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Abstract—Unsatisfiable cores (UCs) are a well established
means for debugging in a declarative setting. Still, tools that
perform automated extraction of UCs for LTL are scarce. Using
resolution graphs to extract UCs is common in many domains.
In this paper we construct and optimize resolution graphs for
temporal resolution as implemented in the temporal resolution-
based solver TRP++ and we use them to extract UCs for
propositional LTL. We implement our method in TRP++, and we
experimentally evaluate it. Source code of our tool is available.

Index Terms—LTL; unsatisfiable cores; vacuity; temporal
resolution;

I. INTRODUCTION

Debugging is an activity that many hardware and software
developers spend a fair amount of time on. When faced with
some input that induces an undesired behavior it is typically
suggested to minimize that failure-inducing input in order to
simplify identification of the problem (e.g., [1]). Correspond-
ing research has been performed, e.g., in linear programming
(e.g., [2]), constraint satisfaction (e.g., [3]), compilers (e.g.,
[4]), SAT (e.g., [5]), declarative specifications (e.g., [6]), and
LTL satisfiability (e.g., [7]) and realizability (e.g., [8]).

LTL and its relatives are important specification languages
for reactive systems (e.g., [9]) and for business processes (e.g.,
[10]). Experience in verification as well as in synthesis has
lead to specifications themselves becoming objects of analysis.
Beer et al. report [11] that in their experience “[...] during
the first formal verification runs of a new hardware design,
typically 20 % of formulas are found to be trivially valid,
and that trivial validity always points to a real problem in
either the design or its specification or environment.”. In a
work on LTL synthesis [12] Bloem et al. state that “[...]
writing a complete formal specification [...] was not trivial.”
and “Although this approach removes the need for verification
[...] the specification itself still needs to be validated.”.

Typically, a specification is expected to be satisfiable. If
it turns out to be unsatisfiable, finding a reason for unsat-
isfiability can help with the ensuing debugging. Frequently,
such reason for unsatisfiability is taken to be a part of the
unsatisfiable specification that is by itself unsatisfiable (e.g.,
[71, [3], [2]); this is called an unsatisfiable core (UC) (e.g., [7],
[13]). Less simplistic ways to examine an LTL specification
¢ exist [14], and understanding their results also benefits
from availability of UCs. First, one can ask whether a certain
scenario ¢', given as an LTL formula, is permitted by ¢. That
is the case iff ¢ A ¢ is satisfiable. Second, one can check
whether ¢ ensures a certain LTL property ¢”. ¢” holds in ¢

iff ¢ A —¢” is unsatisfiable. In the first case, if the scenario
turns out not to be permitted by the specification, a UC can
help to understand which parts of the specification and the
scenario are responsible for that. In the second case a UC
can show which parts of the specification imply the property.
Moreover, if there are parts of the property that are not part of
the UC, then those parts of the property could be strengthened
without invalidating the property in the specification; i.e., the
property is vacuously satisfied (e.g., [15]). UCs are therefore
an important part of design methods for embedded systems
(e.g., [14]) as well as for business processes (e.g., [16]). Note
that specifications of real world systems may be 100s of
pages long (e.g., [17]). Hence, providing automated support
for obtaining a UC in case such a specification turns out
to be unsatisfiable is crucial. UCs also have applications in
avoiding the exploration of parts of a search space that can
be known not to contain a solution for reasons “equivalent”
to the reasons for previous failures (e.g., [18], [19]) and in
certifying the correctness of a result of unsatisfiability (e.g.,
[20]). While our results also benefit these applications, we
focus on debugging below. Despite their relevance interest in
UCs for LTL has been somewhat limited (e.g., [19], [7], [21],
[22]). In particular, publicly available tools that automatically
extract fine-grained UCs for propositional LTL are scarce.

Extracting UCs is often possible using any solver for the
logic under consideration by weakening subformulas one by
one and using the solver to test whether the weakened formula
is still unsatisfiable (e.g., [23]). While that is simple to imple-
ment, repeated testing for preservation of unsatisfiability may
impose a significant run time burden. Hence, it is interesting
to investigate methods to extract UCs from a single run of
a solver. Extracting UCs from resolution graphs is common
in SAT (e.g., [20]). A resolution method for LTL, temporal
resolution (TR), was suggested by Fisher [24], [25] and
implemented in TRP++ [26], [27], [28].

TR lends itself as a basis for extracting UCs for LTL for
two reasons. First, the TR-based solver TRP++ proved to be
competitive in a recent evaluation of solvers for LTL satisfia-
bility, in particular on unsatisfiable instances [29]. Second, a
TR proof naturally induces a resolution graph, which provides
a clean framework for extracting a UC. Note, that while
the BDD-based solver NuSMV [30] also performed well on
unsatisfiable instances in [29], the BDD layer makes extraction
of a UC more involved. On the other hand, the tableau-based
solvers LWB [31] and pltl [32] provide access to a proof
of unsatisfiability comparable to TR, yet tended to perform
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worse on unsatisfiable instances in [29].

