorithm in Fig. 2 initializes M with the
set of starting clauses and terminates iff one of these is the
empty clause. Then, in line 2, it saturates M (terminating iff
the empty clause is generated). In line 3 it augments M by
applying production rule aug1 to each eventuality clause in M
and aug2 once per eventuality literal in M , where wl is a fresh
proposition. This is followed by another round of saturation in
line 4. From now on the algorithm in Fig. 2 alternates between
searching for a loop for some eventuality clause c (lines 9–
18) and saturating M if loop search has generated new clauses
(line 19). It terminates, if either the empty clause was derived
(line 19) or if no new clauses were generated (line 20).

Loop search for some eventuality clause c may take several
iterations (lines 11–15). Each loop search iteration uses satu-
ration restricted to step-xx as a subroutine (line 12). Therefore,
each loop search iteration has its own set of clauses L in which
it works. We call M and L partitions. Columns 4, 6, and 8
in Tab. I indicate whether a premise (resp. conclusion) of a
production rule is taken from (resp. put into) the main partition
(M), the loop partition of the current loop search iteration
(L), the loop partition of the previous loop search iteration
(L′), or either of M or L as long as premises and conclusion
are in the same partition (ML). In line 11 partition L of
a loop search iteration is initialized by applying production
rule BFS-loop-it-init-x once to each global clause with non-empty
X part in M , rule BFS-loop-it-init-n once to each global clause
with empty X part in M , and rule BFS-loop-it-init-c once to
each global clause with empty X part in the partition of the
previous loop search iteration L′. Notice that by construction
at this point L contains only global clauses with non-empty
X part. Then L is saturated using only rule step-xx (line 12).
A loop has been found iff each global clause with empty X
part that was derived in the previous loop search iteration is
subsumed by at least one global clause with empty X part
that was derived in the current loop search iteration (lines 13–
15). Subsumption between a pair of clauses corresponds to
an instance of production rule BFS-loop-it-sub ; note, though, that
this rule does not produce a new clause but records a relation
between two clauses to be used later for extraction of a UC.
Loop search for c terminates, if either a loop has been found or
no clauses with empty X part were derived (line 16). If a loop
has been found, rules BFS-loop-conclusion1 and BFS-loop-conclusion2

are applied once to each global clause with empty X part that
was derived in the current loop search iteration (line 18) to
obtain the loop search conclusions for the main partition.

3

TABLE I
PRODUCTION RULES USED IN TRP++. LET P ≡ p1 ∨ . . . ∨ pn , Q ≡ q1 ∨ . . . ∨ qn′ , R ≡ r1 ∨ . . . ∨ rn′′ , AND S ≡ s1 ∨ . . . ∨ sn′′′ .

rule premise 1 part. premise 2 part. conclusion part. p.1 – c p.2 – c vt. c

saturation

init-ii (P ∨ l) M (¬l ∨ Q) M (P ∨ Q) M 4 4 4
init-in (P ∨ l) M (G(¬l ∨ Q)) M (P ∨ Q) M 4 4 4
step-nn (G(P ∨ l)) M (G(¬l ∨ Q)) M (G(P ∨ Q)) M 4 4 4
step-nx (G(P ∨ l)) M (G((Q) ∨ (X(¬l ∨ R)))) M (G((Q) ∨ (X(P ∨ R)))) M 4 4 4
step-xx (G((P) ∨ (X(Q ∨ l)))) ML (G((R) ∨ (X(¬l ∨ S)))) ML (G((P ∨ R) ∨ (X(Q ∨ S)))) ML 4 4 4

augmentation aug1 (G((P) ∨ (F(l)))) M (G(P ∨ l ∨ wl)) M 4 — 4
aug2 (G((P) ∨ (F(l)))) M (G((¬wl) ∨ (X(l ∨ wl)))) M 6 — 4

BFS loop search

BFS-loop-it-init-x c ≡ (G((P) ∨ (X(Q)))) with |Q| > 0 M c L 4 — 4
BFS-loop-it-init-n (G(P)) M (G((0) ∨ (X(P)))) L 4 — 4

BFS-loop-it-init-c (G(P)) L′ (G((Q) ∨ (F(l)))) M (G((0) ∨ (X(P ∨ l)))) L 6 6 4
BFS-loop-it-sub c≡(G(P)) with c → (G(Q)) L (G((0) ∨ (X(Q ∨ l)))) generated by BFS-loop-it-init-c L 4 — 6
BFS-loop-conclusion1 (G(P)) L (G((Q) ∨ (F(l)))) M (G(P ∨ Q ∨ l)) M 4 4 4
BFS-loop-conclusion2 (G(P)) L (G((Q) ∨ (F(l)))) M (G((¬wl) ∨ (X(P ∨ l)))) M 4 6 4

IV. UC EXTRACTION

In this section we describe, given an unsatisfiable set of
SNF clauses C, how to obtain a subset of C, Cuc, that is
by itself unsatisfiable from an execution of the algorithm in
Fig. 2. The general idea of the construction is unsurprising in
that during the execution of the algorithm in Fig. 2 a resolution
graph is built that records which clauses were used to generate
other clauses (Def. 1). Then the resolution graph is traversed
backwards from the empty clause to find the subset of C that
was actually used to prove unsatisfiability (Def. 2). The main
concern of Def. 1, 2, and their proof of correctness in Thm. 1 is
therefore that/why certain parts of the TR proof do not need
to be taken into account when determining Cuc. Remark 1
complements this by showing for other parts of the TR proof
that they are indeed required to obtain Cuc. Finally, in Remark
2, the specifics of TR in the algorithm in Fig. 2 and of Def. 1,
2 are used to optimize construction of the resolution graph.

Definition 1 (Resolution Graph). A resolution graph G is a
directed graph consisting of (i) a set of vertices V , (ii) a set of
directed edges E ⊆ V ×V , (iii) a labeling of vertices with SNF
clauses LV : V → C, and (iv) a partitioning QV of the set
of vertices V into one main partition MV and one partition
LVi for each BFS loop search iteration: QV : V = MV]
LV0] . . .] LVn . Let C be a set of SNF clauses. During an
execution of the algorithm in Fig. 2 with input C a resolution
graph G is constructed as follows.

In line 1 G is initialized: (i) V contains one vertex v per
clause c in C: V = {vc | c ∈ C}, (ii) E is empty: E = ∅,
(iii) each vertex is labeled with the corresponding clause: LV :
V → C,LV (vc) = c, and (iv) the partitioning QV contains
only the main partition MV , which contains all vertices: QV :
MV = V .

Whenever a new BFS loop search iteration is entered (line
11), a new partition LVi is created and added to QV . For
each application of a production rule from Tab. I that either
generates a new clause in partition M or L or is the first
application of rule BFS-loop-it-sub to clause c′′ in C ′′ in line
15: (i) if column 11 (vt. c) of Tab. I contains 4, then a new
vertex v is created for the conclusion c (which is a new clause),
labeled with c, and put into partition MV or LVi ; (ii) if column
9 (p.1 – c) (resp. column 10 (p.2 – c)) contains 4, then
an edge is created from the vertex labeled with premise 1
(resp. premise 2) in partition MV or LVi to the vertex labeled

with the conclusion in partition MV or LVi .

Definition 2 (UC in SNF). Let C be a set of SNF clauses
to which the algorithm in Fig. 2 has been applied and shown
unsatisfiability, let G be the resolution graph, and let v2 be
the (unique) vertex in the main partition MV of the resolution
graph G labeled with the empty clause 2. Let G′ be the
smallest subgraph of G that contains v2 and all vertices in G
(and the corresponding edges) that are backward reachable
from v2. The UC of C in SNF, Cuc, is the subset of C
such that there exists a vertex v in the subgraph G′, labeled
with c ∈ C, and contained in the main partition MV of G:
Cuc = {c ∈ C | ∃v ∈ VG′ . LV (v) = c ∧ v ∈MV }.

Theorem 1 (Unsatisfiability of UC in SNF). Let C be a set of
SNF clauses to which the algorithm in Fig. 2 has been applied
and shown unsatisfiability, and let Cuc be the UC of C in SNF.
Then Cuc is unsatisfiable.

Assume for a moment that in columns 9 (p.1 – c) and
10 (p.2 – c) of Tab. I all 6 are replaced with 4, i.e., that
each conclusion in the resolution graph is connected by an
edge to each of its premises rather than only to a subset
of them. In that case the UC in SNF according to Def. 2
would contain all clauses of the set of starting clauses C
that contributed to deriving the empty clause and, hence, to
establishing unsatisfiability of C. In that case it would follow
directly from the correctness of TR that Cuc is unsatisfiable.
It remains to show that not including an edge (i) from premise
1 to the conclusion for rule aug2 , (ii) from premise 2 to the
conclusion for rule BFS-loop-conclusion2 , (iii) from premise 2 to
the conclusion for rule BFS-loop-it-init-c , and (iv) from premise 1
to the conclusion for rule BFS-loop-it-init-c in the resolution graph
G maintains the fact that the resulting Cuc is unsatisfiable.

To see the intuition behind (i) note that for a vertex vc
labeled with a conclusion c of rule aug2 in the main partition
MV to be backward reachable from the (unique) vertex in
the main partition MV of the resolution graph G labeled with
the empty clause 2, v2, the occurrence of ¬wl in c must be
“resolved away” at some point on the path from vc to v2. It
turns out that this can only happen by resolution with a clause
that is derived from the conclusion of rule aug1 applied to an
eventuality clause c′ with eventuality literal l . By construction
of the resolution graph G vc′ must be backward reachable
from v2 and, therefore, c′ must be included in the UC in SNF.

4

Hence, an execution of the algorithm in Fig. 2 with input Cuc

will produce c from c′.
A similar reasoning as for (i) applies to (ii).
For (iii) note that a conclusion of rule BFS-loop-it-init-c can

only be backward reachable from v2 if the corresponding BFS
loop search iteration is successful and a vertex labeled with
one of the resulting conclusions of rules BFS-loop-conclusion1 or
BFS-loop-conclusion2 is backward reachable from v2. The latter
fact implies that an eventuality clause with the same eventual-
ity literal as in premise 2 of rule BFS-loop-it-init-c is present in the
UC in SNF. Hence, an execution of the algorithm in Fig. 2
with input Cuc will produce premise 2 of BFS-loop-it-init-c as
required.

Finally, (iv) is obtained by understanding that in a BFS
loop search iteration the premises 1 of rule BFS-loop-it-init-c

essentially constitute a hypothetical fixed point; if the BFS
loop search iteration is successful, then the hypothetical fixed
point is proven to be an actual fixed point. For the correctness
of a proof of unsatisfiability of C it is only relevant that this
hypothetical fixed point is shown to be an actual fixed point
but not how the hypothesis is obtained.

For a formalization of the above reasoning see App. A.
By taking the fact that each vertex in the resolution graph

has at most 2 incoming edges into account, the first part of
the following Prop. 1 is immediate from Def. 1 and 2. The
second part is obtained by bounding the number of (i) different
clauses in each partition, (ii) iterations in each loop search by
the length of the longest monotonically increasing sequence
of Boolean formulas over AP , and (iii) loop searches by the
number of different loop search conclusions.

Proposition 1 (Complexity of UC Extraction). Let C be
a set of SNF clauses to which the algorithm in Fig. 2 is
applied and shows unsatisfiability. Construction and backward
traversal of the resolution graph and, hence, construction of
Cuc according to Def. 2 can be performed in time O(|V |) in
addition to the time required to run the algorithm in Fig. 2.
|V | is at most exponential in |AP |+ log(|C|).

Remark 1 (Minimality of Set of Premises to Include in Res-
olution Graph). Theorem 1 shows that not including premises
for production rules marked by 6 in columns 9 (p.1 – c) and
10 (p.2 – c) of Tab. I during the construction of the resolution
graph still leads to a UC. It does not discuss whether the
remaining premises, marked by 4 in columns 9 (p.1 – c) and
10 (p.2 – c) of Tab. I, actually need to be included to guarantee
a UC. For all premises of all production rules marked by 4
in columns 9 (p.1 – c) and 10 (p.2 – c) of Tab. I it turns out
that they are indeed required to obtain a UC. The proof in
App. A is essentially obtained by providing suitable examples.

Remark 2 (Pruning the Resolution Graph). The specifics
of TR in the algorithm in Fig. 2 and the fact that not
all premises need to be included during the construction of
the resolution graph allow to optimize extraction of UCs
by pruning the resolution graph during the execution of the
algorithm in Fig. 2 extended with the construction in Def. 1, 2

as follows. (i) Notice that after the completion of a (successful
or unsuccessful) loop search for some eventuality clause c in
lines 9–19 of the algorithm in Fig. 2 no new edges between
the main partition and one of the partitions used during the
just completed loop search for c will be created. Hence, after
completion of an execution of lines 9–19 of the algorithm in
Fig. 2 vertices not backward reachable from the main partition
can be pruned from the resolution graph. (ii) Moreover, note
that, because there is no edge from instances of premise 1 to
the conclusion induced by production rule BFS-loop-it-init-c , there
are no outgoing edges from a failed loop search iteration (lines
11–15 of the algorithm in Fig. 2). Therefore, if a loop search
iteration fails, all vertices and edges in the partition of that
loop search iteration can be pruned from the resolution graph
right away.

V. FROM LTL TO SNF AND BACK

We use a structure-preserving translation (e.g., [PG86]) to
translate an LTL formula into a set of SNF clauses, which
slightly differs from the translation suggested in [FDP01].
It is well known that φ and SNF (φ) according to Def. 3
are equisatisfiable and that a satisfying assignment for φ
(resp. SNF (φ)) can be extended (resp. restricted) to a sat-
isfying assignment of SNF (φ) (resp. φ).

Definition 3 (Translation from LTL to SNF). Let φ be an
LTL formula over atomic propositions AP , and let X =
{x, x′, . . .} be a set of fresh atomic propositions not in AP .
Assign each occurrence of a subformula ψ in φ a Boolean
value or a proposition according to column 2 of Tab. II, which
is used to reference ψ in the SNF clauses for its superformula.
Moreover, assign each occurrence of ψ a set of SNF clauses
according to column 3 or 4 of Tab. II. Let SNF aux (φ) be the
set of all SNF clauses obtained from φ that way. Then the
SNF of φ is defined as SNF (φ) ≡ xφ ∧

∧
c∈SNFaux (φ)

c.

In the following Def. 4 we describe how to map a UC in
SNF back to a UC in LTL. The main idea in its proof of
correctness (Thm. 2) is to compare the SNF of φ and φuc

by partitioning the SNF clauses into three sets: one that is
shared by the two SNFs, one that replaces some occurrences
of propositions in SNF (φ) with 1 or 0, and one whose clauses
are only in SNF (φ). Then one can show that the UC of φ in
SNF must be contained in the first partition.

Definition 4 (Mapping a UC in SNF to a UC in LTL). Let
φ be an unsatisfiable LTL formula, let SNF (φ) be its SNF,
and let Cuc be the UC of SNF (φ) in SNF. Then the UC
of φ in LTL, φuc , is obtained as follows. For each positive
(resp. negative) polarity occurrence of a proper subformula
ψ of φ with proposition xψ according to Tab. II, replace
ψ in φ with 1 (resp. 0) iff Cuc contains no clause with an
occurrence of proposition xψ that is marked blue boxed in
Tab. II. (We are sloppy in that we “replace” subformulas of
replaced subformulas, while in effect they simply vanish.)

Theorem 2 (Unsatisfiability of UC in LTL). Let φ be an
unsatisfiable LTL formula, and let φuc be the UC of φ in

5

TABLE II
TRANSLATION FROM LTL TO SNF.

Subf. Prop. SNF Clauses (+ polarity occurrences) SNF Clauses (− polarity occurrences)

1/0/p 1/0/p — —
¬ψ x¬ψ (G(x¬ψ → (¬ xψ))) (G((¬x¬ψ) → xψ))

ψ ∧ ψ′ x
ψ∧ψ′ (G(x

ψ∧ψ′ → xψ)), (G(x
ψ∧ψ′ → x

ψ′)) (G((¬x
ψ∧ψ′) → ((¬ xψ) ∨ (¬ x

ψ′))))

ψ ∨ ψ′ x
ψ∨ψ′ (G(x

ψ∨ψ′ → (xψ ∨ x
ψ′))) (G((¬x

ψ∨ψ′) → (¬ xψ))), (G((¬x
ψ∨ψ′) → (¬ x

ψ′)))

Xψ xXψ (G(xXψ → (X xψ))) (G((¬xXψ) → (X¬ xψ)))

Gψ xGψ (G(xGψ → (XxGψ))), (G(xGψ → xψ)) (G((¬xGψ) → (F¬ xψ)))

Fψ xFψ (G(xFψ → (F xψ))) (G((¬xFψ) → (X¬xFψ))), (G((¬xFψ) → (¬ xψ)))

ψUψ′ x
ψUψ′ (G(x

ψUψ′ → (x
ψ′ ∨ xψ))), (G((¬x

ψUψ′) → (¬ x
ψ′))), (G((¬x

ψUψ′) → ((¬ xψ) ∨ (X¬x
ψUψ′))))

(G(x
ψUψ′ → (x

ψ′ ∨ (Xx
ψUψ′)))), (G(x

ψUψ′ → (F x
ψ′)))

ψRψ′ x
ψRψ′ (G(x

ψRψ′ → x
ψ′)), (G(x

ψRψ′ → (xψ ∨ (Xx
ψRψ′)))) (G((¬x

ψRψ′) → ((¬ x
ψ′) ∨ (¬ xψ)))),

(G((¬x
ψRψ′) → ((¬ x

ψ′) ∨ (X¬x
ψRψ′)))), (G((¬x

ψRψ′) → (F¬ x
ψ′)))

LTL. Then φuc is unsatisfiable.

Remark 3 (Def. 4 UC is [Sch12] Def. 10 UC). In Def. 10 of
[Sch12] a UC of an unsatisfiable formula in LTL is obtained by
replacing some occurrences of positive polarity subformulas
with 1 and some occurrences of negative polarity subformulas
with 0 while maintaining unsatisfiability. By construction in
Def. 4 and with Thm. 2 it is immediate that a UC in LTL
according to Def. 4 above is a UC according to Def. 10 of
[Sch12].