In this paper we make the following contributions. We
construct resolution graphs for TR for propositional LTL as
implemented in TRP++, and we use them to extract UCs.
Note that TR is significantly more complex than propositional
resolution. Hence, we use the specifics of TR in TRP++ to
optimize the construction of resolution graphs. The temporal
aspect also allows to extract more fine-grained information
from the resolution graph; this is exploited in a companion
paper [33], which this paper provides the basis for. We
implement our method in TRP++, and we experimentally
evaluate it. We make the source code of our solver available.

Conceptually, under the frequently legitimate assumption
that a system description can be translated into an LTL
formula, our results extend to vacuity for LTL [34]. Due to
space constraints we refer to App. D of [35] for details.

In [19] Cimatti et al. perform extraction of UCs for PSL to
accelerate a PSL satisfiability solver by performing Boolean
abstraction. Their notion of UCs is coarser than ours and
their solver is based on BDDs and on SAT. An investigation
of notions of UCs for LTL including the relation between
UCs and vacuity is performed in [7]. No implementation or
experimental results are reported, and TR is not considered.
Hantry et al. suggest a method to extract UCs for LTL in a
tableau-based solver [21]. No implementation or experiments
are reported. Awad et al. [16] use tableaux to extract UCs
in the context of synthesizing business process templates.
The description of the method is sketchy and incomplete,
the notion of UC appears to be one of a subset of a set of
formulas, and no detailed experimental evaluation is carried
out. In [22] the decision and search problems for minimal
UCs for LTL are shown to be PSPACE- and FPSPACE-
complete, respectively. In [36] Cimatti et al. show how to
prove and explain unfeasibility of message sequence charts
for networks of hybrid automata. They consider a different
specification language and use an SMT-based algorithm. Some
work deals with unrealizable rather than unsatisfiable cores.
[8] handles specifications in GR(1), which is a proper subset
of LTL. Konighofer et al. present methods to help debugging
unrealizable specifications by extracting unrealizable cores and
simulating counterstrategies [37] as well as performing error
localization using model-based diagnosis [38]. Raman and
Kress-Gazit [39] present a tool that points out unrealizable
cores in the context of robot control. [7] explores more fine-
grained notions of unrealizable cores than [8], [37]. In vacuity
Simmonds et al. [15] use SAT-based bounded model checking
for vacuity detection. They only consider k-step vacuity, i.e.,
taking into account bounded model checking runs up to a
bound k, and leave the problem of removing the bound k
open. For a more extensive discussion on the relation between
vacuity and UCs for LTL we refer to App. D of [35] and [7].

Section II starts with preliminaries. TR and its clausal
normal form SNF are introduced in Sec. III. In Sec. IV we
describe the construction of a resolution graph and its use to
obtain a UC. The UCs obtained in Sec. IV are lifted from
SNF to LTL in Sec. V and minimized in Sec. VI. In Sec. VII

we provide examples that illustrate why these UCs are useful
and how to obtain them. We discuss our implementation and
experimental evaluation in Sec. VIII. Section IX concludes.
Due to space constraints proofs are sketched or omitted. For
a full version [35] of this paper including proofs and for
implementation, examples, and log files see [40].

II. PRELIMINARIES

We use a standard version of LTL, see, e.g., [41]. Let
B be the set of Booleans, and let AP be a finite set of
atomic propositions. The set of LTL formulas is constructed
inductively as follows. The Boolean constants 0 (false), 1
(true) € B and any atomic proposition p € AP are LTL
formulas. If ¢, v’ are LTL formulas, so are —) (not), ¥ V v’
(or), ¥ A ¢’ (and), X/ (next time), ypUy’ (until), YRy’
(releases), F¢ (finally), and G (globally). We use 1) — 1)’
(implies) as an abbreviation for —) V ¢/,

III. TEMPORAL RESOLUTION (TR)

TR works on formulas in a clausal normal form called
separated normal form (SNF) [25]. For any atomic proposition
p € AP p and —p are literals. Let p1,...,Dns q1y-- -y Gnss 1
with 0 < n,n’ be literals such that py,...,p, and ¢, ..., gn
are pairwise different. Then (i) (p1 V...V p,) is an inifial
clause; (i) (G((p1 V ... Vo)V (X(1 V...V gy)))) is a
global clause; and (iii) (G((p1 V...V py)V (F(1)))) is an
eventuality clause. | is called an eventuality literal. As usual
an empty disjunction (resp. conjunction) stands for O (resp. 1).
() or (G()), denoted O, stand for 0 or G(0) and are called
empty clause. The set of all SNF clauses is denoted C. Let
Ci,...,cq With 0 < n be SNF clauses. Then A\, _,.,, ¢ is an
LTL formula in SNF. Every LTL formula ¢ can be transformed
into an equisatisfiable formula ¢’ in SNF [25].

The production rules of TRP++ are shown in Tab. I. The
second column assigns a name to a production rule. The third
and fifth columns list the premises. The seventh column gives
the conclusion. Columns 4, 6, and 8 are described below.
Columns 9-11 become relevant only in later sections.

The algorithm in Fig. | provides a high level view of TR in
TRP++ [26]. The algorithm takes a set of starting clauses C in
SNF as input. It returns unsat if C'is found to be unsatisfiable
(by deriving O) and sar otherwise. Resolution between two
initial or two global clauses or between an initial and a
global clause is performed by a straightforward extension of
propositional resolution. The corresponding production rules
are listed next to saturation in Tab. I. Given a set of SNF
clauses C' we say that one saturates C if one applies these
production rules to clauses in C' until no new clauses are
generated. Resolution between a set of initial and global
clauses and an eventuality clause with eventuality literal [
requires finding a set of global clauses that allows to infer
conditions under which XG—! holds. Such a set of clauses is
called a loop in —l. Loop search involves all production rules
in Tab. I CXCCpt M, M‘, step-nn [, and [step—nx [

In line 1 the algorithm in Fig. 1 initializes M with the
set of starting clauses and terminates iff one of these is the
empty clause. Then, in line 2, it saturates M (terminating iff
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TABLE I
PRODUCTION RULES USED IN TRP++. LET P =p1 V...Vpp, Q=q1 V... Vg, R=7rV...V1,0,ANDS =81 V...V s,.

T [ rule [] premise 1 [ part. | premise 2

[ part. ] conclusion [part. [[pl-c[p2-c[vic]]

it PV M [(=IV Q) M [(PV Q) M
Tnicin [GA))] M GV Q) M [ (PV Q) M
saturation Step-n (G VD) M (C(=1V Q) M (G(PV Q) M
Step-nx (GP VD) M (C(QV X VEO) | M [(CUQ) YV (X(P VR M
SepRx (G(P) YV X Q@ VI [ ML [(GUR) VX(IV ) [ML[(GUP YV RV (X(Q VSN ML

H ion | auel INCGRRAGION)) [ M [(G(P VIV al) Yal =171
aug2 [ (GI@) vV FEMD)) [ M [(C((—wh vV (XTV wh))) T % [ — 1 i
BES-loop-it-init-x c = (G((P) V(X(Q)))) with [Q] > 0 M | c T —
BFS-Toop-itimitn GP) I EEC(ORAC.C)) 7 —

BFS loop search | BES-loop-it-init-c (G(P) [ L” [(G((@ vV (FI)) M | (G((0) v (X(P V1)) L x *
BFS-loop-it-sub c=(G(P)) with ¢ — (G(Q)) L | (G((0) V (X(Q V 1)))) generated by BFS-loop-it-init-c | L — 3
BFS-loop-conclusionT [[ (G (P)) [ L [(GUQ) V(FED)) M [ (G(PVQVI) e
BFS-Toop-conclusion2 || (G (P)) [T (@) V(FEI) M [ (G(—w) V (X(P VD)) i 3

Input: A set of SNF clauses C.
Output: Unsat if C is unsatisfiable; sar otherwise.

1 M <« C;if O € M then return unsat;

2 saturate(M); if O € M then return unsat;

3 augment(M);

4 saturate(M); if O € M then return unsat;

5 M «+ 0;

6 while M’ # M do

7 M' «+ M;

8 for c € C . c is an eventuality clause do

9 C’' « {o}

10 repeat

11 initialize-BFS-loop-search-iteration(M, ¢, C’, L);

12 saturate-step-xx(L);

13 C’ «+ {c’ € L | ¢ has empty X part};

14 " (G@)] GOV X(@QV D) €
generated by _Fs-lcop-h»inil-c ;

15 found <+ subsumes(C", C"");

16 until found or C’' = () ;

17 if found then

18 derive-BFS-loop-search-conclusions(c, C’, M);

19 L saturate(M); if O € M then return unsat;

20 return sat;

Fig. 1. LTL satisfiability checking via TR in TRP++.

the empty clause is generated). In line 3 it augments M by
applying production rule to each eventuality clause in M
and once per eventuality literal in M, where w! is a fresh
proposition. This is followed by another round of saturation in
line 4. From now on the algorithm in Fig. 1 alternates between
searching for a loop for some eventuality clause ¢ (lines 9—
18) and saturating M if loop search has generated new clauses
(line 19). It terminates, if either the empty clause was derived
(line 19) or if no new clauses were generated (line 20).
Loop search for some eventuality clause ¢ may take several
iterations (lines 11-15). Each loop search iteration uses satu-
ration restricted to as a subroutine (line 12). Therefore,
each loop search iteration has its own set of clauses L in which
it works. We call M and L partitions. Columns 4, 6, and 8
in Tab. I indicate whether a premise (resp. conclusion) of a
production rule is taken from (resp. put into) the main partition
(M), the loop partition of the current loop search iteration
(L), the loop partition of the previous loop search iteration
(L"), or either of M or L as long as premises and conclusion
are in the same partition (ML). In line 11 partition L of
a loop search iteration is initialized by applying production