VI. MINIMAL UCS

In this section we introduce notions of and algorithms to
obtain minimal UCs. The results are either straightforward
(Remark 4) or well known (Def. 5, Remark 5). Still, the
material is needed in the experimental evaluation and within
the flow of the paper this seems to be the appropriate place.

Definition 5 (Minimal UC in SNF and LTL). (See, e.g.,
[Sch12]: irreducible UC) A UC Cuc in SNF is minimal iff
∀c ∈ Cuc . Cuc \ {c} is satisfiable. A UC φuc in LTL
is minimal iff there is no positive polarity occurrence of
a subformula that can be replaced with 1 and no negative
polarity occurrence of a subformula that can be replaced with
0 without making φuc satisfiable.

Remark 4 (Minimal UC in SNF No Guarantee for Minimal
UC in LTL). Let φ be an unsatisfiable LTL formula, C its
translation to SNF, Cuc a minimal UC of C in SNF, and φuc

the UC of φ in LTL obtained by mapping Cuc back to LTL
via Def. 4. Then φuc is not necessarily minimal.

Remark 5 (Extraction of Minimal UCs). A common way
to obtain minimal UCs works by repeatedly attempting to
remove parts of a UC (e.g., [CD91,Bak+93,ZM03a,MS10]).
If the modified formula is still unsatisfiable, then the removal
is made permanent; otherwise the removal is undone. The
procedure continues until all parts of the UC have been con-
sidered for removal. This is called deletion-based extraction
of minimal UCs (e.g., [CD91,MS10]). In the case of LTL the
algorithm attempts to replace positive polarity occurrences
of subformulas with 1 and negative polarity ones with 0. It
terminates, if no more replacements can be performed without
making the resulting formula satisfiable. Naturally, this method
may be expensive due to the number of satisfiability tests

to be performed. It is therefore often used to minimize a
UC that has been obtained by other means such as those
described in Sec. IV, V (see, e.g., [CD91,Bak+93,ZM03a,
MS10]). Potential optimizations of the minimization algorithm
include binary search (e.g., [ZH02,Jun01,MS10,KHB09]) and
reusing intermediate results (e.g., [KHB09]).

VII. EXAMPLES

In this section we first present examples of using UCs for
LTL to help understanding a specification given in LTL. Then
we show an example of TR with the corresponding resolution
graph and UC extraction in SNF. Except for minor rewriting,
all UCs in this section were obtained with our implementation.

A. Using UCs in LTL to Help Understanding LTL Specifica-
tions

We start with a toy example and then proceed to a more
realistic one. The first example (1a)–(1c) is based on [JB06].
We would like to see whether a req (request) can be issued
(1d). This is impossible, as (1a) requires a req to be followed
by 3 gnts (grant), whereas (1b) forbids two subsequent gnts.
The UC in (2) clearly shows this.

(G(req → ((Xgnt) ∧ (XXgnt) ∧ (XXXgnt)))) (1a)
∧ (G(gnt→ X¬gnt)) (1b)
∧ (G(cancel→ X((¬gnt)Ugo))) (1c)
∧ (Freq) (1d)

(G(req → ((Xgnt) ∧ (XXgnt)))) ∧ (G(gnt→ X¬gnt)) ∧ (Freq) (2)

The second example (3) in Fig. 3 is adapted from a lift
specification in [Har05] (we used a somewhat similar example
in [Sch12]). The lift has two floors, indicated by f0 and f1.
On each floor there is a button to call the lift (b0, b1). sb is 1
if some button is pressed. If the lift moves up, then up must
be 1; if it moves down, then up must be 0. u switches turns
between actions by users of the lift (u is 1) and actions by the
lift (u is 0). For more details we refer to [Har05].

We first assume that an engineer is interested in seeing
whether it is possible that b1 is continuously pressed (4). As
the UC (5) shows, this is impossible as b1 must be 0 at the
beginning.

Gb1 (4) (¬b1) ∧Gb1 (5)

Now the engineer modifies her query such that b1 is pressed
only from time point 1 on (6). As shown by the UC in (7)

6

(¬u) ∧ (f0) ∧ (¬b0) ∧ (¬b1) ∧ (¬up) (3a)
∧ (G((u→ ¬Xu) ∧ ((¬Xu)→ u))) (3b)
∧ (G(f0 → ¬f1)) (3c)
∧ (G((f0 → X(f0 ∨ f1)) ∧ (f1 → X(f0 ∨ f1)))) (3d)
∧ (G(u→ ((f0 → Xf0) ∧ ((Xf0)→ f0)))) (3e)
∧ (G(u→ ((f1 → Xf1) ∧ ((Xf1)→ f1)))) (3f)
∧ (G(((¬u)→ ((b0 → Xb0) ∧ ((Xb0)→ b0))))) (3g)
∧ (G(((¬u)→ ((b1 → Xb1) ∧ ((Xb1)→ b1))))) (3h)
∧ (G(((b0 ∧ ¬f0)→ Xb0) ∧ ((b1 ∧ ¬f1)→ Xb1))) (3i)
∧ (G((f0 ∧Xf0)→ ((up→ Xup) ∧ ((Xup)→ up)))) (3j)
∧ (G((f1 ∧Xf1)→ ((up→ Xup) ∧ ((Xup)→ up)))) (3k)
∧ (G(((f0 ∧Xf1)→ up) ∧ ((f1 ∧Xf0)→ ¬up))) (3l)
∧ (G((sb→ (b0 ∨ b1)) ∧ ((b0 ∨ b1)→ sb))) (3m)
∧ (G(((f0 ∧ ¬sb)→ (f0U(sbR((Ff0) ∧ (¬up)))))) (3n)
∧ (G(((f1 ∧ ¬sb)→ (f1U(sbR((Ff0) ∧ (¬up)))))) (3o)
∧ (G((b0 → Ff0) ∧ (b1 → Ff1))) (3p)

Fig. 3. A lift specification.

that turns out to be impossible, too.
XGb1 (6)

(¬u) ∧ ((¬b1) ∧ ((G((¬u)→ ((Xb1)→ b1))) ∧ (XGb1))) (7)

The engineer now tries to have b1 pressed from time point
2 on and, again, obtains a UC. She becomes suspicious and
checks whether b1 can be pressed at all (8). She sees that b1
cannot be pressed and, therefore, this specification of a lift
must contain a bug. She can now use the UC in (9a)–(9f) to
track down the problem. This example illustrates the use of
UCs for debugging, as (9a)–(9f) is significantly smaller than
(3).

Fb1 (8)

(f0) ∧ (¬b1) ∧ (¬up) (9a)
∧ (G(f0 → ¬f1)) (9b)
∧ (G(f0 → X(f0 ∨ f1))) (9c)
∧ (G((f0 ∧Xf0)→ ((Xup)→ up))) (9d)

∧ (G((f0 ∧Xf1)→
up))

(9e)

∧ (G(b1 → Ff1)) (9f)
∧ (F(b1)) (9g)

B. TR, Resolution Graph, and UC Extraction

In Fig. 4 we show an example of an execution of the
TR algorithm with the corresponding resolution graph and
UC extraction in SNF. The set of starting clauses C to be
solved is G(a ∨ ¬b), G(a ∨ b ∨X(a ∨ b)), G((¬a) ∨Xa),
G((¬a) ∨ F¬a), shown in the first row from the bottom in
the rectangle shaded in light red. In Fig. 4 TR generally
proceeds from bottom to top; in the top right corner the empty
clause 2 is generated, indicating unsatisfiability. Clauses are
connected with directed edges from premises to conclusions
according to columns 9, 10 in Tab. I. Edges are labeled with
production rules, where “BFS-loop” is abbreviated to “loop”,
“init” to “i”, and “conclusion” to “conc”. Saturation in line
2 of the algorithm in Fig. 2 produces G(a ∨ b ∨Xa) in the
second row from the bottom.1 The other 2 clauses in that
row are generated by augmentation (line 3). The following
saturation (line 4) produces no new clauses. The dark green
shaded rectangle is the loop partition for the first loop search

1While it may seem that some clauses are not considered for loop initializa-
tion or saturation, this is due to either subsumption of one clause by another
(e.g., G(a ∨ b ∨X(a ∨ b)) by G(a ∨ b ∨Xa)) or the fact that TRP++ uses
ordered resolution (e.g., G(a ∨ b ∨Xa) with G(¬wa ∨X((¬a) ∨ wa));
[HK03,BG01]). Both are issues of completeness of TR and, therefore, not
discussed in this paper.

iteration. Row 3 contains the clauses obtained by initialization
of the BFS loop search iteration (line 11). Note that clause
G(X¬a), generated by BFS-loop-it-init-c , has no edge coming
in from the main partition. Row 4 then contains the clauses
generated from those in row 3 by saturation restricted to
step-xx (line 12). The subsumption test fails in this iteration,
as none of the clauses in row 4 subsumes the empty clause
(lines 13–15). The light green shaded rectangle is the loop
partition for the second loop search iteration. Row 5 contains
the clauses obtained by initialization and row 6 those obtained
from them by restricted saturation. This time the subsumption
test succeeds, and the loop search conclusions are shown in
row 7 (line 18). Finally, row 8 contains the derivation of the
empty clause 2 via saturation (line 19). The thick, dotted,
blue clauses and edges show the part of the resolution graph
that is backward reachable from 2. As all starting clauses in
C are backward reachable from 2, the UC of C in SNF is
C (note that this example serves to illustrate the mechanism
rather than the benefit of UC extraction).

For a complete example that includes translation between
LTL and SNF and leads to a proper UC see App. E.

VIII. EXPERIMENTAL EVALUATION

Our implementation, examples, and log files are available
from [www].

A. Implementation

We implemented extraction of UCs as described in Sec. IV,
V in TRP++. We also implemented deletion-based minimiza-
tion of UCs obtained with the previous method (Sec. VI).
TRP++ provides a translation from LTL to SNF via an
external tool. To facilitate tracing a UC in SNF back to the
input formula in LTL we implemented a translator from LTL
to SNF inside TRP++, which reimplements ideas from the
external translator. We used parts of TSPASS [LH10] for our
implementation. For data structures we used C++ Standard
Library containers (e.g., [SL95,Jos12]), for graph operations
the Boost Graph Library [bgl,SLL02].

B. Benchmarks

Our examples are based on [SD11]. In categories crafted
and random and in family forobots we considered all unsatis-
fiable instances from [SD11]. The version of alaska lift used
here contains a small bug fix: in [DW+08,SD11] the subfor-
mula Xu was erroneously written as literal Xu. Combining
2 variants of alaska lift with 3 different scenarios we obtain
6 subfamilies of alaska lift. For anzu genbuf we invented 3
scenarios to obtain 3 subfamilies. For all benchmark families
that consist of a sequence of instances of increasing difficulty
we stopped after two instances that could not be solved due
to time or memory out. Some instances were simplified to 0
during the translation from LTL to SNF; these instances were
discarded. In Tab. III we give an overview of the benchmark
families. Columns 1–3 give the category, name, and the source
of the family. Columns 4–6 list the numbers of instances that
were solved by our implementation without UC extraction,

7

G(a ∨ ¬b) G(a ∨ b ∨X(a ∨ b)) G((¬a) ∨Xa) G((¬a) ∨ F¬a)

G(a ∨ b ∨Xa) G(¬wa ∨X((¬a) ∨ wa)) G((¬a) ∨ wa)

G(X(a ∨ ¬b)) G(a ∨ b ∨Xa) G(X¬a) G((¬a) ∨Xa) G(X((¬a) ∨ wa))

G(a ∨ b) G(¬a)

G(X(a ∨ ¬b)) G(X(a ∨ (¬a) ∨ b)) G(a ∨ b ∨Xa) G(X¬a) G((¬a) ∨Xa) G(X((¬a) ∨ wa))

G(a ∨ b) G(¬a)

G((¬wa) ∨X(a ∨ (¬a) ∨ b)) G((¬wa) ∨X¬a) G(a ∨ (¬a) ∨ b) G(¬a)

G(a ∨ b) G(a) 2

starting
clauses

1st loop search
iteration

2nd loop search
iteration

step-nxstep-nx aug1

lo
op

-it
-i-

xloop-it-i-
x loop-it-i-n

step-xxste
p-xx

ste
p-xx

step-xx
loop-it-

i-x

step-xx
step-xx

step-xx

step-xx

loop-it-subloop-it-s
ub

loop-conc2
loop-conc1loop-conc2 loop-conc1

step-nn

step-nn

step-nn

step-nx

st
ep

-n
x

st
ep

-n
n

lo
op

-i
t-

i-
n

lo
op

-i
t-

i-
n

loop-conc1

loop-conc1

loop-it-i-x

lo
op

-it
-i-

n

Fig. 4. Example of an execution of the TR algorithm with corresponding resolution graph and UC extraction in SNF.

TABLE III
OVERVIEW OF BENCHMARK FAMILIES.

category family source # s. no UC # s. UC # s. minimal UC |largest solved|

application
alaska lift [Har05,DW+08] 75 72 72 4605
anzu genbuf [Blo+07] 16 16 16 1924
forobots [BDF09] 25 25 25 635

crafted
schuppan O1formula [SD11] 27 27 27 4006
schuppan O2formula [SD11] 8 8 8 91
schuppan phltl [SD11] 4 4 4 125

random rozier random [RV10] 62 62 62 157
trp [HS02] 397 397 330 1421

with UC extraction, and with minimal UC extraction. Column
7 indicates the size (number of nodes in the syntax tree) of
the largest instance solved without UC extraction.

C. Setup
The experiments were performed on a laptop with Intel Core

i7 M 620 processor at 2 GHz running Ubuntu 12.04. Run time
and memory usage were measured with run [run]. The time
and memory limits were 600 seconds and 6 GB.

D. Extraction of UCs

In Fig. 5 (a), (b) we show the overhead that is incurred
by extracting (non-minimal) UCs as described in Sec. IV, V
over not extracting UCs. In Fig. 5 (c) we compare the sizes
of the input formulas with the sizes of their (non-minimal)
UCs. Our data show that extraction of UCs is possible with
quite acceptable overhead in run time and memory usage. An
analysis by category (plots see App. F) shows that the run
time (resp. memory) overhead for instances of the application
category, except for 3 that time out, is at most 100 % (resp. 300
%). Out of the 746 instances of all categories we considered
with UC extraction disabled, 48 were simplified to 0 in the
translation to SNF, 614 were shown to be unsatisfiable by TR,
and 84 remained unsolved. Enabling UC extraction results in 3
time or memory outs out of 614 instances. The resulting UCs
are often significantly smaller than the input formula. Separate
plots by category (see App. F) indicate that instances of the
application category are reduced comparatively well.

E. Extraction of Minimal UCs

Figure 5 (d)–(f) show the costs and benefits of applying
deletion-based minimization (Sec. VI) to (non-minimal) UCs
obtained as described in Sec. IV, V. Costs and benefits
are somewhat varied. Minimal UCs can be computed for
all instances for which (non-minimal) UCs were obtained
except for all 67 instances in family trp N12y. A closer
analysis shows that most instances with high benefits are in
the random category; some are also in family forobots. The
largest reduction seen is 62 % from 469 to 177 nodes in
the syntax tree of an instance from family pltl 12x. In the
application category several instances exhibit reductions in
the range between 20 % and 30 %. On several instances it
takes more than 10 times as long to obtain a minimal UC
as it takes to obtain a (non-minimal) UC. All instances that
take more than 25 % longer are from the forobots family, the
schuppan phltl family, or the random category.

F. Optimizations

In Fig. 5 (g)–(l) we show the benefit of the optimizations
described in Sec. IV when extracting (non-minimal) UCs. We
show the impact on the peak size of the resolution graph rather
than on run time or memory, as the former is implementation
independent. We note that in several instances the overhead of
disabling all optimizations in terms of run time and memory
is larger than 100 %. The impact of including premise 1 of
BFS-loop-it-init-c during construction of the resolution graph and
disabling immediate pruning of vertices and edges in partitions
of failed loop search iterations from the resolution graph in
Fig. 5 (h) (the former implies the latter) and of disabling prun-
ing non-reachable vertices from the resolution graph between
loop searches in Fig. 5 (k) is quite significant. The impact in
the remaining cases (Fig. 5 (g), (i), (j)) is negligible. However,
in cases (i) and (j) there is an instance where disabling the
optimization leads to a larger (non-minimal) UC. This occurs
more often also in case (h).

8

(a)

 0.1

 1

 10

 100

to
mo

 0.1 1 10 100 to mo

U
C

 e
x
tr

a
c
ti
o

n
[s

e
c
o

n
d

s
]

no UC extraction [seconds]

(b)

 1

10

100

1000

to
mo

 1 10 100 1000 to mo

U
C

 e
x
tr

a
c
ti
o

n
[M

B
]

no UC extraction [MB]

(c)

 1

 10

 100

 1000

 1 10 100 1000

(n
o

n
-m

in
im

a
l)
 U

C
[#

 n
o

d
e

s
]

input formula [# nodes]

(d)

 0.1

 1

 10

 100

to
mo

 0.1 1 10 100 to mo

m
in

im
a

l
U

C
 e

x
tr

a
c
ti
o

n
[s

e
c
o

n
d

s
]

UC extraction [seconds]

(e)

 1

10

100

1000

to
mo

 1 10 100 1000 to mo

m
in

im
a

l
U

C
 e

x
tr

a
c
ti
o

n
[M

B
]

UC extraction [MB]

(f)

 1

 10

 100

 1000

 1 10 100 1000

m
in

im
a

l
U

C
[#

 n
o

d
e

s
]

(non-minimal) UC [# nodes]

(g)

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

in
c
lu

d
e

 p
re

m
is

e
 o

f
a

u
g

2
[#

 v
e

rt
ic

e
s
 +

 e
d

g
e

s
]

enable all [# vertices + edges]

(h)

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

in
c
lu

d
e

 p
re

m
is

e
 1

 o
f

B
F

S
-

lo
o

p
-i
t-

in
it
-c

 a
n

d
 d

o
n

’t
 p

ru
n

e
fa

ile
d

 l
o

o
p

 s
e

a
rc

h
 i
te

ra
ti
o

n
s

[#
 v

e
rt

ic
e

s
 +

 e
d

g
e

s
]

enable all [# vertices + edges]

(i)

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

in
c
lu

d
e

 p
re

m
is

e
 2

 o
f

B
F

S
-l
o

o
p

-i
t-

in
it
-c

[#
 v

e
rt

ic
e

s
 +

 e
d

g
e

s
]

enable all [# vertices + edges]

(j)

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

in
c
lu

d
e

 p
re

m
is

e
 2

 o
f

B
F

S
-l
o

o
p

-c
o

n
c
lu

s
io

n
2

[#
 v

e
rt

ic
e

s
 +

 e
d

g
e

s
]

enable all [# vertices + edges]

(k)

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

d
o

n
’t
 p

ru
n

e
 b

e
tw

e
e

n
 l
o

o
p

s
e

a
rc

h
e

s
[#

 v
e

rt
ic

e
s
 +

 e
d

g
e

s
]

enable all [# vertices + edges]

(l)

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

d
is

a
b

le
 a

ll
[#

 v
e

rt
ic

e
s
 +

 e
d

g
e

s
]

enable all [# vertices + edges]

Fig. 5. (a)–(c) compare UC extraction (y-axis) with no UC extraction (x-axis). (a) and (b) show the overhead incurred in terms of run time (in seconds)
and memory (in MB). (c) shows the size reduction obtained, where size is measured as the number of nodes in the syntax trees. (d)–(f) compare minimal
UC extraction (y-axis) with UC extraction (x-axis). (d) and (e) show overhead incurred in terms of run time (in seconds) and memory (in MB). (f) shows
the size reduction obtained, where size is measured as the number of nodes in the syntax trees. The off-center diagonal in (a), (b), (d), and (e) shows where
y = 2x. (g)–(l) show the benefit of optimizations as reduction in peak size of resolution graph (number of vertices + number of edges). The x-axis shows
all optimizations enabled. The y-axis of (g)–(k) shows one optimization disabled: (g) include premise of aug2 , (h) include premise 1 of BFS-loop-it-init-c

and disable immediate pruning of failed loop search iterations, (i) include premise 2 of BFS-loop-it-init-c , (j) include premise 2 of BFS-loop-conclusion2 , (k)
disable pruning of the resolution graph between loop searches. The y-axis of (l) shows all optimizations disabled.

IX. CONCLUSIONS

In this paper we showed how to obtain UCs for LTL via
temporal resolution, and we demonstrated with an implementa-
tion in TRP++ that UC extraction can be performed efficiently.
The resulting UCs are significantly smaller than the corre-
sponding input formulas. In parallel work [Sch13] this paper
has been used as a basis to suggest enhancing UCs for LTL
with information on when subformulas of a UC are relevant
for unsatisfiability. The similarity of temporal resolution and
some BDD-based algorithms at a high level and work on
resolution with BDDs ([JSB06]) suggests to explore whether
computation of UCs is feasible for BDD-based algorithms.
Another direction for transfer of our results is resolution-based
computation of unrealizable cores [Noë95].

ACKNOWLEDGMENTS

I thank B. Konev and M. Ludwig for making TRP++
and TSPASS including their LTL translators available. I also
thank A. Cimatti for bringing up the subject of temporal
resolution. Initial parts of the work were performed while
working under a grant by the Provincia Autonoma di Trento
(project EMTELOS).

REFERENCES

[Arm+03] R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piter-
man, A. Tiemeyer, and M. Vardi. “Enhanced Vacuity
Detection in Linear Temporal Logic”. In: CAV. Ed. by
W. Hunt Jr. and F. Somenzi. Vol. 2725. Lecture Notes in
Computer Science. Links: ee, Google Scholar. Springer,
2003, pp. 368–380. ISBN: 3-540-40524-0 (cit. on pp. 1,
2).

[Awa+12] A. Awad, R. Goré, Z. Hou, J. Thomson, and M. Wei-
dlich. “An iterative approach to synthesize business
process templates from compliance rules”. In: Inf. Syst.
37.8 (2012). Links: ee, Google Scholar, pp. 714–736
(cit. on pp. 1, 2).

[Bak+93] R. Bakker, F. Dikker, F. Tempelman, and P. Wognum.
“Diagnosing and Solving Over-Determined Constraint
Satisfaction Problems”. In: IJCAI. Links: ee, Google
Scholar. 1993, pp. 276–281 (cit. on pp. 1, 6).

[BDF09] A. Behdenna, C. Dixon, and M. Fisher. “Deductive
Verification of Simple Foraging Robotic Behaviours”.
In: International Journal of Intelligent Computing and
Cybernetics 2.4 (2009). Links: ee, Google Scholar,
pp. 604–643 (cit. on p. 8).

[Bee+01] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. “Effi-
cient Detection of Vacuity in Temporal Model Check-
ing”. In: Formal Methods in System Design 18.2 (2001).
Links: ee, Google Scholar, pp. 141–163 (cit. on pp. 1,
2).

[BG01] L. Bachmair and H. Ganzinger. “Resolution Theorem
Proving”. In: Handbook of Automated Reasoning. Ed. by
J. Robinson and A. Voronkov. Links: Google Scholar.
Elsevier and MIT Press, 2001, pp. 19–99. ISBN: 0-444-
50813-9, 0-262-18223-8 (cit. on pp. 1, 3, 7, 22).

[bgl] http://www.boost.org/doc/libs/release/libs/graph/ (cit. on
p. 7).

[Bie+99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. “Symbolic
Model Checking without BDDs”. In: TACAS. Ed. by
R. Cleaveland. Vol. 1579. Lecture Notes in Computer
Science. Links: ee, Google Scholar. Springer, 1999,
pp. 193–207. ISBN: 3-540-65703-7 (cit. on p. 2).

9

http://dx.doi.org/10.1007/978-3-540-45069-6_35

http://scholar.google.com/scholar?q=%22Enhanced+Vacuity+Detection+in+Linear+Temporal+Logic%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1016/j.is.2012.05.001

http://scholar.google.com/scholar?q=%22An+iterative+approach+to+synthesize+business+process+templates+from+compliance+rules%22&hl=en&lr=&btnG=Search

http://ijcai.org/Past%20Proceedings/IJCAI-93-VOL1/PDF/039.pdf

http://scholar.google.com/scholar?q=%22Diagnosing+and+Solving+Over-Determined+Constraint+Satisfaction+Problems%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Diagnosing+and+Solving+Over-Determined+Constraint+Satisfaction+Problems%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1108/17563780911005818

http://scholar.google.com/scholar?q=%22Deductive+Verification+of+Simple+Foraging+Robotic+Behaviours%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1023/A:1008779610539

http://scholar.google.com/scholar?q=%22Efficient+Detection+of+Vacuity+in+Temporal+Model+Checking%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Resolution+Theorem+Proving%22&hl=en&lr=&btnG=Search

http://www.boost.org/doc/libs/release/libs/graph/

http://dx.doi.org/10.1007/3-540-49059-0_14

http://scholar.google.com/scholar?q=%22Symbolic+Model+Checking+without+BDDs%22&hl=en&lr=&btnG=Search

[Bie09] A. Biere. “Bounded Model Checking”. In: Handbook of
Satisfiability. Ed. by A. Biere, M. Heule, H. van Maaren,
and T. Walsh. Vol. 185. Frontiers in Artificial Intel-
ligence and Applications. Links: ee, Google Scholar.
IOS Press, 2009, pp. 457–481. ISBN: 978-1-58603-929-5
(cit. on p. 2).

[Blo+07] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A.
Pnueli, and M. Weiglhofer. “Specify, Compile, Run:
Hardware from PSL”. In: COCV. Ed. by S. Glesner,
J. Knoop, and R. Drechsler. Vol. 190(4). ENTCS. Links:
ee, Google Scholar. Elsevier, 2007, pp. 3–16 (cit. on
pp. 1, 8).

[BS01] R. Bruni and A. Sassano. “Restoring Satisfiability or
Maintaining Unsatisfiability by finding small Unsatisfi-
able Subformulae”. In: SAT. Ed. by H. Kautz and B. Sel-
man. Vol. 9. Electronic Notes in Discrete Mathematics.
Links: ee, Google Scholar. Elsevier, 2001, pp. 162–173
(cit. on p. 1).

[CD91] J. Chinneck and E. Dravnieks. “Locating Minimal
Infeasible Constraint Sets in Linear Programs”. In:
ORSA Journal on Computing 3.2 (1991). Links: Google
Scholar, pp. 157–168 (cit. on pp. 1, 6).

[Chi+10] A. Chiappini, A. Cimatti, L. Macchi, O. Rebollo, M.
Roveri, A. Susi, S. Tonetta, and B. Vittorini. “Formal-
ization and validation of a subset of the European Train
Control System”. In: ICSE (2). Ed. by J. Kramer, J.
Bishop, P. Devanbu, and S. Uchitel. Links: ee, Google
Scholar. ACM, 2010, pp. 109–118. ISBN: 978-1-60558-
719-6 (cit. on p. 1).

[Cim+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
“NuSMV 2: An OpenSource Tool for Symbolic Model
Checking”. In: CAV. Ed. by E. Brinksma and K. Larsen.
Vol. 2404. Lecture Notes in Computer Science. Links:
ee, Google Scholar. Springer, 2002, pp. 359–364. ISBN:
3-540-43997-8 (cit. on p. 2).

[Cim+07] A. Cimatti, M. Roveri, V. Schuppan, and S. Tonetta.
“Boolean Abstraction for Temporal Logic Satisfiability”.
In: CAV. Ed. by W. Damm and H. Hermanns. Vol. 4590.
Lecture Notes in Computer Science. Links: ee, Google
Scholar. Springer, 2007, pp. 532–546. ISBN: 3-540-
22342-8 (cit. on pp. 1, 2).

[Cim+08] A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev.
“Diagnostic Information for Realizability”. In: VMCAI.
Ed. by F. Logozzo, D. Peled, and L. Zuck. Vol. 4905.
Lecture Notes in Computer Science. Links: ee, Google
Scholar. Springer, 2008, pp. 52–67. ISBN: 978-3-540-
78162-2 (cit. on pp. 1, 2).

[Cla+03] E. Clarke, M. Talupur, H. Veith, and D. Wang. “SAT
Based Predicate Abstraction for Hardware Verification”.
In: SAT. Ed. by E. Giunchiglia and A. Tacchella.
Vol. 2919. Lecture Notes in Computer Science. Links:
ee, Google Scholar. Springer, 2003, pp. 78–92. ISBN:
3-540-20851-8 (cit. on p. 1).

[CMT11] A. Cimatti, S. Mover, and S. Tonetta. “Proving and
explaining the unfeasibility of message sequence charts
for hybrid systems”. In: FMCAD. Ed. by P. Bjesse and
A. Slobodová. Links: ee, Google Scholar. FMCAD Inc.,
2011, pp. 54–62. ISBN: 978-0-9835678-1-3 (cit. on p. 2).

[Dix98] C. Dixon. “Temporal Resolution Using a Breadth-First
Search Algorithm”. In: Ann. Math. Artif. Intell. 22.1-2
(1998). Links: ee, Google Scholar, pp. 87–115 (cit. on
p. 15).

[DW+08] M. De Wulf, L. Doyen, N. Maquet, and J. Raskin.
“Antichains: Alternative Algorithms for LTL Satisfia-
bility and Model-Checking”. In: TACAS. Ed. by C.
Ramakrishnan and J. Rehof. Vol. 4963. Lecture Notes in
Computer Science. Links: ee, Google Scholar. Springer,
2008, pp. 63–77. ISBN: 978-3-540-78799-0 (cit. on pp. 7,
8).

[Eas+03] S. Easterbrook, M. Chechik, B. Devereux, A. Gurfinkel,
A. Lai, V. Petrovykh, A. Tafliovich, and C. Thompson-
Walsh. “χChek: A Model Checker for Multi-Valued
Reasoning”. In: ICSE. Ed. by L. Clarke, L. Dillon, and
W. Tichy. Links: ee, Google Scholar. IEEE Computer
Society, 2003, pp. 804–805 (cit. on p. 22).

[EF06] C. Eisner and D. Fisman. A Practical Introduction to
PSL. Links: Google Scholar. Springer, 2006 (cit. on
p. 1).

[Eme90] E. Emerson. “Temporal and Modal Logic”. In: Hand-
book of Theoretical Computer Science, Volume B: For-
mal Models and Sematics. Ed. by J. van Leeuwen.
Links: Google Scholar. Elsevier and MIT Press, 1990,
pp. 995–1072. ISBN: 0-444-88074-7, 0-262-22039-3 (cit.
on pp. 1, 2).

[FDP01] M. Fisher, C. Dixon, and M. Peim. “Clausal temporal
resolution”. In: ACM Trans. Comput. Log. 2.1 (2001).
Links: ee, Google Scholar, pp. 12–56 (cit. on pp. 2, 3,
5, 15).

[Fis+08] D. Fisman, O. Kupferman, S. Sheinvald-Faragy, and
M. Vardi. “A Framework for Inherent Vacuity”. In: HVC.
Ed. by H. Chockler and A. Hu. Vol. 5394. Lecture
Notes in Computer Science. Links: ee, Google Scholar.
Springer, 2008, pp. 7–22. ISBN: 978-3-642-01701-8 (cit.
on pp. 1, 2).

[Fis91] M. Fisher. “A Resolution Method for Temporal Logic”.
In: IJCAI. Links: ee, Google Scholar. 1991, pp. 99–104
(cit. on pp. 2, 3).

[FM09] J. Franco and J. Martin. “A History of Satisfiability”.
In: Handbook of Satisfiability. Ed. by A. Biere, M.
Heule, H. van Maaren, and T. Walsh. Vol. 185. Frontiers
in Artificial Intelligence and Applications. Links: ee,
Google Scholar. IOS Press, 2009, pp. 3–74. ISBN: 978-
1-58603-929-5 (cit. on p. 3).

[FN92] M. Fisher and P. Noël. Transformation and Synthesis in
METATEM. Part I: Propositional METATEM. Tech. rep.
UMCS-92-2-1. Available from http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.30.4998. University
of Manchester, Department of Computer Science, 1992
(cit. on p. 3).

[GC04] A. Gurfinkel and M. Chechik. “How Vacuous Is Vac-
uous?” In: TACAS. Ed. by K. Jensen and A. Podelski.
Vol. 2988. Lecture Notes in Computer Science. Links:
ee, Google Scholar. Springer, 2004, pp. 451–466. ISBN:
3-540-21299-X (cit. on pp. 1, 2, 21, 22).

[GG06] M. Gheorghiu and A. Gurfinkel. “VaqUoT: A Tool for
Vacuity Detection”. In: FM. Ed. by J. Misra, T. Nipkow,
and E. Sekerinski. Vol. 4085. Lecture Notes in Computer
Science. Tool Presentation. Available from http://fm06.
mcmaster.ca/VaqUoT.pdf. Springer, 2006. ISBN: 3-540-
37215-6 (cit. on p. 22).

[GN03] E. Goldberg and Y. Novikov. “Verification of Proofs of
Unsatisfiability for CNF Formulas”. In: DATE. Links:
ee, Google Scholar. IEEE Computer Society, 2003,
pp. 10886–10891. ISBN: 0-7695-1870-2 (cit. on p. 1).

10

http://dx.doi.org/10.3233/978-1-58603-929-5-457

http://scholar.google.com/scholar?q=%22Bounded+Model+Checking%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1016/j.entcs.2007.09.004

http://scholar.google.com/scholar?q=%22Specify,+Compile,+Run%3A+Hardware+from+PSL%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1016/S1571-0653(04)00320-8

http://scholar.google.com/scholar?q=%22Restoring+Satisfiability+or+Maintaining+Unsatisfiability+by+finding+small+Unsatisfiable+Subformulae%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Locating+Minimal+Infeasible+Constraint+Sets+in+Linear+Programs%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Locating+Minimal+Infeasible+Constraint+Sets+in+Linear+Programs%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1145/1810295.1810312

http://scholar.google.com/scholar?q=%22Formalization+and+validation+of+a+subset+of+the+European+Train+Control+System%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Formalization+and+validation+of+a+subset+of+the+European+Train+Control+System%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/3-540-45657-0_29

http://scholar.google.com/scholar?q=%22NuSMV+2%3A+An+OpenSource+Tool+for+Symbolic+Model+Checking%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/978-3-540-73368-3_53

http://scholar.google.com/scholar?q=%22Boolean+Abstraction+for+Temporal+Logic+Satisfiability%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Boolean+Abstraction+for+Temporal+Logic+Satisfiability%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/978-3-540-78163-9_9

http://scholar.google.com/scholar?q=%22Diagnostic+Information+for+Realizability%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Diagnostic+Information+for+Realizability%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/978-3-540-24605-3_7

http://scholar.google.com/scholar?q=%22SAT+Based+Predicate+Abstraction+for+Hardware+Verification%22&hl=en&lr=&btnG=Search

http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD11/papers/67.pdf

http://scholar.google.com/scholar?q=%22Proving+and+explaining+the+unfeasibility+of+message+sequence+charts+for+hybrid+systems%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1023/A:1018942108420

http://scholar.google.com/scholar?q=%22Temporal+Resolution+Using+a+Breadth-First+Search+Algorithm%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/978-3-540-78800-3_6

http://scholar.google.com/scholar?q=%22Antichains%3A+Alternative+Algorithms+for+LTL+Satisfiability+and+Model-Checking%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1109/ICSE.2003.1201295

http://scholar.google.com/scholar?q=%22chiChek%3A+A+Model+Checker+for+Multi-Valued+Reasoning%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22A+Practical+Introduction+to+PSL%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Temporal+and+Modal+Logic%22&hl=en&lr=&btnG=Search

http://doi.acm.org/10.1145/371282.371311

http://scholar.google.com/scholar?q=%22Clausal+temporal+resolution%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/978-3-642-01702-5_7

http://scholar.google.com/scholar?q=%22A+Framework+for+Inherent+Vacuity%22&hl=en&lr=&btnG=Search

http://ijcai.org/Past%20Proceedings/IJCAI-91-VOL1/PDF/017.pdf

http://scholar.google.com/scholar?q=%22A+Resolution+Method+for+Temporal+Logic%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.3233/978-1-58603-929-5-3

http://scholar.google.com/scholar?q=%22A+History+of+Satisfiability%22&hl=en&lr=&btnG=Search

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.4998

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.4998

http://dx.doi.org/10.1007/978-3-540-24730-2_34

http://scholar.google.com/scholar?q=%22How+Vacuous+Is+Vacuous?%22&hl=en&lr=&btnG=Search

http://fm06.mcmaster.ca/VaqUoT.pdf

http://fm06.mcmaster.ca/VaqUoT.pdf

http://csdl.computer.org/comp/proceedings/date/2003/1870/01/187010886abs.htm

http://scholar.google.com/scholar?q=%22Verification+of+Proofs+of+Unsatisfiability+for+CNF+Formulas%22&hl=en&lr=&btnG=Search

[Har05] A. Harding. “Symbolic Strategy Synthesis For Games
With LTL Winning Conditions”. Links: Google Scholar.
PhD thesis. University of Birmingham, 2005 (cit. on
pp. 6, 8).