rule [BFS-loop-it-init-x| once to each global clause with non-empty
X part in M, rule [BFS-loop-it-init-n| once to each global clause

with empty X part in M, and rule once to
each global clause with empty X part in the partition of the
previous loop search iteration L’. Notice that by construction

at this point L contains only global clauses with non-empty
X part. Then L is saturated using only rule (line 12).
A loop has been found iff each global clause with empty X
part that was derived in the previous loop search iteration is
subsumed by at least one global clause with empty X part
that was derived in the current loop search iteration (lines 13—
15). Subsumption between a pair of clauses corresponds to
an instance of production rule ; note, though, that
this rule does not produce a new clause but records a relation
between two clauses to be used later for extraction of a UC.
Loop search for ¢ terminates, if either a loop has been found or
no clauses with empty X part were derived (line 16). If a loop
has been found, rules [BFs-loop-conclusionl[ and [BFs-loop-conclusionzl
are applied once to each global clause with empty X part that
was derived in the current loop search iteration (line 18) to
obtain the loop search conclusions for the main partition.

IV. UC EXTRACTION

In this section we describe, given an unsatisfiable set of
SNF clauses C, how to obtain a subset of C, C“¢, that is
by itself unsatisfiable from an execution of the algorithm in
Fig. 1. The general idea of the construction is unsurprising in
that during the execution of the algorithm in Fig. 1 a resolution
graph is built that records which clauses were used to generate
other clauses (Def. 1). Then the resolution graph is traversed
backwards from the empty clause to find the subset of C' that
was actually used to prove unsatisfiability (Def. 2). The main
concern of Def. 1, 2, and their proof of correctness in Thm. 1
(see App. A of [35]) is therefore that/why certain parts of
the TR proof do not need to be taken into account when
determining C'*¢. Remark 1 complements this by showing for
other parts of the TR proof that they are indeed required to
obtain C"¢. Finally, in Remark 2, the specifics of TR in the
algorithm in Fig. 1 and of Def. 1, 2 are used to optimize
construction of the resolution graph.

Definition 1: A resolution graph G is a directed graph
consisting of (i) a set of vertices V, (ii) a set of directed
edges £ C V xV, (iii) a labeling of vertices with SNF clauses
Ly : V — C, and (iv) a partitioning QV of the set of vertices
V into one main partition M"Y and one partition L} for each
BFS loop search iteration: Q¥ : V=MV WLy w...w LY.
Let C' be a set of SNF clauses. During an execution of
the algorithm in Fig. 1 with input C' a resolution graph G
is constructed as follows. In line 1 G is initialized: (i) V
contains one vertex v per clause ¢ in C: V = {v. | c € C},
(ii) E is empty: F = (), (iii) each vertex is labeled with the
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corresponding clause: Ly : V — C, Ly (v.) = ¢, and (iv) the
partitioning Q¥ contains only the main partition M"", which
contains all vertices: QY : MY = V. Whenever a new BFS
loop search iteration is entered (line 11), a new partition L} is
created and added to Q"' For each application of a production
rule from Tab. I that either generates a new clause in partition
M or L or is the first application of rule to clause
" in C” in line 15: (i) if column 11 (vt. ¢) of Tab. I contains

, then a new vertex v is created for the conclusion ¢ (which
is a new clause), labeled with ¢, and put into partition M v
or L}/; (@ii) if column 9 (p.1 — ¢) (resp. column 10 (p.2 — ¢))
contains ¢/, then an edge is created from the vertex labeled
with premise 1 (resp. premise 2) in partition MY or L} to
the vertex labeled with the conclusion in partition MY or LY.

Definition 2: Let C be a set of SNF clauses to which the
algorithm in Fig. 1 has been applied and shown unsatisfiability,
let G be the resolution graph, and let v be the (unique) vertex
in the main partition AM/" of the resolution graph G labeled
with the empty clause O. Let G’ be the smallest subgraph of G
that contains vg and all vertices in G (and the corresponding
edges) that are backward reachable from vg. The UC of C' in
SNF, C“, is the subset of C' such that there exists a vertex
v in the subgraph G’, labeled with ¢ € C, and contained
in the main partition MY of G: C* = {c € C | v €
Vgr . Ly(v) =cAve MV},

Theorem 1: Let C be a set of SNF clauses to which the
algorithm in Fig. 1 has been applied and shown unsatisfiability,
and let C'**¢ be the UC of C in SNF. Then C"* is unsatisfiable.