[Heu+95] A. Heuerding, G. Jäger, S. Schwendimann, and M.
Seyfried. “Propositional Logics on the Computer”. In:
TABLEAUX. Ed. by P. Baumgartner, R. Hähnle, and J.
Posegga. Vol. 918. Lecture Notes in Computer Science.
Links: ee, Google Scholar. Springer, 1995, pp. 310–323.
ISBN: 3-540-59338-1 (cit. on p. 2).

[HH11] F. Hantry and M. Hacid. “Handling Conflicts in Depth-
First Search for LTL Tableau to Debug Compliance
Based Languages”. In: FLACOS. Ed. by E. Pimentel and
V. Valero. Vol. 68. Electronic Proceedings in Theoretical
Computer Science. Links: ee, Google Scholar. Open
Publishing Association, 2011, pp. 39–53 (cit. on pp. 1,
2).

[HK03] U. Hustadt and B. Konev. “TRP++ 2.0: A Tempo-
ral Resolution Prover”. In: CADE. Ed. by F. Baader.
Vol. 2741. Lecture Notes in Computer Science. Links:
ee, Google Scholar. Springer, 2003, pp. 274–278. ISBN:
3-540-40559-3 (cit. on pp. 2, 3, 7, 22).

[HK04] U. Hustadt and B. Konev. “TRP++: A temporal resolu-
tion prover”. In: Collegium Logicum. Ed. by M. Baaz,
J. Makowsky, and A. Voronkov. Vol. 8. Links: Google
Scholar. Kurt Gödel Society, 2004, pp. 65–79 (cit. on
pp. 2, 3).

[Hoo99] H. Hoos. Heavy-Tailed Behaviour in Randomised Sys-
tematic Search Algorithms for SAT? Tech. rep. TR-99-
16. Links: ee, Google Scholar. University of British
Columbia, Department of Computer Science, 1999 (cit.
on p. 1).

[HS02] U. Hustadt and R. A. Schmidt. “Scientific Benchmarking
with Temporal Logic Decision Procedures”. In: KR.
Ed. by D. Fensel, F. Giunchiglia, D. McGuinness, and
M. Williams. Links: Google Scholar. Morgan Kaufmann,
2002, pp. 533–546. ISBN: 1-55860-554-1 (cit. on p. 8).

[HSH12] F. Hantry, L. Saı̈s, and M. Hacid. “On the complexity
of computing minimal unsatisfiable LTL formulas”. In:
Electronic Colloquium on Computational Complexity
(ECCC) 19.69 (2012). Links: ee, Google Scholar (cit. on
pp. 1, 2).

[JB06] B. Jobstmann and R. Bloem. “Optimizations for LTL
Synthesis”. In: FMCAD. Links: ee, Google Scholar.
IEEE Computer Society, 2006, pp. 117–124. ISBN: 0-
7695-2707-8 (cit. on p. 6).

[Jos12] N. Josuttis. The C++ Standard Library: A Tutorial
and Reference. Second Edition. Links: Google Scholar.
Addison-Wesley, 2012. ISBN: 978-0-321-62321-8 (cit.
on p. 7).

[JSB06] T. Jussila, C. Sinz, and A. Biere. “Extended Resolution
Proofs for Symbolic SAT Solving with Quantification”.
In: SAT. Ed. by A. Biere and C. Gomes. Vol. 4121.
Lecture Notes in Computer Science. Links: ee, Google
Scholar. Springer, 2006, pp. 54–60. ISBN: 3-540-37206-
7 (cit. on p. 9).

[Jun01] U. Junker. “QuickXplain: Conflict Detection for Arbi-
trary Constraint Propagation Algorithms”. In: CONS.
Available from http : / / www . lirmm . fr / ∼bessiere /
ws ijcai01/junker.ps.gz. 2001 (cit. on p. 6).

[KHB09] R. Könighofer, G. Hofferek, and R. Bloem. “Debugging
formal specifications using simple counterstrategies”.
In: FMCAD. Links: ee, Google Scholar. IEEE, 2009,
pp. 152–159. ISBN: 978-1-4244-4966-8 (cit. on pp. 2,
6).

[KHB10] R. Könighofer, G. Hofferek, and R. Bloem. “Debugging
Unrealizable Specifications with Model-Based Diagno-
sis”. In: HVC. Ed. by S. Barner, I. Harris, D. Kroening,
and O. Raz. Vol. 6504. Lecture Notes in Computer
Science. Links: ee, Google Scholar. Springer, 2010,
pp. 29–45. ISBN: 978-3-642-19582-2 (cit. on p. 2).

[Kup06] O. Kupferman. “Sanity Checks in Formal Verification”.
In: CONCUR. Ed. by C. Baier and H. Hermanns.
Vol. 4137. Lecture Notes in Computer Science. Links:
ee, Google Scholar. Springer, 2006, pp. 37–51. ISBN:
3-540-37376-4 (cit. on pp. 1, 2).

[KV03] O. Kupferman and M. Vardi. “Vacuity detection in
temporal model checking”. In: STTT 4.2 (2003). Links:
ee, Google Scholar, pp. 224–233 (cit. on pp. 1, 2).

[LH10] M. Ludwig and U. Hustadt. “Implementing a fair
monodic temporal logic prover”. In: AI Commun. 23.2-
3 (2010). Links: ee, Google Scholar, pp. 69–96 (cit. on
p. 7).

[MS10] J. Marques Silva. “Minimal Unsatisfiability: Models, Al-
gorithms and Applications (Invited Paper)”. In: ISMVL.
Links: ee, Google Scholar. IEEE Computer Society,
2010, pp. 9–14. ISBN: 978-0-7695-4024-5 (cit. on pp. 1,
6).

[Nam04] K. Namjoshi. “An Efficiently Checkable, Proof-Based
Formulation of Vacuity in Model Checking”. In: CAV.
Ed. by R. Alur and D. Peled. Vol. 3114. Lecture Notes in
Computer Science. Links: ee, Google Scholar. Springer,
2004, pp. 57–69. ISBN: 3-540-22342-8 (cit. on p. 22).

[nma] http : / / code . google . com / a / eclipselabs . org / p / nusmv -
tools /downloads /detail ?name=NuSMVModelAdvisor
20121012.zip (cit. on p. 22).

[Noë95] P. Noël. “A Transformation-Based Synthesis of Tempo-
ral Specifications”. In: Formal Asp. Comput. 7.6 (1995).
Links: ee, Google Scholar, pp. 587–619 (cit. on p. 9).

[PA06] M. Pesic and W. van der Aalst. “A Declarative Ap-
proach for Flexible Business Processes Management”.
In: Business Process Management Workshops. Ed. by
J. Eder and S. Dustdar. Vol. 4103. Lecture Notes in
Computer Science. Links: ee, Google Scholar. Springer,
2006, pp. 169–180. ISBN: 3-540-38444-8 (cit. on p. 1).

[PG86] D. Plaisted and S. Greenbaum. “A Structure-Preserving
Clause Form Translation”. In: J. Symb. Comput. 2.3
(1986). Links: ee, Google Scholar, pp. 293–304 (cit. on
p. 5).

[Pil+06] I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, and
A. Cimatti. “Formal analysis of hardware requirements”.
In: DAC. Ed. by E. Sentovich. Links: ee, Google Scholar.
ACM, 2006, pp. 821–826. ISBN: 1-59593-381-6 (cit. on
p. 1).

[pltl] http://users.cecs.anu.edu.au/∼rpg/PLTLProvers/ (cit. on
p. 2).

[Pnu77] A. Pnueli. “The Temporal Logic of Programs”. In:
FOCS. Links: ee, Google Scholar. IEEE, 1977, pp. 46–
57 (cit. on p. 1).

[PWK09] M. Purandare, T. Wahl, and D. Kroening. “Strengthen-
ing properties using abstraction refinement”. In: DATE.
Links: ee, Google Scholar. IEEE, 2009, pp. 1692–1697
(cit. on p. 21).

11

http://scholar.google.com/scholar?q=%22Symbolic+Strategy+Synthesis+For+Games+With+LTL+Winning+Conditions%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/3-540-59338-1_44

http://scholar.google.com/scholar?q=%22Propositional+Logics+on+the+Computer%22&hl=en&lr=&btnG=Search

http://rvg.web.cse.unsw.edu.au/eptcs/paper.cgi?FLACOS2011.5

http://scholar.google.com/scholar?q=%22Handling+Conflicts+in+Depth-First+Search+for+LTL+Tableau+to+Debug+Compliance+Based+Languages%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/978-3-540-45085-6_21

http://scholar.google.com/scholar?q=%22TRP%2B%2B+2.0%3A+A+Temporal+Resolution+Prover%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22TRP%2B%2B%3A+A+temporal+resolution+prover%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22TRP%2B%2B%3A+A+temporal+resolution+prover%22&hl=en&lr=&btnG=Search

ftp://ftp.cs.ubc.ca/local/techreports/1999/TR-99-16.pdf

http://scholar.google.com/scholar?q=%22Heavy-Tailed+Behaviour+in+Randomised+Systematic+Search+Algorithms+for+SAT?%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Scientific+Benchmarking+with+Temporal+Logic+Decision+Procedures%22&hl=en&lr=&btnG=Search

http://eccc.hpi-web.de/report/2012/069

http://scholar.google.com/scholar?q=%22On+the+complexity+of+computing+minimal+unsatisfiable+LTL+formulas%22&hl=en&lr=&btnG=Search

http://doi.ieeecomputersociety.org/10.1109/FMCAD.2006.22

http://scholar.google.com/scholar?q=%22Optimizations+for+LTL+Synthesis%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22The+C%2B%2B+Standard+Library%3A+A+Tutorial+and+Reference%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/11814948_8

http://scholar.google.com/scholar?q=%22Extended+Resolution+Proofs+for+Symbolic+SAT+Solving+with+Quantification%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Extended+Resolution+Proofs+for+Symbolic+SAT+Solving+with+Quantification%22&hl=en&lr=&btnG=Search

http://www.lirmm.fr/~bessiere/ws_ijcai01/junker.ps.gz

http://www.lirmm.fr/~bessiere/ws_ijcai01/junker.ps.gz

http://dx.doi.org/10.1109/FMCAD.2009.5351127

http://scholar.google.com/scholar?q=%22Debugging+formal+specifications+using+simple+counterstrategies%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/978-3-642-19583-9_8

http://scholar.google.com/scholar?q=%22Debugging+Unrealizable+Specifications+with+Model-Based+Diagnosis%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/11817949_3

http://scholar.google.com/scholar?q=%22Sanity+Checks+in+Formal+Verification%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/s100090100062

http://scholar.google.com/scholar?q=%22Vacuity+detection+in+temporal+model+checking%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.3233/AIC-2010-0457

http://scholar.google.com/scholar?q=%22Implementing+a+fair+monodic+temporal+logic+prover%22&hl=en&lr=&btnG=Search

http://doi.ieeecomputersociety.org/10.1109/ISMVL.2010.11

http://scholar.google.com/scholar?q=%22Minimal+Unsatisfiability%3A+Models,+Algorithms+and+Applications+(Invited+Paper)%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/978-3-540-27813-9_5

http://scholar.google.com/scholar?q=%22An+Efficiently+Checkable,+Proof-Based+Formulation+of+Vacuity+in+Model+Checking%22&hl=en&lr=&btnG=Search

http://code.google.com/a/eclipselabs.org/p/nusmv-tools/downloads/detail?name=NuSMVModelAdvisor_20121012.zip

http://code.google.com/a/eclipselabs.org/p/nusmv-tools/downloads/detail?name=NuSMVModelAdvisor_20121012.zip

http://code.google.com/a/eclipselabs.org/p/nusmv-tools/downloads/detail?name=NuSMVModelAdvisor_20121012.zip

http://dx.doi.org/10.1007/BF01210997

http://scholar.google.com/scholar?q=%22A+Transformation-Based+Synthesis+of+Temporal+Specifications%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/11837862_18

http://scholar.google.com/scholar?q=%22A+Declarative+Approach+for+Flexible+Business+Processes+Management%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1016/S0747-7171(86)80028-1

http://scholar.google.com/scholar?q=%22A+Structure-Preserving+Clause+Form+Translation%22&hl=en&lr=&btnG=Search

http://doi.acm.org/10.1145/1146909.1147119

http://scholar.google.com/scholar?q=%22Formal+analysis+of+hardware+requirements%22&hl=en&lr=&btnG=Search

http://users.cecs.anu.edu.au/~rpg/PLTLProvers/

http://doi.ieeecomputersociety.org/10.1109/SFCS.1977.32

http://scholar.google.com/scholar?q=%22The+Temporal+Logic+of+Programs%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1109/DATE.2009.5090935

http://scholar.google.com/scholar?q=%22Strengthening+properties+using+abstraction+refinement%22&hl=en&lr=&btnG=Search

[RKG11] V. Raman and H. Kress-Gazit. “Analyzing Unsynthe-
sizable Specifications for High-Level Robot Behavior
Using LTLMoP”. In: CAV. Ed. by G. Gopalakrishnan
and S. Qadeer. Vol. 6806. Lecture Notes in Computer
Science. Links: ee, Google Scholar. Springer, 2011,
pp. 663–668. ISBN: 978-3-642-22109-5 (cit. on p. 2).

[Rob65] J. Robinson. “A Machine-Oriented Logic Based on the
Resolution Principle”. In: J. ACM 12.1 (1965). Links:
ee, Google Scholar, pp. 23–41 (cit. on pp. 1, 3).

[run] A. Biere and T. Jussila. Benchmark Tool Run. http://fmv.
jku.at/run/ (cit. on p. 8).

[RV10] K. Rozier and M. Vardi. “LTL satisfiability check-
ing”. In: STTT 12.2 (2010). Links: ee, Google Scholar,
pp. 123–137 (cit. on p. 8).

[Sch12] V. Schuppan. “Towards a notion of unsatisfiable and
unrealizable cores for LTL”. In: Sci. Comput. Program.
77.7-8 (2012). Links: ee, Google Scholar, pp. 908–939
(cit. on pp. 1, 2, 6, 21).

[Sch13] V. Schuppan. “Enhancing Unsatisfiable Cores for LTL
with Information on Temporal Relevance”. In: QAPL.
Ed. by L. Bortolussi and H. Wiklicky. Vol. 117. Elec-
tronic Proceedings in Theoretical Computer Science.
Links: ee, Google Scholar. Open Publishing Association,
2013, pp. 49–65 (cit. on pp. 2, 9).

[SD11] V. Schuppan and L. Darmawan. “Evaluating LTL Sat-
isfiability Solvers”. In: ATVA. Ed. by T. Bultan and P.
Hsiung. Vol. 6996. Lecture Notes in Computer Science.
Links: ee, Google Scholar. Springer, 2011, pp. 397–413.
ISBN: 978-3-642-24371-4 (cit. on pp. 2, 7, 8).

[SDG06] J. Simmonds, J. Davies, and A. Gurfinkel. “VaqTree: Ef-
ficient Vacuity Detection for Bounded Model Checking”.
In: FM. Ed. by J. Misra, T. Nipkow, and E. Sekerinski.
Vol. 4085. Lecture Notes in Computer Science. Tool
Presentation. Available from http : / / fm06 . mcmaster .
ca / jocelyn . pdf. Springer, 2006. ISBN: 3-540-37215-6
(cit. on p. 21).

[Shl+03] I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, and
M. Taghdiri. “Debugging Overconstrained Declarative
Models Using Unsatisfiable Cores”. In: ASE. Links: ee,
Google Scholar. IEEE Computer Society, 2003, pp. 94–
105. ISBN: 0-7695-2035-9 (cit. on p. 1).

[Sim+10] J. Simmonds, J. Davies, A. Gurfinkel, and M. Chechik.
“Exploiting resolution proofs to speed up LTL vacuity
detection for BMC”. In: STTT 12.5 (2010). Links: ee,
Google Scholar, pp. 319–335 (cit. on pp. 1, 2, 21).

[SL95] A. Stepanov and M. Lee. The Standard Template Li-
brary. Tech. rep. 95-11(R.1). Links: Google Scholar.
HP Laboratories, Nov. 1995. URL: http : / / www .
stepanovpapers.com/STL/DOC.PDF (cit. on p. 7).

[SLL02] J. Siek, L. Lee, and A. Lumsdaine. The Boost Graph
Library - User Guide and Reference Manual. C++ in-
depth series. Links: Google Scholar. Pearson / Prentice
Hall, 2002, pp. I–XXIV, 1–321. ISBN: 978-0-201-72914-
6 (cit. on p. 7).

[trp++] http://www.csc.liv.ac.uk/∼konev/software/trp++/ (cit. on
pp. 2, 3).