Assume for a moment that in columns 9 (p./ — ¢) and
10 (p.2 — ¢) of Tab. I all ¥ are replaced with ¢, i.e., that
each conclusion in the resolution graph is connected by an
edge to each of its premises rather than only to a subset
of them. In that case the UC in SNF according to Def. 2
would contain all clauses of the set of starting clauses C'
that contributed to deriving the empty clause and, hence, to
establishing unsatisfiability of C'. In that case it would follow
directly from the correctness of TR that C“¢ is unsatisfiable.
It remains to show that not including an edge (i) from premise
1 to the conclusion for rule [aug2], (ii) from premise 2 to the

conclusion for rule [BFs-loop-conclusion2], (iii) from premise 2 to
the conclusion for rule [BFs-loop-it-init-c], and (iv) from premise 1
to the conclusion for rule in the resolution graph

G maintains the fact that the resulting C*° is unsatisfiable. To
see the intuition behind (i) note that for a vertex v. labeled
with a conclusion ¢ of rule in the main partition MY
to be backward reachable from the (unique) vertex in the
main partition MY of the resolution graph G labeled with
the empty clause O, vg, the occurrence of —w! in ¢ must be
“resolved away” at some point on the path from v, to vg. It
turns out that this can only happen by resolution with a clause
that is derived from the conclusion of rule applied to an
eventuality clause ¢’ with eventuality literal /. By construction
of the resolution graph G v must be backward reachable
from vy and, therefore, ¢/ must be included in the UC in
SNF. Hence, an execution of the algorithm in Fig. 1 with
input C*¢ will produce ¢ from ¢. A similar reasoning as

for (i) applies to (ii). For (iii) note that a conclusion of rule
can only be backward reachable from vg if the
corresponding BEFS loop search iteration is successful and a
vertex labeled with one of the resulting conclusions of rules
[BFS-loop-conclusionll or [BFS-loop-conclusionZI is backward reachable
from vg. The latter fact implies that an eventuality clause
with the same eventuality literal as in premise 2 of rule
is present in the UC in SNF. Hence, an execution
of the algorithm in Fig. 1 with input C*¢ will produce premise

2 of as required. Finally, (iv) is obtained by

understanding that in a BFS loop search iteration the premises
1 of rule essentially constitute a hypothetical
fixed point; if the BFS loop search iteration is successful,
then the hypothetical fixed point is proven to be an actual
fixed point. For the correctness of a proof of unsatisfiability
of C it is only relevant that this hypothetical fixed point is
shown to be an actual fixed point but not how the hypothesis
is obtained. For a formalization of the above reasoning see
App. A of [35].

By taking the fact that each vertex in the resolution graph
has at most 2 incoming edges into account, the first part of
the following Prop. 1 is immediate from Def. 1 and 2. The
second part is obtained by bounding the number of (i) different
clauses in each partition, (ii) iterations in each loop search by
the length of the longest monotonically increasing sequence
of Boolean formulas over AP, and (iii) loop searches by the
number of different loop search conclusions.

Proposition 1: Let C be a set of SNF clauses to which
the algorithm in Fig. 1 is applied and shows unsatisfiability.
Construction and backward traversal of the resolution graph
and, hence, construction of C*¢ according to Def. 2 can be
performed in time O(]V]) in addition to the time required
to run the algorithm in Fig. 1. |V] is at most exponential in
|AP| + log(|C).

Remark 1: Theorem 1 shows that not including premises
for production rules marked by % in columns 9 (p./ — ¢) and
10 (p.2 — ¢) of Tab. I during the construction of the resolution
graph still leads to a UC. It does not discuss whether the
remaining premises, marked by ¢ in columns 9 (p./ — ¢) and
10 (p.2 — ¢) of Tab. I, actually need to be included to guarantee
a UC. For all premises of all production rules marked by ¢ in
columns 9 (p.1 — ¢) and 10 (p.2 — ¢) of Tab. I it turns out that
they are indeed required to obtain a UC. The proof in App. A
of [35] is essentially obtained by providing suitable examples.

Remark 2: The specifics of TR in the algorithm in Fig. 1
and the fact that not all premises need to be included during
the construction of the resolution graph allow to optimize
extraction of UCs by pruning the resolution graph during
the execution of the algorithm in Fig. 1 extended with the
construction in Def. 1, 2 as follows. (i) Notice that after the
completion of a (successful or unsuccessful) loop search for
some eventuality clause c in lines 9-19 of the algorithm in
Fig. 1 no new edges between the main partition and one of the
partitions used during the just completed loop search for ¢ will
be created. Hence, after completion of an execution of lines 9—
19 of the algorithm in Fig. 1 vertices not backward reachable
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TABLE I
TRANSLATION FROM LTL TO SNF.