[VG02] A. Van Gelder. “Extracting (Easily) Checkable Proofs
from a Satisfiability Solver that Employs both Preorder
and Postorder Resolution”. In: AMAI. Links: ee, Google
Scholar. 2002 (cit. on p. 1).

[vis96] The VIS Group. “VIS: A System for Verification and
Synthesis”. In: CAV. Ed. by R. Alur and T. Henzinger.
Vol. 1102. Lecture Notes in Computer Science. Links:
ee, Google Scholar. Springer, 1996, pp. 428–432. ISBN:
3-540-61474-5 (cit. on p. 21).

[Wha94] D. Whalley. “Automatic Isolation of Compiler Errors”.
In: ACM Trans. Program. Lang. Syst. 16.5 (1994). Links:
ee, Google Scholar, pp. 1648–1659 (cit. on p. 1).

[www] http://www.schuppan.de/viktor/time13/ (cit. on pp. 2,
7).

[ZH02] A. Zeller and R. Hildebrandt. “Simplifying and Isolating
Failure-Inducing Input”. In: IEEE Trans. Software Eng.
28.2 (2002). Links: ee, Google Scholar, pp. 183–200
(cit. on pp. 1, 6).

[ZM03a] L. Zhang and S. Malik. Extracting Small Unsatisfiable
Cores from Unsatisfiable Boolean Formula. Presented
at Theory and Applications of Satisfiability Testing, 6th
International Conference, SAT 2003. Santa Margherita
Ligure, Italy, May 5-8, 2003. Links: Google Scholar.
2003 (cit. on p. 6).

[ZM03b] L. Zhang and S. Malik. “Validating SAT Solvers Us-
ing an Independent Resolution-Based Checker: Practical
Implementations and Other Applications”. In: DATE.
Links: ee, Google Scholar. IEEE Computer Society,
2003, pp. 10880–10885. ISBN: 0-7695-1870-2 (cit. on
p. 1).

12

http://dx.doi.org/10.1007/978-3-642-22110-1_54

http://scholar.google.com/scholar?q=%22Analyzing+Unsynthesizable+Specifications+for+High-Level+Robot+Behavior+Using+LTLMoP%22&hl=en&lr=&btnG=Search

http://doi.acm.org/10.1145/321250.321253

http://scholar.google.com/scholar?q=%22A+Machine-Oriented+Logic+Based+on+the+Resolution+Principle%22&hl=en&lr=&btnG=Search

http://fmv.jku.at/run/

http://fmv.jku.at/run/

http://dx.doi.org/10.1007/s10009-010-0140-3

http://scholar.google.com/scholar?q=%22LTL+satisfiability+checking%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1016/j.scico.2010.11.004

http://scholar.google.com/scholar?q=%22Towards+a+notion+of+unsatisfiable+and+unrealizable+cores+for+LTL%22&hl=en&lr=&btnG=Search

http://rvg.web.cse.unsw.edu.au/eptcs/paper.cgi?QAPL2013.4

http://scholar.google.com/scholar?q=%22Enhancing+Unsatisfiable+Cores+for+LTL+with+Information+on+Temporal+Relevance%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/978-3-642-24372-1_28

http://scholar.google.com/scholar?q=%22Evaluating+LTL+Satisfiability+Solvers%22&hl=en&lr=&btnG=Search

http://fm06.mcmaster.ca/jocelyn.pdf

http://fm06.mcmaster.ca/jocelyn.pdf

http://doi.ieeecomputersociety.org/10.1109/ASE.2003.1240298

http://scholar.google.com/scholar?q=%22Debugging+Overconstrained+Declarative+Models+Using+Unsatisfiable+Cores%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/s10009-009-0134-1

http://scholar.google.com/scholar?q=%22Exploiting+resolution+proofs+to+speed+up+LTL+vacuity+detection+for+BMC%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22The+Standard+Template+Library%22&hl=en&lr=&btnG=Search

http://www.stepanovpapers.com/STL/DOC.PDF

http://www.stepanovpapers.com/STL/DOC.PDF

http://scholar.google.com/scholar?q=%22The+Boost+Graph+Library+-+User+Guide+and+Reference+Manual%22&hl=en&lr=&btnG=Search

http://www.csc.liv.ac.uk/~konev/software/trp++/

http://rutcor.rutgers.edu/~amai/aimath02/PAPERS/33.ps

http://scholar.google.com/scholar?q=%22Extracting+(Easily)+Checkable+Proofs+from+a+Satisfiability+Solver+that+Employs+both+Preorder+and+Postorder+Resolution%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Extracting+(Easily)+Checkable+Proofs+from+a+Satisfiability+Solver+that+Employs+both+Preorder+and+Postorder+Resolution%22&hl=en&lr=&btnG=Search

http://dx.doi.org/10.1007/3-540-61474-5_95

http://scholar.google.com/scholar?q=%22VIS%3A+A+System+for+Verification+and+Synthesis%22&hl=en&lr=&btnG=Search

http://doi.acm.org/10.1145/186025.186103

http://scholar.google.com/scholar?q=%22Automatic+Isolation+of+Compiler+Errors%22&hl=en&lr=&btnG=Search

http://www.schuppan.de/viktor/time13/

http://doi.ieeecomputersociety.org/10.1109/32.988498

http://scholar.google.com/scholar?q=%22Simplifying+and+Isolating+Failure-Inducing+Input%22&hl=en&lr=&btnG=Search

http://scholar.google.com/scholar?q=%22Extracting+Small+Unsatisfiable+Cores+from+Unsatisfiable+Boolean+Formula%22&hl=en&lr=&btnG=Search

http://csdl.computer.org/comp/proceedings/date/2003/1870/01/187010880abs.htm

http://scholar.google.com/scholar?q=%22Validating+SAT+Solvers+Using+an+Independent+Resolution-Based+Checker%3A+Practical+Implementations+and+Other+Applications%22&hl=en&lr=&btnG=Search

APPENDIX A
PROOFS: IV UC EXTRACTION

Lemma 1. Let C be a set of SNF clauses to which the
algorithm in Fig. 2 has been applied and shown unsat-
isfiability, let G be the resolution graph, and let G′ the
subgraph according to Def. 2. Let v be a vertex in G′

labeled with a clause c = (G((¬wl) ∨ (X(l ∨ wl)))) cre-
ated by augmentation aug2 from some eventuality clause
(G((p1 ∨ . . . ∨ pn) ∨ (F(l)))) ∈ C with eventuality literal l .
Then there is a vertex v′ in G′ labeled with an eventuality
clause c′ = (G((q1 ∨ . . . ∨ qn′) ∨ (F(l)))) ∈ C with eventu-
ality literal l .

Proof: There exists a path π of non-zero length in G′

from v to the unique vertex v2 in the main partition M labeled
with the empty clause 2. On the path π there exist two vertices
v′′, v′′′ such that v′′ is labeled with a clause c′′ that contains
¬wl or X¬wl , while v′′′ and all of its successors on π are
labeled with clauses that contain neither ¬wl nor X¬wl . Let
c′′′ be the clause labeling v′′′.
• Case 1. c′′′ is generated by initial or step resolution init-ii ,

init-in , step-nn , step-nx , or step-xx from c′′ and some other
clause c′′′′. c′′′′ must contain wl or Xwl . Moreover, there
must be a path π′ (possibly of zero length) that starts from
a vertex v′′′′′ labeled with a clause c′′′′′ and that ends in
the vertex v′′′′ labeled with c′′′′, such that each vertex on
the path π′ is labeled with a clause that contains wl or
Xwl . Finally, wl or Xwl must be present in c′′′′′ either
because c′′′′′ is contained in the set of input clauses in
SNF, C, or because c′′′′′ is generated by some production
rule that introduces wl or Xwl in the conclusion.
– Case 1.1. c′′′′′ is contained in the set of input clauses

in SNF, C. Impossible: wl is a fresh proposition in
aug1 and aug2 .

– Case 1.2. c′′′′′ is generated by initial or step resolution
init-ii , init-in , step-nn , step-nx , or step-xx . Impossible:
initial and step resolution do not generate literals that
are not contained (modulo time-shifting) in at least one
of the premises.

– Case 1.3. c′′′′′ is generated by augmentation 1 aug1 .
By construction of the resolution graph G and the
subgraph G′ there is an edge in G′ from a vertex
v′ in G′ labeled with an eventuality clause c′ =
(G((q1 ∨ . . . ∨ qn′) ∨ (F(l)))) ∈ C with eventuality
literal l to v′′′′′.

– Case 1.4. c′′′′′ is generated by augmentation 2 aug2 ,
i.e., c′′′′′ = c. This introduces another occurrence of
¬wl to be “resolved away”. Note that in the main
partition only new clauses are generated from existing
ones with edges leading from existing vertices labeled
with existing clauses to new vertices labeled with new
clauses. Therefore, the main partition of G′ is a finite
directed acyclic graph, and this case cannot happen
infinitely often.

– Case 1.5. c′′′′′ is generated by BFS loop search initial-
ization BFS-loop-it-init-x . Impossible: the production rule

BFS-loop-it-init-x copies a clause verbatim. I.e., it cannot
be the case that c′′′′′ contains wl or Xwl , while the
premise does not.

– Case 1.6. c′′′′′ is generated by BFS loop search initial-
ization BFS-loop-it-init-n . Impossible: the production rule
BFS-loop-it-init-n copies and time-shifts a clause. I.e., it
cannot be the case that c′′′′′ contains Xwl , while the
premise does not contain wl .

– Case 1.7. c′′′′′ is generated by BFS loop search initial-
ization BFS-loop-it-init-c . Impossible: the production rule
BFS-loop-it-init-c copies and time-shifts a clause from a
previous BFS loop search iteration (or initializes with
the empty clause 2) and disjoins with an eventuality
literal Xl ′. I.e., it cannot be the case that c′′′′′ contains
Xwl , while the premise does not contain wl .

– Case 1.8. v′′′′′ is linked to via BFS loop search
subsumption BFS-loop-it-sub . This case can be ignored as
BFS loop search subsumption BFS-loop-it-sub does not
actually generate a clause but merely links existing
ones.

– Case 1.9. c′′′′′ is generated by BFS loop search
conclusion 1 BFS-loop-conclusion1 . Impossible: production
rule BFS-loop-conclusion1 copies all literals verbatim from
a clause derived in loop search, copies all literals
verbatim from an eventuality clause except for the
eventuality literal l ′ prefixed by F, and disjoins with
the eventuality literal l ′. I.e., it cannot be the case that
c′′′′′ contains wl , while the premises do not.

– Case 1.10. c′′′′′ is generated by BFS loop search
conclusion 2 BFS-loop-conclusion2 . Impossible: production
rule BFS-loop-conclusion2 copies and time-shifts all literals
from a clause c′′′′′′ derived in loop search and disjoins
with ¬wl ′ and Xl ′ for some eventuality literal l ′. I.e.,
it cannot be the case that c′′′′′ contains Xwl , while the
premise c′′′′′′ does not contain wl .

• Case 2. c′′′ is generated by augmentation aug1 or aug2 .
Impossible: the premise of the production rules aug1

and aug2 cannot contain either ¬wl or X¬wl as wl is
assumed to be a fresh proposition in aug1 and aug2 .

• Case 3. c′′′ is generated by BFS loop search initial-
ization BFS-loop-it-init-x . Impossible: the production rule
BFS-loop-it-init-x copies a clause verbatim. I.e., it cannot be
the case that c′′ contains ¬wl or X¬wl , while c′′′ does
not.

• Case 4. c′′′ is generated by BFS loop search initial-
ization BFS-loop-it-init-n . Impossible: the production rule
BFS-loop-it-init-n copies and time-shifts a clause. I.e., it
cannot be the case that c′′ contains ¬wl , while c′′′ does
not contain X¬wl .

• Case 5. c′′′ is generated by BFS loop search initial-
ization BFS-loop-it-init-c . Impossible: the production rule
BFS-loop-it-init-c copies and time-shifts a clause from a
previous BFS loop search iteration (or initializes with the
empty clause 2) and disjoins with an eventuality literal
Xl ′. I.e., it cannot be the case that c′′ contains ¬wl , while

13

c′′′ does not contain X¬wl .
• Case 6. v′′ and v′′′ are linked via BFS loop search

subsumption BFS-loop-it-sub , i.e., a time-shifted version of
c′′ subsumes c′′′. Impossible: BFS-loop-it-sub links from a
clause with fewer literals to a clause with (modulo time-
shifting) the same and more literals. I.e., it cannot be the
case that c′′ contains ¬wl , while c′′′ does not contain
X¬wl .

• Case 7. c′′′ is generated by BFS loop search con-
clusion 1 BFS-loop-conclusion1 . Impossible: production rule
BFS-loop-conclusion1 copies all literals verbatim from a clause
derived in loop search, copies all literals verbatim from
an eventuality clause except for the eventuality literal l ′

prefixed by F, and disjoins with the eventuality literal l ′.
I.e., it cannot be the case that c′′ contains ¬wl , while c′′′

does not.
• Case 8. c′′′ is generated by BFS loop search con-

clusion 2 BFS-loop-conclusion2 . Impossible: production rule
BFS-loop-conclusion2 copies and time-shifts all literals from
a clause derived in loop search and disjoins with ¬wl ′
and Xl ′ for some eventuality literal l ′. I.e., it cannot be
the case that c′′ contains ¬wl , while c′′′ does not contain
X¬wl .

Notice that the only possible cases are case 1.3 and 1.4. Of
those, case 1.4 can only happen a finite number of times and
must be followed by an occurrence of case 1.3. This concludes
the proof.

Lemma 2. Let C be a set of SNF clauses to which the algo-
rithm in Fig. 2 has been applied and shown unsatisfiability,
let G be the resolution graph constructed, and let G′ be the
subgraph according to Def. 2. Let v be a vertex in G′ labeled
with a clause c = (G((¬wl) ∨ (X((q1 ∨ . . . ∨ qn′) ∨ l))))
generated by BFS loop search conclusion 2 BFS-loop-conclusion2

from some eventuality clause (G((p1 ∨ . . . ∨ pn) ∨ (F(l)))) ∈
C with eventuality literal l (and some other clause). Then
there is a vertex v′′ in G′ labeled with an eventuality clause
c′′ = (G((r1 ∨ . . . ∨ rn′′) ∨ (F(l)))) ∈ C with eventuality
literal l .

Proof: Analogous to the proof of Lemma 1.

Lemma 3. Let C be a set of SNF clauses to which the
algorithm in Fig. 2 has been applied and shown unsatis-
fiability, let G be the resolution graph, and let G′ be the
subgraph according to Def. 2. Let v be a vertex in G′

labeled with a clause c = (G((0) ∨ (X(q1 ∨ . . . ∨ qn′ ∨ l))))
generated by production rule BFS-loop-it-init-c from some even-
tuality clause (G((p1 ∨ . . . ∨ pn) ∨ (F(l)))) ∈ C with even-
tuality literal l (and some other clause). Then there is a
vertex v′′ in G′ labeled with an eventuality clause c′′ =
(G((r1 ∨ . . . ∨ rn′′) ∨ (F(l)))) ∈ C with eventuality literal
l .

Proof: By construction of the resolution graph G (Def. 1)
and its subgraph G′ (Def. 2) v is included in G′ only if
G′ also includes some vertex v′ labeled with some clause
c′ such that c′ was generated by BFS loop search conclu-

sion BFS-loop-conclusion1 or BFS-loop-conclusion2 from the BFS loop
search iteration of which c is part.
• Case 1. c′ is generated by BFS loop search conclu-

sion 1 BFS-loop-conclusion1 . The claim follows from the
construction of the resolution graph G and its sub-
graph G′. By Def. 1 v′ has an incoming edge from
a vertex v′′ labeled with an eventuality clause c′′ =
(G((r1 ∨ . . . ∨ rn′′) ∨ (F(l)))) ∈ C with eventuality
literal l and by Def. 2 v′′ is included in G′ if v′ is
included.

• Case 2. c′ is generated by BFS loop search conclusion 2
BFS-loop-conclusion2 . In that case the claim follows directly
from Lemma 2.

This concludes the proof.

Theorem 1 (Unsatisfiability of UC in SNF). Let C be a set of
SNF clauses to which the algorithm in Fig. 2 has been applied
and shown unsatisfiability, and let Cuc be the UC of C in SNF.
Then Cuc is unsatisfiable.

Proof: Assume for a moment that in columns 9 (p.1 –
c) and 10 (p.2 – c) of Tab. I all 6 are replaced with 4, i.e.,
that each conclusion in the resolution graph is connected by
an edge to each of its premises rather than only to a subset
of them. In that case the UC in SNF according to Def. 2
would contain all clauses of the set of starting clauses C
that contributed to deriving the empty clause and, hence, to
establishing unsatisfiability of C. In that case it would follow
directly from the correctness of TR that Cuc is unsatisfiable.

It remains to show that (i) not including an edge from
premise 1 to the conclusion for rule aug2 , (ii) not includ-
ing an edge from premise 2 to the conclusion for rule
BFS-loop-conclusion2 , (iii) not including an edge from premise 2 to
the conclusion for rule BFS-loop-it-init-c , and (iv) not including an
edge from premise 1 to the conclusion for rule BFS-loop-it-init-c

in the resolution graph G maintains the fact that the resulting
Cuc is unsatisfiable.

To see the intuition behind (i) note that for a vertex vc
labeled with a conclusion c of rule aug2 in the main partition
MV to be backward reachable from the (unique) vertex in
the main partition MV of the resolution graph G labeled with
the empty clause 2, v2, the occurrence of ¬wl in c must be
“resolved away” at some point on the path from vc to v2. It
turns out that this can only happen by resolution with a clause
that is derived from the conclusion of rule aug1 applied to an
eventuality clause c′ with eventuality literal l . By construction
of the resolution graph G vc′ must be backward reachable
from v2 and, therefore, c′ must be included in the UC in SNF.
Hence, an execution of the algorithm in Fig. 2 with input Cuc

will produce c from c′. For a formal proof see Lemma 1.
A similar reasoning as for (i) applies to (ii), formalized in

Lemma 2.
For (iii) note that a conclusion of rule BFS-loop-it-init-c can

only be backward reachable from v2 if the corresponding BFS
loop search iteration is successful and a vertex labeled with
one of the resulting conclusions of rules BFS-loop-conclusion1 or
BFS-loop-conclusion2 is backward reachable from v2. The latter

14

fact implies that an eventuality clause with the same eventual-
ity literal as in premise 2 of rule BFS-loop-it-init-c is present in the
UC in SNF. Hence, an execution of the algorithm in Fig. 2
with input Cuc will produce premise 2 of BFS-loop-it-init-c as
required. This is formally proven in Lemma 3.