[Subf:
1/0/p

[Prop.
1/0/p —

[SNF Clauses (4 polarity occurrences) [SNF Clauses (— polarity occurrences) ]

-y oy |(Glaay = ([E]) (G((maoy) = [F¢)])

Y APNTn gt (G = D). (G((m@ypyr) =
(G(@ypyr = ) ((=¢] v (ﬁ))))

YV Py (Gl gy g = (V))) (G((m@yyyyr) = (

(G((mz ) = (

X rxqy |[(GlExy — (X[-‘D_wl))) (G((mzxqy) = (X

Gy gy [(Glzgy = Xegy))): (G((mzgy) = (Fozy
(Ggy = [Ty)]) (G((mzpy) = Xozpy)))

Fv wpy  |(Glapy = (F[E4]D) (G((zzpy) = (HZ4))

YUY

0w |G yuy = ] Y FaDC(Coyuyn) = g D)

(G(zyyyr = (G~ yyyr) =
[Fu’]Y Keypyy ) ([Fg] Vv (KXo gy ))
(G(@ gy = (F))) Gz yRmy) —
YRYT [z g [(G(@ gy — [Fo' P (Fy PV CELP-
(G(@ Ry — (G((—zygyr) =
Ey]V Xz yryr ) (AP v Koy gy D)

(G ) = FE[E])

from the main partition can be pruned from the resolution
graph. (ii) Moreover, note that, because there is no edge from
instances of premise 1 to the conclusion induced by production
rule [BFS-loop-it-initc], there are no outgoing edges from a failed
loop search iteration (lines 11-15 of the algorithm in Fig. 1).
Therefore, if a loop search iteration fails, all vertices and edges
in the partition of that loop search iteration can be pruned from
the resolution graph right away.

V. FrROM LTL 1O SNF AND BACK

We use a structure-preserving translation to translate an
LTL formula into a set of SNF clauses, which slightly differs
from the translation suggested in [25]. It is well known
that ¢ and SNF(¢) according to Def. 3 are equisatisfiable
and that a satisfying assignment for ¢ (resp. SNF(¢)) can
be extended (resp. restricted) to a satisfying assignment of
SNF (@) (resp. ).

Definition 3: Let ¢ be an LTL formula over atomic propo-
sitions AP, and let X = {xz,2/,...} be a set of fresh
atomic propositions not in AP. Assign each occurrence of a
subformula ) in ¢ a Boolean value or a proposition according
to column 2 of Tab. II, which is used to reference % in
the SNF clauses for its superformula. Moreover, assign each
occurrence of i a set of SNF clauses according to column 3
or 4 of Tab. II. Let SNF ,.,;(¢) be the set of all SNF clauses
obtained from ¢ that way. Then the SNF of ¢ is defined as
SNF(¢) = x4 A Necsnr,..(4) ¢

In the following Def. 4 we describe how to map a UC in
SNF back to a UC in LTL.

Definition 4: Let ¢ be an unsatisfiable LTL formula, let
SNF(¢) be its SNF, and let C"° be the UC of SNF(¢) in
SNF. Then the UC of ¢ in LTL, ¢"¢, is obtained as follows. For
each positive (resp. negative) polarity occurrence of a proper
subformula v of ¢ with proposition x,, according to Tab. II,
replace 1 in ¢ with 1 (resp. 0) iff C'"*“ contains no clause with
an occurrence of proposition z,, that is marked
in Tab. II. (We are sloppy in that we “replace” subformulas of
replaced subformulas, while in effect they simply vanish.)

Theorem 2: Let ¢ be an unsatisfiable LTL formula, and let
¢"¢ be the UC of ¢ in LTL. Then ¢"“¢ is unsatisfiable.

Remark 3: In Def. 10 of [7] a UC of an unsatisfiable
formula in LTL is obtained by replacing some occurrences
of positive polarity subformulas with 1 and some occurrences
of negative polarity subformulas with 0 while maintaining
unsatisfiability. By construction in Def. 4 and with Thm. 2
it is immediate that a UC in LTL according to Def. 4 above
is a UC according to Def. 10 of [7].

VI. MINIMAL UCSs

In this section we introduce notions of and algorithms to
obtain minimal UCs. The results are either straightforward
(Remark 4) or well known (Def. 5, Remark 5). Still, the
material is needed in the experimental evaluation and within
the flow of the paper this seems to be the appropriate place.

Definition 5: (See, e.g., [7]: irreducible UC) A UC C'"¢ in
SNF is minimal iff Ve € C%c . C"¢ \ {c} is satisfiable. A
UC ¢"¢ in LTL is minimal iff there is no positive polarity
occurrence of a subformula that can be replaced with 1 and
no negative polarity occurrence of a subformula that can be
replaced with 0 without making ¢“¢ satisfiable.

Remark 4: Let ¢ be an unsatisfiable LTL formula, C' its
translation to SNF, C*¢ a minimal UC of C' in SNF, and ¢“¢
the UC of ¢ in LTL obtained by mapping C*““ back to LTL
via Def. 4. Then ¢“° is not necessarily minimal.

Remark 5: A common way to obtain minimal UCs works
by repeatedly attempting to remove parts of a UC (e.g., [23]).
If the modified formula is still unsatisfiable, then the removal
is made permanent; otherwise it is undone. The procedure
continues until all parts of the UC have been considered for
removal. This is called deletion-based extraction of minimal
UCs (e.g., [23]). In the case of LTL the algorithm attempts
to replace positive polarity occurrences of subformulas with
1 and negative polarity ones with 0. It terminates, if no more
replacements can be performed without making the resulting
formula satisfiable. This method may be expensive due to the
required number of satisfiability tests, so it is often used to
minimize a UC that has been obtained by other means such
as those described in Sec. IV, V (e.g., [2], [3]).

VII. EXAMPLES

In this section we first present examples of using UCs for
LTL to help understanding a specification given in LTL. Then
we show an example of TR with the corresponding resolution
graph and UC extraction in SNF.

The first example (la)—(lc) is based on [42]. We would
like to see whether a req (request) can be issued (1d). This is
impossible, as (la) requires a req to be followed by 3 gnts
(grant), whereas (1b) forbids two subsequent gnts. The UC in
(2) clearly shows this.

(G(reqg — ((Xgnt) A (XXgnt) A (XXXgnt)))) (la)
A (G(gnt — X—gnt)) (1b)
A (G(cancel — X((—gnt)Ugo))) (Ic)
A (Freq) (1d)

(G(req — ((Xgnt) A (XXgnt)))) A (G(gnt — X—gnt)) A (Freq) (2)

The second example (3) in Fig. 2 is adapted from a lift
specification in [43] (we used a somewhat similar example in
[7]). The lift has two floors, indicated by fy and f;. On each



(=u) A (fo) A (=bo) A (=b1) A (—up) (3a)
A (G((u = = Xu) A ((-Xu) — u))) (3b)
A (G(fo = —f1)) (o)
A (G((fo = X(fo V f1)) A (fr = X(fo V f1)))) (3d)
A (G(u = ((fo = Xfo) AN ((Xfo) = fo0)))) (3e)
A(G(u = ((f1 = Xf1) A ((Xf1) = f1))) (3f)
A (G(((—u) = ((bo = Xbg) A ((Xbo) = b0))))) (3g)
A (G(((—u) = ((br = Xb1) A ((Xb1) — b1))))) (3h)
A (G(((bo A =fo) = Xbo) A ((b1 A =f1) — Xb1))) (31
A (G((fo A Xfo) = ((up — Xup) A (Xup) — up)))) (3j)
A(G((fr AXf1) = ((up = Xup) A ((Xup) = up)))) (3k)
A (G(((fo AXf1) = up) A ((fr AXfo) = —up))) [€))
A (G((sb — (bo Vb1)) A ((bo V b1) — sb))) (3m)
A (G(((fo A =sb) = (foU(sbR((F fo) A (-up)))))) (3n)
A (G(((f1 A —sb) = (f1U(sDR((F fo) A (-up)))))) (30)
A (G((bo = Ffo) A (b1 — Ff1))) (3p)

Fig. 2. A lift specification.

floor there is a button to call the lift (bg, b1). sb is 1 if some
button is pressed. If the lift moves up, then up must be 1; if
it moves down, then up must be 0. u switches turns between
actions by users of the lift (v is 1) and actions by the lift (u
is 0). For more details we refer to [43]. We first assume that
an engineer is interested in seeing whether it is possible that
by is continuously pressed (4). As the UC (5) shows, this is
impossible as b; must be 0 at the beginning.
Gby (C)) (=b1) A Gby (5

Now the engineer modifies her query such that b is pressed
only from time point 1 on (6). As shown by the UC in (7)
that turns out to be impossible, too.

XGby (6)
(=u) A ((=b1) A ((G((mu) = ((Xb1) = b1))) A (XGb1))) ™

The engineer now tries to have b; pressed from time point
2 on and, again, obtains a UC. She becomes suspicious and
checks whether b; can be pressed at all (8). She sees that it
cannot and, therefore, this specification of a lift must contain
a bug. She can now use the UC in (9a2)-(9f) to track down
the problem. This example illustrates the use of UCs for
debugging, as (9a)—(9f) is significantly smaller than (3).