Finally, (iv) is obtained by understanding that in a BFS
loop search iteration the premises 1 of rule BFS-loop-it-init-c

essentially constitute a hypothetical fixed point; if the BFS
loop search iteration is successful, then the hypothetical fixed
point is proven to be an actual fixed point. For the correctness
of a proof of unsatisfiability of C it is only relevant that this
hypothetical fixed point is shown to be an actual fixed point
but not how the hypothesis is obtained. This is formalized
below.

Notice that (iv) essentially corresponds to considering only
the last iteration of a successful loop search to obtain the
UC Cuc. After initialization of a loop search iteration in
line 11 of the algorithm in Fig. 2 L contains three sets of
clauses according to the three production rules for initializing a
loop search iteration. Clauses generated by BFS-loop-it-init-x and
BFS-loop-it-init-n are (partly time-shifted) duplicates of clauses
derived so far in the main partition. BFS-loop-it-init-c generates
a set of clauses (G((0) ∨ (X(pi,1 ∨ . . . ∨ pi,ni ∨ l)))). From
these three sets saturation restricted to rule step-xx in line
12 derives another set of clauses (G(qi′,1 ∨ . . . ∨ qi′,n′i′)).
Taking the restriction of saturation to rule step-xx into account,
that loop search iteration has established that, assuming C, the
following fact is provable:

G((
∧

1≤i≤n(X(pi,1 ∨ . . . ∨ pi,ni ∨ l)))→
(
∧

1≤i′≤n′(qi′,1 ∨ . . . ∨ qi′,n′i′)))
(10)

Moreover, if subsumption in line 15 succeeds, the following
fact is also provable:∧

1≤i≤n(
∨

1≤i′≤n′(G((qi′,1 ∨ . . . ∨ qi′,n′i′)→
(pi,1 ∨ . . . ∨ pi,ni))))

(11)

We rewrite (10) and (11) as follows:

G((
∧

1≤i≤n
(X(pi,1 ∨ . . . ∨ pi,ni ∨ l)))→

(
∧

1≤i′≤n′
(qi′,1 ∨ . . . ∨ qi′,n′

i′
)))

⇔ G(
∧

1≤i′≤n′
((
∧

1≤i≤n
(X(pi,1 ∨ . . . ∨ pi,ni ∨ l)))→

(qi′,1 ∨ . . . ∨ qi′,n′
i′
)))

⇔
∧

1≤i′≤n′
(G((

∧
1≤i≤n

(X(pi,1 ∨ . . . ∨ pi,ni ∨ l)))→
(qi′,1 ∨ . . . ∨ qi′,n′

i′
)))

⇔
∧

1≤i′≤n′
(G((¬(qi′,1 ∨ . . . ∨ qi′,n′

i′
))→

(¬(
∧

1≤i≤n
(X(pi,1 ∨ . . . ∨ pi,ni ∨ l))))))

⇔
∧

1≤i′≤n′
(G((¬(qi′,1 ∨ . . . ∨ qi′,n′

i′
))→

(
∨

1≤i≤n
(X(¬(pi,1 ∨ . . . ∨ pi,ni ∨ l))))))

⇔
∧

1≤i′≤n′
(G((¬(qi′,1 ∨ . . . ∨ qi′,n′

i′
))→

(
∨

1≤i≤n
(X((¬(pi,1 ∨ . . . ∨ pi,ni)) ∧ (¬l))))))

⇔
∧

1≤i′≤n′
(G((¬(qi′,1 ∨ . . . ∨ qi′,n′

i′
))→

((X¬l) ∧ (
∨

1≤i≤n
(X(¬(pi,1 ∨ . . . ∨ pi,ni)))))))

(12)

∧
1≤i≤n(

∨
1≤i′≤n′(G((qi′,1 ∨ . . . ∨ qi′,n′i′)→

(pi,1 ∨ . . . ∨ pi,ni))))

⇔
∧

1≤i≤n(
∨

1≤i′≤n′(G((¬(pi,1 ∨ . . . ∨ pi,ni))→
(¬(qi′,1 ∨ . . . ∨ qi′,n′i′)))))

(13)

Putting (12) and (13) together, we obtain (14), which is
exactly the premise required to perform eventuality resolution
with an eventuality clause with eventuality literal l [FDP01]:

(G((q1,1 ∨ . . . ∨ q1,n′1) ∨ (XG¬l)))
· · ·

(G((qn′,1 ∨ . . . ∨ qn′,n′n′) ∨ (XG¬l)))
(14)

This concludes the proof.

Proposition 1 (Complexity of UC Extraction). Let C be
a set of SNF clauses to which the algorithm in Fig. 2 is
applied and shows unsatisfiability. Construction and backward
traversal of the resolution graph and, hence, construction of
Cuc according to Def. 2 can be performed in time O(|V |) in
addition to the time required to run the algorithm in Fig. 2.
|V | is at most exponential in |AP |+ log(|C|).

Proof: Notice that each vertex in G has at most 2
incoming edges. Hence, construction of G and backward
traversal of G from the unique vertex in the main partition
labeled with the empty clause, v2, can be performed in time
O(|V |).

For a proof of |AP |+ log(|C|) see the following reasoning:
1) In an initial clause a proposition can be not present,

present, or present negated. Hence, the number of dif-
ferent initial clauses is O(3|AP|).

2) In a global clause a proposition can be one of not
present, present, or present negated; and prefixed by
X not present, present, or present negated. Hence, the
number of different global clauses is O(9|AP|).

3) The number of clauses in the main partition is bounded
by |C|+O(3|AP|) +O(9|AP|) = O(|C|+ 9|AP|).

4) The number of clauses in a partition for a BFS loop search
iteration is bounded by O(9|AP|).

5) The number of partitions is bounded by 1 plus the number
of BFS loop search iterations.

6) The number of iterations in a BFS loop search is bounded
by the length of the longest monotonically increasing se-
quence of Boolean formulas over AP , which isO(2|AP|).
See also [Dix98].

7) The number of BFS loop searches is bounded by the
number of different clauses that can be the result of a
BFS loop search. The number of different clauses that
can be the consequence of BFS loop search conclusion 1
BFS-loop-conclusion1 is bounded by the number of different
global clauses with empty next part, which is O(3|AP|).
The number of different clauses that can be the conse-
quence of BFS loop search conclusion 2 BFS-loop-conclusion2

is bounded by the number of different eventuality literals
times the number of different global clauses with empty

15

next part, which is O(|C| · 3|AP|). Hence, the number of
BFS loop searches is bounded by O(|C| · 3|AP|).

8) Taking all of the above into account,
the number of clauses is bounded by
O(|C|+ 9|AP| + |C| · 3|AP| · 2|AP| · 9|AP|) =
O(|C| · 54|AP|).

This concludes the proof.

Remark 1 (Minimality of Set of Premises to Include in Res-
olution Graph). Theorem 1 shows that not including premises
for production rules marked by 6 in columns 9 (p.1 – c) and
10 (p.2 – c) of Tab. I during the construction of the resolution
graph still leads to a UC. It does not discuss whether the
remaining premises, marked by 4 in columns 9 (p.1 – c) and
10 (p.2 – c) of Tab. I, actually need to be included to guarantee
a UC. For all premises of all production rules marked by 4
in columns 9 (p.1 – c) and 10 (p.2 – c) of Tab. I it turns out
that they are indeed required to obtain a UC.

Proof: For a given premise p of some production rule
rule with conclusion c the need for inclusion of edges between
instances of p and c induced by rule in the resolution graph to
obtain a UC can be established as follows.2 Let C be a set of
SNF clauses to which the algorithm in Fig. 2 has been applied
and shown unsatisfiability, let G be the resolution graph, let
v2 be the (unique) vertex in the main partition MV of the
resolution graph G labeled with the empty clause 2, and let
Cuc be the UC of C in SNF. Assume that Cuc is a minimal
UC. Now, if removing all edges between instances of p and
c induced by rule from G makes a vertex vc in MV labeled
with c ∈ Cuc backward unreachable from v2, then the UC
obtained without including edges between instances of p and
c induced by rule clearly would not be unsatisfiable.

Hence, for all premises of all production rules marked by
4 in columns 9 (p.1 – c) and 10 (p.2 – c) of Tab. I, below
we provide triples of premises p of production rules rule ,
minimally unsatisfiable SNFs C ≡ Cuc, and subgraphs G′

of resolution graphs with the following properties. (i) G′ is
the subgraph according to Def. 2 for C. (ii) There exists a
vertex vc in G′ labeled with c ∈ C and an edge e that is
an instance of p and c induced by rule such that removal of
e from G′ makes vc backward unreachable from v2. In the
graphs below e and vc are marked blue, thick, dashed. The
vertex labels use TRP++ syntax.

Note that the search for such triples can be supported by a
corresponding modification to the temporal resolution solver.
For the more complex cases below candidates were obtained
in that way and then optimized by hand.

2Note that this proof assumes that there are no edges between instances
of the premise of aug2 , the premises of BFS-loop-it-init-c , and premise 2 of
BFS-loop-conclusion2 and their conclusions induced by these production rules

as indicated in Tab. I and Def. 1. I.e., different minimal sets of premises to
include in the resolution graph may exist.

init-ii {(a), (¬a)}

or([not a])or([a])

or([])

init-iiinit-ii

init-in , premises 1, 2 {(a), (G(¬a))}

always(or([not a]))or([a])

or([])

init-inninit-ini

step-nn {(G(a)), (G(¬a))}

always(or([not a]))always(or([a]))

or([])

step-nnstep-nn

step-nx , premises 1, 2 {(G(a)),
(G(X(¬a)))}

always(or([next(not a)]))always(or([a]))

or([])

step-nxxstep-nxn

step-xx
{(G(X(a))),
(G(X(¬a)))}

always(or([next(not a)]))always(or([next(a)]))

or([])

step-xxstep-xx

16

aug1

{(a),
(G((¬b) ∨ (X(¬c)))),
(G((¬c) ∨ (X(c)))),
(G((¬a) ∨ (F(¬c)))),
(G((c) ∨ (F(b)))),
(G(F(c)))}

See Fig. 6.

BFS-loop-it-init-x

{(a),
(G((¬a) ∨ (X(a)))),
(G(F(¬a)))}

or([])

always(or([not a]))

always(or([not a,next(a)]))

or([a])

always(or([sometime(not a)]))

always(or([not a,next(a)]))

always(or([next(not a)]))

always(or([not a]))

step-xx

step-xx

init-ini

BFS-loop-conclusion1g

BFS-loop-it-init-x

init-inn

BFS-loop-conclusion1e BFS-loop-it-sub

BFS-loop-it-init-n

{(a),
(G((¬b) ∨ a)),
(G((¬b) ∨ (¬a))),
(G((¬a) ∨ (F(b))))}

See Fig. 7.

BFS-loop-it-sub

{(a),
(G((¬a) ∨ (X(b)))),
(G((¬b) ∨ (X(a)))),
(G(F(c))),
(G((¬c) ∨ (¬a))),
(G((¬a) ∨ (X(¬c))))}

See Fig. 8.

BFS-loop-conclusion1 ,
premise 1

{(a),
(G((¬a) ∨ (X(a)))),
(G(F(¬a)))}

or([])

always(or([not a]))

always(or([not a,next(a)]))

or([a])

always(or([sometime(not a)]))

always(or([not a,next(a)]))

always(or([next(not a)]))

always(or([not a]))

step-xx

step-xx

init-ini

BFS-loop-conclusion1g

BFS-loop-it-init-x

init-inn

BFS-loop-conclusion1e BFS-loop-it-sub

BFS-loop-conclusion1 ,
premise 2

{(G(a)),
(G(F(¬a)))}

or([])

always(or([sometime(not a)]))

always(or([a]))

always(or([next(a)]))

or([])

always(or([next(not a)])) always(or([not a]))

BFS-loop-it-sub BFS-loop-conclusion1g

step-xx

step-xx

step-nn

BFS-loop-it-init-n

step-nn

BFS-loop-conclusion1e

BFS-loop-conclusion2 ,
premise 1

{(a ∨ b),
(G((¬a) ∨ (F(f)))),
(G((¬b) ∨ (F(f)))),
(G((¬a) ∨ (F(¬f)))),
(G((¬b) ∨ (F(¬f)))),
(G(((¬a) ∨ f) ∨ (X(c)))),
(G(((¬b) ∨ f) ∨ (X(d)))),
(G((¬c) ∨ (X(c)))),
(G((¬d) ∨ (X(d)))),
(G((¬c) ∨ (¬f))),
(G((¬d) ∨ (¬f))),
((¬f) ∨ g),
(G((¬g) ∨ (X(g)))),
(G((¬g) ∨ f))}

See Fig. 9.

17

always(or([not b,next(b)]))

always(or([not w b,c]))

always(or([not b]))

always(or([c,b]))

always(or([b,not a]))

always(or([not c,next(b)]))

always(or([not c]))

always(or([not w b,next(not c),next(b)]))

always(or([not c,next(not b)]))

always(or([not c,next(c)]))

always(or([next(not c),next(b)]))

always(or([next(not b)]))

always(or([next(c),next(not b)]))

always(or([next(not w b),next(c)])) always(or([next(w b),next(c),next(b)]))

always(or([not c,next(c)]))

or([a])

always(or([not a,sometime(not c)]))

always(or([not b,next(not c)]))

always(or([sometime(c)]))

always(or([c,sometime(b)]))

always(or([not c,next(not b)]))

always(or([not c,not b]))

always(or([next(not c),next(not b)]))

or([])

always(or([not a]))

always(or([c,not b]))

always(or([w b,c,b]))

always(or([next(not c)]))

always(or([not c,next(c)]))

always(or([not c]))

always(or([not c,not a]))

always(or([not w b]))

always(or([next(c),next(b)]))

always(or([not w b,next(not c),next(b)]))

always(or([not w b,next(b)]))

always(or([not b,next(not c)]))

always(or([not b]))

step-xx

step-nxn

step-xx

step-xx

step-xx

step-nn

step-xx

BFS-loop-conclusion1g

BFS-loop-it-init-n

BFS-loop-conclusion1g

step-xx

step-nn

step-xx

step-nn

step-xx

step-xx

step-xx

aug1

BFS-loop-it-sub

BFS-loop-it-init-x

init-ini

BFS-loop-conclusion1e

BFS-loop-it-sub

BFS-loop-it-sub

step-nn

BFS-loop-conclusion1e

init-inn

step-xx

BFS-loop-it-init-x

step-xx

step-xx

BFS-loop-it-sub

step-nn

step-nn

BFS-loop-it-init-n

step-xx

step-xx

step-xx

BFS-loop-conclusion2g

step-xx

BFS-loop-it-init-x

BFS-loop-conclusion1g

BFS-loop-it-init-x

step-xx

step-xx

BFS-loop-it-init-x

step-nn

step-nn

step-nxx

step-xx

BFS-loop-conclusion1e

Fig. 6. Subgraph G′ of resolution graph for the case of aug1 in the proof of Remark 1.

always(or([next(a)]))

always(or([next(b)]))

or([])

always(or([next(not a)]))

always(or([b,not a]))

always(or([not a]))

or([])

always(or([not b,a]))

or([a])

always(or([not a,sometime(b)]))

always(or([not b,not a]))

always(or([next(not b),next(a)]))

always(or([next(not b),next(not a)]))

step-nn step-xx

step-xx

BFS-loop-conclusion1g

step-nn

BFS-loop-conclusion1e BFS-loop-it-sub

step-xx

BFS-loop-it-init-n

BFS-loop-it-init-n

step-xx

step-xx

step-xx

init-ini init-inn

Fig. 7. Subgraph G′ of resolution graph for the case of BFS-loop-it-init-n in the proof of Remark 1.

18

always(or([next(not c),next(not a)]))

always(or([not a,next(not c)]))

always(or([next(c),next(not a)]))

always(or([next(not a)]))

always(or([next(c),next(not b)]))

always(or([not a,next(not b)]))

always(or([not b]))

always(or([not a]))

always(or([not a]))

always(or([c,not a]))

always(or([not c,not a]))

or([a])

always(or([not a,next(b)]))

always(or([not b,next(a)]))

always(or([sometime(c)]))

always(or([not a,next(not c)]))

or([])

always(or([not a,next(b)]))

always(or([not b,next(a)]))

step-xx

BFS-loop-it-sub

step-xx

BFS-loop-conclusion1e

BFS-loop-it-sub

step-xx BFS-loop-it-init-x

init-ini

step-xx

step-xx

BFS-loop-it-init-x

BFS-loop-it-init-n

step-xx

step-nn

BFS-loop-conclusion1g

step-xx

init-inn

BFS-loop-it-init-x

step-xx

step-nn

Fig. 8. Subgraph G′ of resolution graph for the case of BFS-loop-it-sub in the proof of Remark 1.

This concludes the proof.

APPENDIX B
PROOFS: V FROM LTL TO SNF AND BACK

Theorem 2 (Unsatisfiability of UC in LTL). Let φ be an
unsatisfiable LTL formula, and let φuc be the UC of φ in
LTL. Then φuc is unsatisfiable.

Proof: Let SNF (φ) be the SNF of φ, and let Cuc be the
UC of SNF (φ) in SNF.

First, consider the trivial case that φ is 0. Here, Def. 4 results
in the UC of φ in LTL being φuc ≡ 0 as desired.

Now assume that φ is not 0, i.e., the size of the syntax tree
of φ is greater than 1. Let SNF (φuc) be the SNF of φuc .
In order to prove that φuc is unsatisfiable we show that the
clauses of Cuc (which is unsatisfiable) are a subset of the SNF
of φuc : Cuc ⊆ SNF (φuc).

By comparing the clauses of SNF (φ) with those of
SNF (φuc) we can partition the clauses of SNF (φ) into 3
sets:3 (i) Some clauses are present in both SNF (φ) and
SNF (φuc): C ′1 ≡ SNF (φ) ∩ SNF (φuc). (ii) Some clauses
are present in SNF (φ) and are present in SNF (φuc) with one
or more occurrences of some propositions x, x′, . . . that are
marked blue boxed in Tab. II replaced with 1 or 0. Call that
set C ′2. (iii) Some clauses are present in SNF (φ) but not in
SNF (φuc): C ′3 ≡ SNF (φ) \ (SNF (φuc) ∪ C ′2).

3We disregard the issue of the indices of the variables x, x′,

By Def. 2 Cuc is a subset of SNF (φ): Cuc ⊆ SNF (φ).
By Def. 4 Cuc contains no member of C ′2; otherwise, there
could not be one or more occurrences of some propositions
x, x′, . . . that are marked blue boxed in Tab. II replaced with
1 or 0 in the clauses of C ′2: Cuc ∩ C ′2 = ∅. Now we argue
that Cuc also contains no member of C ′3. First, let c ∈ C ′3 be
an initial or a global clause. c cannot be a member of Cuc as,
in order to be part of a proof that derives the empty clause, all
literals of c need to be “resolved away”. However, this is not
possible for c as for the literal (¬)xψ on the left side of the
implication in Tab. II there is no clause with an opposite literal
in Cuc. This follows by induction on the nesting depth of the
subformula ψ to which (¬)xψ belongs from the occurrence of
the superformula of ψ that has been replaced with 1 or 0 in
φuc . Now let c ∈ C ′3 be an eventuality clause. By Def. 1, 2
for such c to be part of Cuc there would have to be a clause
c′ in the resolution graph G according to Def. 1 that was
generated by production rules aug1 or BFS-loop-conclusion1 and
that is backward reachable in G from the vertex labeled with
the empty clause 2 in the main partition M , v2. Again, for the
latter to happen, all literals of c′ would have to be “resolved
away”, which is impossible by a similar inductive argument
as before. Hence, we have shown that all clauses in Cuc come
from C ′1, which is a subset of SNF (φuc). This concludes the
proof.

APPENDIX C
PROOFS: VI MINIMAL UCS

Remark 4 (Minimal UC in SNF No Guarantee for Minimal
UC in LTL). Let φ be an unsatisfiable LTL formula, C its

19

or
([

no
t

a]
)

or
([

no
t

f,n
ot

b]
)

or
([

a]
)

or
([

no
t

b]
)

or
([

])

al
w

ay
s(

or
([

no
t

d,
ne

xt
(f

)]
))

al
w

ay
s(

or
([

no
t

w
f,n

ex
t(

no
t

d)
,n

ex
t(

f)
])

)

al
w

ay
s(

or
([

no
t

w
f,f

,n
ot

b,
ne

xt
(f

)]
))

al
w

ay
s(

or
([

no
t

g,
ne

xt
(n

ot
f)

])
)

al
w

ay
s(

or
([

ne
xt

(n
ot

g)
,n

ex
t(

no
t

f)
])

)

al
w

ay
s(

or
([

w
f,f

,n
ot

b]
))

al
w

ay
s(

or
([

f,n
ot

a,
ne

xt
(n

ot
f)

])
)

al
w

ay
s(

or
([

f,n
ot

b,
ne

xt
(n

ot
f)

])
)

al
w

ay
s(

or
([

no
t

d]
))

al
w

ay
s(

or
([

f,n
ot

a]
))

al
w

ay
s(

or
([

w
no

t
f,n

ot
f,n

ot
b]

))

al
w

ay
s(

or
([

no
t

c,
ne

xt
(n

ot
f)

])
)

al
w

ay
s(

or
([

f,n
ot

a,
ne

xt
(f

)]
))

al
w

ay
s(

or
([

no
t

c]
))

or
([

g,
no

t
f]

)

or
([

b,
a]

)

al
w

ay
s(

or
([

no
t

d,
no

t
f]

))
al

w
ay

s(
or

([
no

t
c,

no
t

f]
))

al
w

ay
s(

or
([

no
t

c,
ne

xt
(c

)]
))

al
w

ay
s(

or
([

no
t

g,
f]

))
al

w
ay

s(
or

([
no

t
g,

ne
xt

(g
)]

))

al
w

ay
s(

or
([

no
t

d,
ne

xt
(d

)]
))

al
w

ay
s(

or
([

f,n
ot

b,
ne

xt
(d

)]
))

al
w

ay
s(

or
([

f,n
ot

a,
ne

xt
(c

)]
))

al
w

ay
s(

or
([

no
t

w
no

t
f,n

ot
g]

))

al
w

ay
s(

or
([

no
t

g,
no

t
f,n

ot
b]

))

al
w

ay
s(

or
([

no
t

g,
no

t
f,n

ot
a]

))

al
w

ay
s(

or
([

no
t

w
no

t
f,n

ot
g,

ne
xt

(n
ot

f)
])

)

al
w

ay
s(

or
([

no
t

w
no

t
f,n

ex
t(

no
t

g)
,n

ex
t(

no
t

f)
])

)

al
w

ay
s(

or
([

no
t

g]
))

al
w

ay
s(

or
([

no
t

c,
ne

xt
(f

)]
))

or
([

no
t

f,n
ot

a]
)

al
w

ay
s(

or
([

ne
xt

(n
ot

d)
,n

ex
t(

f)
])

)

al
w

ay
s(

or
([

no
t

w
f,f

,n
ot

b]
))

al
w

ay
s(

or
([

no
t

g,
ne

xt
(f

)]
))

al
w

ay
s(

or
([

no
t

b,
so

m
et

im
e(

f)
])

)

al
w

ay
s(

or
([

no
t

a,
so

m
et

im
e(

f)
])

)

al
w

ay
s(

or
([

no
t

b,
so

m
et

im
e(

no
t

f)
])

)

al
w

ay
s(

or
([

no
t

a,
so

m
et

im
e(

no
t

f)
])

)

al
w

ay
s(

or
([

no
t

d,
ne

xt
(n

ot
f)

])
)

al
w

ay
s(

or
([

no
t

c,
ne

xt
(n

ot
f)

])
)

al
w

ay
s(

or
([

no
t

g,
ne

xt
(f

)]
))

al
w

ay
s(

or
([

no
t

c,
ne

xt
(c

)]
))

al
w

ay
s(

or
([

f,n
ot

a,
ne

xt
(n

ot
f)

])
)

al
w

ay
s(

or
([

no
t

d,
ne

xt
(n

ot
f)

])
)

al
w

ay
s(

or
([

ne
xt

(n
ot

c)
,n

ex
t(

f)
])

)

al
w

ay
s(

or
([

no
t

d,
ne

xt
(d

)]
))

al
w

ay
s(

or
([

f,n
ot

a,
ne

xt
(c

)]
))

al
w

ay
s(

or
([

f,n
ot

b]
))

al
w

ay
s(

or
([

f,n
ot

a]
))

al
w

ay
s(

or
([

no
t

g,
ne

xt
(g

)]
))

B
FS

-l
oo

p-
it-

in
it-

xst
ep

-x
x

st
ep

-n
n

st
ep

-x
x

st
ep

-x
x

st
ep

-n
xx

in
it-

in
n

st
ep

-n
xn

st
ep

-x
x

B
FS

-l
oo

p-
it-

in
it-

x

st
ep

-n
xn

B
FS

-l
oo

p-
co

nc
lu

si
on

1-
w

oe
m

pt
ye

au
g1

st
ep

-n
xx

st
ep

-x
x

in
it-

in
n

st
ep

-x
x

B
FS

-l
oo

p-
it-

in
it-

x

st
ep

-x
x

st
ep

-x
x

in
it-

in
n

st
ep

-n
n

st
ep

-n
xn

B
FS

-l
oo

p-
co

nc
lu

si
on

2-
w

oe
m

pt
yg

in
it-

ii

B
FS

-l
oo

p-
it-

in
it-

x

B
FS

-l
oo

p-
it-

su
b

st
ep

-x
x

st
ep

-n
xn

st
ep

-n
xx

B
FS

-l
oo

p-
it-

su
b

in
it-

ii

in
it-

in
n

st
ep

-x
x

st
ep

-x
x

st
ep

-n
xx

in
it-

in
i

st
ep

-x
x

B
FS

-l
oo

p-
co

nc
lu

si
on

1-
w

oe
m

pt
ye

B
FS

-l
oo

p-
it-

in
it-

x

st
ep

-x
x

st
ep

-x
x

B
FS

-l
oo

p-
it-

in
it-

x

st
ep

-n
n

st
ep

-x
x

st
ep

-x
x

st
ep

-x
x

B
FS

-l
oo

p-
it-

su
b

B
FS

-l
oo

p-
co

nc
lu

si
on

2-
w

oe
m

pt
yg

st
ep

-x
x

st
ep

-x
x

st
ep

-x
x

st
ep

-x
x

B
FS

-l
oo

p-
it-

in
it-

x

B
FS

-l
oo

p-
it-

in
it-

x

st
ep

-n
n

st
ep

-n
xn

in
it-

in
i

st
ep

-x
x

in
it-

in
i

B
FS

-l
oo

p-
co

nc
lu

si
on

1-
w

oe
m

pt
yg

st
ep

-n
xx

in
it-

ii

in
it-

ii

st
ep

-x
xin

it-
in

i

st
ep

-x
x

au
g1

B
FS

-l
oo

p-
co

nc
lu

si
on

1-
w

oe
m

pt
yg

Fi
g.

9.
Su

bg
ra

ph
G
′

of
re

so
lu

tio
n

gr
ap

h
fo

r
th

e
ca

se
of

B
FS

-l
oo

p-
co

nc
lu

si
on

2
in

th
e

pr
oo

f
of

R
em

ar
k

1.

20

translation to SNF, Cuc a minimal UC of C in SNF, and φuc

the UC of φ in LTL obtained by mapping Cuc back to LTL
via Def. 4. Then φuc is not necessarily minimal.

Proof: Let φ ≡ (¬p) ∧ ((G¬q) ∧ (pUq)). Then

C ≡

{xφ,
(G(xφ → x¬p)),
(G(x¬p → ¬p)),
(G(xφ → x(G¬q)∧(pUq))),
(G(x(G¬q)∧(pUq) → xG¬q)),
(G(xG¬q → XxG¬q)),
(G(xG¬q → x¬q)),
(G(x¬q → ¬q)),
(G(x(G¬q)∧(pUq) → xpUq)),
(G(xpUq → (q ∨ p))),
(G(xpUq → (q ∨XxxpUq

))),
(G(xpUq → Fq))}.

is its SNF according to Def. 3. A minimal UC of C in SNF
is

Cuc ≡

{xφ,
(G(xφ → x¬p)),
(G(x¬p → ¬p)),
(G(xφ → x(G¬q)∧(pUq))),
(G(x(G¬q)∧(pUq) → xG¬q)),
(G(xG¬q → x¬q)),
(G(x¬q → ¬q)),
(G(x(G¬q)∧(pUq) → xpUq)),
(G(xpUq → (q ∨ p)))}.

Mapping Cuc back to a UC in LTL via Def. 4 yields φ. φ is
not a minimal UC, as the first conjunct ¬p can be replaced
with 1 while retaining unsatisfiability.

Note that given φ our implementation actually produces φ
as a UC in LTL. This is due to the fact that the UC in SNF,
Cuc, is found during the first execution of saturation in line
2 of the algorithm in Fig. 2, while the contradiction between
G¬q and the eventuality part of pUq requires loop search,
which is only performed at a later stage.

Note also that the result just proved depends on the notion
of UC for LTL: the proof above obviously does not hold if
the notion of UC allows to not only replace G¬q with 1 but
also, alternatively, with ¬q and pUq not only with 1 but also,
alternatively, with p ∨ q .

APPENDIX D
RELATION TO MUTUAL VACUITY

In [GC04] Gurfinkel and Chechik introduce the notion of
mutual vacuity. It is easy to see that the problems of finding a
UC of an unsatisfiable formula φ in LTL and finding a set of
subformula occurrences O of an LTL specification φ such that
φ is mutually vacuously 1 in O in a system ζ can conceptually
be reduced to each other. For some more discussion on the
relation between UCs and vacuity see also [Sch12].

Definition 6 (Mutual Vacuity). Let ζ be a system description.
Let φ be a specification in LTL such that φ is 1 in ζ. Let O be a
set of disjoint subformula occurrences in φ. Then φ is mutually

vacuously 1 in O in ζ iff the modification φ′ of φ that replaces
those members of O that have positive (resp. negative) polarity
in φ with 0 (resp. 1) is 1 in ζ.

Remark 6 (LTL Model Checking as LTL Satisfiability). Let
ζ be a system description in LTL. Let φ be a specification in
LTL. Then φ is 1 in ζ iff ζ ∧ ¬φ is unsatisfiable.

Note that frequently system descriptions can be translated
into LTL.

Remark 7 (Reducibility between Mutual Vacuity and UCs
in LTL). The problems of finding a UC of an unsatisfiable
formula φ in LTL and finding a set of subformula occurrences
O of an LTL specification φ that is 1 in an LTL system
description ζ such that φ is mutually vacuously 1 in O in
ζ can be reduced to each other.

Proof: The proof is essentially by the respective defini-
tions.

Assume φ is mutually vacuously 1 in O in ζ. Let φ′ be φ
with positive (resp. negative) polarity members of O replaced
with 0 (resp. 1). Then (i) µ ≡ ζ∧¬φ is unsatisfiable. (ii) µ′ ≡
ζ ∧ ¬φ′ is unsatisfiable. µ′ is a UC of µ in LTL.

Assume φ is an unsatisfiable LTL formula with UC φuc .
Then there exists a non-empty set of subformula occurrences
O′ in φ such that φuc is obtained from φ by replacing positive
(resp. negative) polarity members of O′ with 1 (resp. 0). Now
obviously (i) 1 ∧ ¬¬φ is unsatisfiable and (ii) 1 ∧ ¬¬φuc is
unsatisfiable. I.e., ¬φ is mutually vacuously 1 in O′ in the
unconstrained system 1.

A limited number of tools have been made available that
can determine vacuity. Aardvark [PWK09] computes —
depending on configuration — maximal or maximum mutual
vacuity for LTL using VIS [vis96] as a backend. Aardvark
uses binary search and counterexamples to reduce the search
space in the lattice of candidate strengthened specifications;
it does not use proofs for passing specifications to obtain an
initial candidate strengthened specification. Hence, our method
is complementary. We performed a small set of trials with
Aardvark on some of our benchmarks, mostly the smaller
ones from each family. Within this, admittedly limited, set
of trials we ran into problems with usability (often getting
assertion violations or segmentation faults rather than error
messages pointing to potential problems in our input) as well
as scalability.4 We therefore opted not to perform a comparison
on the full set of benchmarks. VaqTree [SDG06] implements
the method of [Sim+10] that computes k-step vacuity for LTL,
i.e., whether an occurrence of an atomic proposition is vacuous

4Note that in vacuity checking it is typically assumed that the system
description is more complex than the specification, while in UC extraction
all complexity is in the formula at hand. When (as we did in our trials) using
the reduction from LTL UC extraction to vacuity checking from Rem. 7 the
resulting vacuity checking instance consists of a trivial system description and
a complex specification. In practice, when the vacuity checking procedure is
tuned to take advantage of the small specification/complex system description
scenario, then complex specifications may lead to problems; it seems that the
scalability problems we observed with Aardvark are caused to some extent
by the translation from the LTL specification to an explicit Büchi automaton
performed in VIS.

21

when bounded model checking runs only up to some bound k
are considered; the problem of removing the bound k is left
open. The NuSMV Model Advisor [nma] computes the set
of all occurrences of atomic propositions that are vacuous (but
not necessarily mutually vacuous) for LTL. VaqUoT [GG06],
a simplified implementation of [GC04], computes the set of
all occurrences of atomic propositions that are vacuous (but
not necessarily mutually vacuous) for CTL. χChek [Eas+03]
is a multi-valued model checker for CTL. A proof-based
formulation of vacuity is suggested by Namjoshi [Nam04];
no implementation or experiments are reported.

APPENDIX E
A COMPLETE EXAMPLE

In this section we present a complete example: we start with
an LTL formula, translate this into SNF according to Def. 3,
perform TR on the SNF as described in Sec. III, extract a UC
in SNF via Def. 1, 2, and finally obtain a (proper) UC of the
original LTL formula by Def. 4.

The formula φ we would like to obtain a UC of is (15).
Clearly, φ is unsatisfiable. Moreover, q can be replaced with
1 without making φ satisfiable. q is the only subformula that
is not required for unsatisfiability.

φ ≡ G(p ∧ q) ∧ F¬p (15)

When translating φ into a set of SNF clauses C our
implementation treats top level conjuncts as separate for-
mulas. We therefore separately translate G(p ∧ q) and F¬p
according to Def. 3. G(p ∧ q) is translated into 5 clauses x1,
G(¬x1 ∨Xx1), G(¬x1 ∨ x2), G(¬x2 ∨ p), and G(¬x2 ∨ q).
x1 represents G(p ∧ q) in the sense that if in a satisfying
assignment of C x1 is 1, then G(p ∧ q) is 1. Similarly, x2
represents p ∧ q. The translation of F¬p results in 3 clauses
x3, G(¬x3 ∨ Fx4), and G(¬p ∨ ¬x4). x3 stands for F¬p and
x4 for ¬p. The SNF of φ, C, is shown in (16).

C ≡ {x1,G(¬x1 ∨Xx1),G(¬x1 ∨ x2),
G(¬x2 ∨ p),G(¬x2 ∨ q), x3,
G(¬x3 ∨ Fx4),G(¬p ∨ ¬x4)}

(16)

In Fig. 10 we show an execution of the algorithm in Fig. 2
on C. In Fig. 10 TR generally proceeds from bottom to top.
At the bottom are the clauses in C. The leftmost clause in
the top row is the empty clause 2, indicating unsatisfiability.
Clauses are connected with directed edges from premises to
conclusions according to columns 9, 10 in Tab. I. Edges are
labeled with production rules, where “BFS-loop” is abbre-
viated to “loop”, “init” to “i”, and “conclusion” to “conc”.
Saturation in line 2 of the algorithm in Fig. 2 produces no new
clauses.5 The 2 clauses in row 2 are generated by augmentation
(line 3). The following saturation (line 4) produces no new

5While it may seem that some clauses are not considered for satura-
tion, this is due to either subsumption of one clause by another (e.g.,
G(¬wx4 ∨X¬x1 ∨Xx4) obtained from G(¬wx4 ∨Xx4 ∨Xwx4) and
G(¬x1 ∨ ¬wx4) is subsumed by G(¬wx4 ∨X¬x1)) or the fact that
TRP++ uses ordered resolution (e.g., x1 with G(¬x1 ∨ x2) — the order
here is x1 < x2 < p < q < x3 < x4; [HK03,BG01]). Both are issues of
completeness of TR and, therefore, not discussed in this paper.

clauses. The dark green shaded rectangle is the loop partition
for the first loop search iteration. Row 3 contains the clauses
obtained by initialization of the BFS loop search iteration
(line 11). Row 4 then contains the clauses generated from
those in row 3 by saturation restricted to step-xx (line 12). The
subsumption test fails in this iteration, as ¬x1 (from G(¬x1))
does not subsume 2 (from G(Xx4)) (lines 13–15). The light
green shaded rectangle is the loop partition for the second
loop search iteration. Row 5 contains the clauses obtained by
initialization and row 6 those obtained from them by restricted
saturation. This time the subsumption test succeeds, and the
loop search conclusions are shown in row 7 (line 18). Finally,
while row 8 contains a “blind alley”, row 9 has the derivation
of the empty clause 2 via saturation (line 19).

The thick, dotted, blue clauses and edges show the part of
the resolution graph that is backward reachable from 2. Clause
G(¬x2 ∨ q) is the only clause of C that is not backward
reachable from 2. Hence, the UC of φ in SNF according to
Def. 1, 2 is Cuc = C \ {G(¬x2 ∨ q)} as shown in (17).

Cuc ≡ {x1,G(¬x1 ∨Xx1),G(¬x1 ∨ x2),G(¬x2 ∨ p),
x3,G(¬x3 ∨ Fx4),G(¬p ∨ ¬x4)} (17)

By careful inspection we see that q is the only subformula
whose proposition according to Tab. II (which is q itself) does
not occur in any clause of Cuc in a position that is marked
blue boxed in Tab. II. Hence, q is the only subformula to be
replaced by 1 or 0 in φ, yielding the UC of φ in LTL, φuc , in
(18).

φuc ≡ G(p ∧ 1) ∧ F¬p (18)

APPENDIX F
ADDITIONAL PLOTS

Figures 11 and 12 show the overhead that is incurred and
the size reduction that is obtained by extracting (non-minimal)
UCs compared to not extracting UCs split by category.

Figures 13 and 14 show the overhead that is incurred and
the size reduction that is obtained by extracting minimal UCs
compared to extracting (non-minimal) UCs split by category.

Figures 15 and 16 show the benefit of optimizations split
by category.

22

x1

G(¬p ∨ ¬x4)

G(¬x2 ∨ p)

G(¬x1 ∨ x2)

G(¬x1 ∨Xx1)

G(¬x2 ∨ q)

x3

G(¬x3 ∨ Fx4)

G(¬wx4 ∨Xx4 ∨Xwx4) G(¬x3 ∨ x4 ∨ wx4)

G(Xx4)

G(X¬p ∨X¬x4)

G(X¬x2 ∨Xp)

G(X¬x1 ∨Xx2)

G(¬x1 ∨Xx1)

G(X¬x2 ∨Xq)

G(¬wx4 ∨Xx4 ∨Xwx4)

G(X¬x3 ∨Xx4 ∨Xwx4)

G(X¬p)

G(X¬x2)

G(X¬x1)

G(¬x1)

G(X¬x1 ∨Xx4)

G(X¬p ∨X¬x4)

G(X¬x2 ∨Xp)

G(X¬x1 ∨Xx2)

G(¬x1 ∨Xx1)

G(X¬x2 ∨Xq)

G(¬wx4 ∨Xx4 ∨Xwx4)

G(X¬x3 ∨Xx4 ∨Xwx4)

G(X¬x1 ∨X¬p)

G(X¬x1 ∨X¬x2)

G(X¬x1)

G(¬x1)

G(¬wx4 ∨X¬x1 ∨Xx4) G(¬x1 ∨ ¬x3 ∨ x4)

G(¬wx4 ∨X¬x1 ∨X¬p) G(¬wx4 ∨X¬x1 ∨X¬x2) G(¬wx4 ∨X¬x1) G(¬x1 ∨ ¬wx4)

2 ¬x1 ¬x1 ∨ ¬x2 ¬x1 ∨ ¬p G(¬x1 ∨ ¬p ∨ ¬x3)

starting clauses

1st loop search
iteration

2nd loop search
iteration

init-ii init-in init-in init-in

step-nn

loop-conc1

step-xx

step-xx
step-xx

step-xx

step-xx

step-xxstep-xx

step-xxstep-nxstep-nx

step-nx

loop-conc2

st
ep

-x
x

step-xx

step-xx

step-xx

loop-it-i-n

step-xx

step-xx

lo
op

-i
t-

i-
n

st
ep

-x
x step-xx

loop-it-i-n

lo
op

-i
t-

i-
x

lo
op

-it
-i-

x

loop-it-i-n

au
g1lo

op
-i

t-
i-

x

loop-conc1

init-in

init-ii

step-nn

step-nx

init-in

step-nx

init-in

step-nx

st
ep

-x
x

loop-it-sub

lo
op

-it
-i-

n
lo

op
-it

-i-
n

loop-it-i-x

loop-it-i-n

loop-it-i-nlo
op

-it
-i-

n

step-xx

loop-it-i-n

Fig. 10. Example of an execution of the TR algorithm with corresponding resolution graph and UC extraction in SNF.

23

ru
n

tim
e

 0.1

 1

 10

 100

to
mo

 0.1 1 10 100 to mo

U
C

 e
x
tr

a
c
ti
o

n
[s

e
c
o

n
d

s
]

no UC extraction [seconds]

 0.1

 1

 10

 100

to
mo

 0.1 1 10 100 to mo

U
C

 e
x
tr

a
c
ti
o

n
[s

e
c
o

n
d

s
]

no UC extraction [seconds]

 0.1

 1

 10

 100

to
mo

 0.1 1 10 100 to mo

U
C

 e
x
tr

a
c
ti
o

n
[s

e
c
o

n
d

s
]

no UC extraction [seconds]

m
em

or
y

 1

10

100

1000

to
mo

 1 10 100 1000 to mo

U
C

 e
x
tr

a
c
ti
o
n

[M
B

]

no UC extraction [MB]

 1

10

100

1000

to
mo

 1 10 100 1000 to mo

U
C

 e
x
tr

a
c
ti
o
n

[M
B

]

no UC extraction [MB]

 1

10

100

1000

to
mo

 1 10 100 1000 to mo

U
C

 e
x
tr

a
c
ti
o
n

[M
B

]

no UC extraction [MB]

application crafted random

Fig. 11. Overhead incurred by (non-minimal) UC extraction compared to not extracting UCs in terms of run time (in seconds) and memory (in MB) separated
by categories application, crafted, and random. In each graph extraction of UCs is on the y-axis and no UC extraction on the x-axis. The off-center diagonal
shows where y = 2x.

si
ze

 1

 10

 100

 1000

 1 10 100 1000

(n
o
n
-m

in
im

a
l)
 U

C
[#

 n
o
d
e
s
]

input formula [# nodes]

 1

 10

 100

 1000

 1 10 100 1000

(n
o
n
-m

in
im

a
l)
 U

C
[#

 n
o
d
e
s
]

input formula [# nodes]

 1

 10

 100

 1000

 1 10 100 1000

(n
o
n
-m

in
im

a
l)
 U

C
[#

 n
o
d
e
s
]

input formula [# nodes]

application crafted random

Fig. 12. Size reduction obtained by (non-minimal) UC extraction compared to not extracting UCs separated by categories application, crafted, and random.
The y-axes show the sizes of the (non-minimal) UCs, the x-axes show the sizes of the input formulas. Size is measured as the number of nodes in the syntax
trees.

24

ru
n

tim
e

 0.1

 1

 10

 100

to
mo

 0.1 1 10 100 to mo

m
in

im
a

l
U

C
 e

x
tr

a
c
ti
o
n

[s
e
c
o

n
d
s
]

UC extraction [seconds]

 0.1

 1

 10

 100

to
mo

 0.1 1 10 100 to mo

m
in

im
a

l
U

C
 e

x
tr

a
c
ti
o
n

[s
e
c
o

n
d
s
]

UC extraction [seconds]

 0.1

 1

 10

 100

to
mo

 0.1 1 10 100 to mo

m
in

im
a

l
U

C
 e

x
tr

a
c
ti
o
n

[s
e
c
o

n
d
s
]

UC extraction [seconds]

m
em

or
y

 1

10

100

1000

to
mo

 1 10 100 1000 to mo

m
in

im
a
l
U

C
 e

x
tr

a
c
ti
o
n

[M
B

]

UC extraction [MB]

 1

10

100

1000

to
mo

 1 10 100 1000 to mo

m
in

im
a
l
U

C
 e

x
tr

a
c
ti
o
n

[M
B

]

UC extraction [MB]

 1

10

100

1000

to
mo

 1 10 100 1000 to mo

m
in

im
a
l
U

C
 e

x
tr

a
c
ti
o
n

[M
B

]

UC extraction [MB]

application crafted random

Fig. 13. Overhead incurred by minimal UC extraction compared to (non-minimal) UC extraction in terms of run time (in seconds) and memory (in MB)
separated by categories application, crafted, and random. In each graph extraction of minimal UCs is on the y-axis and (non-minimal) UC extraction on
the x-axis. The off-center diagonal shows where y = 2x.

si
ze

 1

 10

 100

 1000

 1 10 100 1000

m
in

im
a
l
U

C
[#

 n
o
d
e
s
]

(non-minimal) UC [# nodes]

 1

 10

 100

 1000

 1 10 100 1000

m
in

im
a
l
U

C
[#

 n
o
d
e
s
]

(non-minimal) UC [# nodes]

 1

 10

 100

 1000

 1 10 100 1000

m
in

im
a
l
U

C
[#

 n
o
d
e
s
]

(non-minimal) UC [# nodes]

application crafted random

Fig. 14. Size reduction obtained by minimal UC extraction compared to (non-minimal) UC extraction separated by categories application, crafted, and
random. The y-axes show the sizes of the minimal UCs, the x-axes show the sizes of the (non-minimal) UCs. Size is measured as the number of nodes in
the syntax trees.

25

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

in
c
lu

d
e

 p
re

m
is

e
 o

f
a

u
g
2

[#
 v

e
rt

ic
e

s
 +

 e
d
g

e
s
]

enable all [# vertices + edges]

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

in
c
lu

d
e

 p
re

m
is

e
 o

f
a

u
g
2

[#
 v

e
rt

ic
e

s
 +

 e
d
g

e
s
]

enable all [# vertices + edges]

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

in
c
lu

d
e

 p
re

m
is

e
 o

f
a

u
g
2

[#
 v

e
rt

ic
e

s
 +

 e
d
g

e
s
]

enable all [# vertices + edges]

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

in
c
lu

d
e
 p

re
m

is
e

 1
 o

f
B

F
S

-
lo

o
p

-i
t-

in
it
-c

 a
n
d
 d

o
n
’t
 p

ru
n
e

fa
ile

d
 l
o
o

p
 s

e
a
rc

h
 i
te

ra
ti
o
n
s

[#
 v

e
rt

ic
e
s
 +

 e
d
g
e
s
]

enable all [# vertices + edges]

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

in
c
lu

d
e
 p

re
m

is
e

 1
 o

f
B

F
S

-
lo

o
p

-i
t-

in
it
-c

 a
n
d
 d

o
n
’t
 p

ru
n
e

fa
ile

d
 l
o
o

p
 s

e
a
rc

h
 i
te

ra
ti
o
n
s

[#
 v

e
rt

ic
e
s
 +

 e
d
g
e
s
]

enable all [# vertices + edges]

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

in
c
lu

d
e
 p

re
m

is
e

 1
 o

f
B

F
S

-
lo

o
p

-i
t-

in
it
-c

 a
n
d
 d

o
n
’t
 p

ru
n
e

fa
ile

d
 l
o
o

p
 s

e
a
rc

h
 i
te

ra
ti
o
n
s

[#
 v

e
rt

ic
e
s
 +

 e
d
g
e
s
]

enable all [# vertices + edges]

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

in
c
lu

d
e
 p

re
m

is
e
 2

 o
f

B
F

S
-l
o

o
p

-i
t-

in
it
-c

[#
 v

e
rt

ic
e
s
 +

 e
d
g

e
s
]

enable all [# vertices + edges]

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

in
c
lu

d
e
 p

re
m

is
e
 2

 o
f

B
F

S
-l
o

o
p

-i
t-

in
it
-c

[#
 v

e
rt

ic
e
s
 +

 e
d
g

e
s
]

enable all [# vertices + edges]

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

in
c
lu

d
e
 p

re
m

is
e
 2

 o
f

B
F

S
-l
o

o
p

-i
t-

in
it
-c

[#
 v

e
rt

ic
e
s
 +

 e
d
g

e
s
]

enable all [# vertices + edges]

application crafted random

Fig. 15. Benefit of optimizations as reduction in peak size of resolution graph (number of vertices + number of edges) separated by categories application,
crafted, and random. The x-axis shows all optimizations enabled. The y-axis of rows 1–3 shows one optimization disabled: (row 1) include premise of
aug2 , (row 2) include premise 1 of BFS-loop-it-init-c and disable immediate pruning of failed loop search iterations, and (row 3) include premise 2 of
BFS-loop-it-init-c .

26

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

in
c
lu

d
e
 p

re
m

is
e

 2
 o

f
B

F
S

-l
o

o
p
-c

o
n

c
lu

s
io

n
2

[#
 v

e
rt

ic
e
s
 +

 e
d
g

e
s
]

enable all [# vertices + edges]

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

in
c
lu

d
e
 p

re
m

is
e

 2
 o

f
B

F
S

-l
o

o
p
-c

o
n

c
lu

s
io

n
2

[#
 v

e
rt

ic
e
s
 +

 e
d
g

e
s
]

enable all [# vertices + edges]

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

in
c
lu

d
e
 p

re
m

is
e

 2
 o

f
B

F
S

-l
o

o
p
-c

o
n

c
lu

s
io

n
2

[#
 v

e
rt

ic
e
s
 +

 e
d
g

e
s
]

enable all [# vertices + edges]

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

d
o
n
’t
 p

ru
n
e
 b

e
tw

e
e
n
 l
o
o
p

s
e
a
rc

h
e
s

[#
 v

e
rt

ic
e
s
 +

 e
d
g
e
s
]

enable all [# vertices + edges]

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

d
o
n
’t
 p

ru
n
e
 b

e
tw

e
e
n
 l
o
o
p

s
e
a
rc

h
e
s

[#
 v

e
rt

ic
e
s
 +

 e
d
g
e
s
]

enable all [# vertices + edges]

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

d
o
n
’t
 p

ru
n
e
 b

e
tw

e
e
n
 l
o
o
p

s
e
a
rc

h
e
s

[#
 v

e
rt

ic
e
s
 +

 e
d
g
e
s
]

enable all [# vertices + edges]

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

d
is

a
b

le
 a

ll
[#

 v
e
rt

ic
e
s
 +

 e
d
g
e
s
]

enable all [# vertices + edges]

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

d
is

a
b

le
 a

ll
[#

 v
e
rt

ic
e
s
 +

 e
d
g
e
s
]

enable all [# vertices + edges]

 1

 100

 10000

 1e+06

 1 100 10000 1e+06

d
is

a
b

le
 a

ll
[#

 v
e
rt

ic
e
s
 +

 e
d
g
e
s
]

enable all [# vertices + edges]

application crafted random

Fig. 16. Benefit of optimizations as reduction in peak size of resolution graph (number of vertices + number of edges) separated by categories application,
crafted, and random. The x-axis shows all optimizations enabled. The y-axis of rows 1 and 2 shows one optimization disabled: (row 1) include premise 2
of BFS-loop-conclusion2 and (row 2) disable pruning of the resolution graph between loop searches. The y-axis of row 3 shows all optimizations disabled.

27

		I Introduction

		I-A Motivation

		I-B Temporal Resolution as a Basis

		I-C Contributions

		I-D Relation to Vacuity

		I-E Related Work

		I-F Structure of the Paper

		II Preliminaries

		III Temporal Resolution (TR)

		III-A Separated Normal Form (SNF)

		III-B TR in TRP++

		IV UC Extraction

		V From LTL to SNF and Back

		VI Minimal UCs

		VII Examples

		VII-A Using UCs in LTL to Help Understanding LTL Specifications

		VII-B TR, Resolution Graph, and UC Extraction

		VIII Experimental Evaluation

		VIII-A Implementation

		VIII-B Benchmarks

		VIII-C Setup

		VIII-D Extraction of UCs

		VIII-E Extraction of Minimal UCs

		VIII-F Optimizations

		IX Conclusions

		Acknowledgments

		Appendix A: Proofs: IV UC Extraction

		Appendix B: Proofs: V From LTL to SNF and Back

		Appendix C: Proofs: VI Minimal UCs

		Appendix D: Relation to Mutual Vacuity

		Appendix E: A Complete Example

		Appendix F: Additional Plots