Fb, ®

(fo) A (=b1) A (—up) O, (G((foAXf1) = %)
A (G(fo = —f1)) (9b) up))
A (G(fo = X(fo V f1))) ©9c) A (G(b1 = Ff1)) 9N
A (G((fo A Xfo) = (Xup) = up))) ©Od) A (F(b1)) %2)

In Fig. 3 we show an example of an execution of the
TR algorithm with the corresponding resolution graph and
UC extraction in SNF. The set of starting clauses C to be
solved is G(aV —b), G(aVbV X(aVb)), G((—a)V Xa),
G((—a) V F-a), shown in the first row from the bottom in
the rectangle shaded in light red. In Fig. 3 TR generally
proceeds from bottom to top; in the top right corner the empty
clause O is generated, indicating unsatisfiability. Clauses are
connected with directed edges from premises to conclusions
according to columns 9, 10 in Tab. I. Edges are labeled with
production rules, where “BFS-loop” is abbreviated to “loop”,
“init” to “1”, and “conclusion” to “conc”. Saturation in line
2 of the algorithm in Fig. 1 produces G(a V bV Xa) in the

TABLE III
OVERVIEW OF BENCHMARK FAMILIES.

category Tamily source #s.10 UC | #5. UC | #s. minimal UC | [largest solved|
alaska_lift [43], [44] 75 72 72 4605

application | anzu_genbuf [12] 16 16 16 1924
forobots [45] 25 25 25 635
schuppan_O1lformula | [29] 27 27 27 4006

crafted schuppan_O2formula | [29] 8 8 8 91
_phitl [29] 4 4 4 125

random rozier_random [46] 62 62 62 157
trp [47] 397 397 330 1421

second row from the bottom.'! The other 2 clauses in that
row are generated by augmentation (line 3). The following
saturation (line 4) produces no new clauses. The dark green
shaded rectangle is the loop partition for the first loop search
iteration. Row 3 contains the clauses obtained by initialization
of the BFS loop search iteration (line 11). Note that clause
G(X-a), generated by [BFS-loop-itinic], has no edge coming
in from the main partition. Row 4 then contains the clauses
generated from those in row 3 by saturation restricted to
(line 12). The subsumption test fails in this iteration,
as none of the clauses in row 4 subsumes the empty clause
(lines 13-15). The light green shaded rectangle is the loop
partition for the second loop search iteration. Row 5 contains
the clauses obtained by initialization and row 6 those obtained
from them by restricted saturation. This time the subsumption
test succeeds, and the loop search conclusions are shown in
row 7 (line 18). Finally, row 8 contains the derivation of the
empty clause O via saturation (line 19). The thick, dotted,
blue clauses and edges show the part of the resolution graph
that is backward reachable from O. As all starting clauses in
C' are backward reachable from O, the UC of C in SNF is
C (note that this example serves to illustrate the mechanism
rather than the benefit of UC extraction).

For a complete example that includes translation between
LTL and SNF and leads to a proper UC see App. E of [35].

VIII. EXPERIMENTAL EVALUATION

We implemented extraction of UCs as described in Sec. IV,
V in TRP++. We also implemented deletion-based minimiza-
tion of UCs obtained with the previous method (Sec. VI).

Our examples are based on [29]. For all benchmark families
that consist of a sequence of instances of increasing difficulty
we stopped after two instances that could not be solved due
to time or memory out. Some instances were simplified to 0
during the translation from LTL to SNF; these instances were
discarded. In Tab. IIT we give an overview of the benchmark
families. Columns 1-3 give the category, name, and the source
of the family. Columns 4-6 list the numbers of instances that
were solved by our implementation without UC extraction,
with UC extraction, and with minimal UC extraction. Column
7 indicates the size (number of nodes in the syntax tree) of
the largest instance solved without UC extraction.

The experiments were performed on a laptop with Intel Core
i7 M 620 processor at 2 GHz running Ubuntu 12.04. The time

'While it may seem that some clauses are not considered for loop
initialization or saturation, this is due to either subsumption (e.g.,
G(aVvbVvX(aVvb)) by G(aVbVXa)) or the fact that TRP++ uses
ordered resolution (e.g., G(a VbV Xa) with G(~wa V X((—a) V wa));
[27]). Both are issues of completeness of TR and not discussed in this paper.


http://www.schuppan.de/viktor/time13/VSchuppan-TIME-2013-full.pdf#section*.7
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Fig. 3.

and memory limits were 600 seconds and 6 GB.

In Fig. 4 (a), (b) we show the overhead that is incurred
by extracting (non-minimal) UCs as described in Sec. IV, V
over not extracting UCs. In Fig. 4 (c) we compare the sizes
of the input formulas with the sizes of their (non-minimal)
UCs. Our data show that extraction of UCs is possible with
quite acceptable overhead in run time and memory usage. The
resulting UCs are often significantly smaller than the input
formula.

Figure 4 (d)—(f) show the costs and benefits of applying
deletion-based minimization (Sec. VI) to (non-minimal) UCs
obtained as described in Sec. IV, V. Costs and benefits are
somewhat varied. Minimal UCs can be computed for all
instances for which (non-minimal) UCs were obtained except
for all 67 instances in family trp_N12y.

In Fig. 4 (g)-(1) we show the benefit of the optimizations
described in Sec. IV when extracting (non-minimal) UCs.
We show the impact on the peak size of the resolution
graph rather than on run time or memory, as the former is
implementation independent. The impact of including premise
1 of during construction of the resolution graph
and disabling immediate pruning of vertices and edges in
partitions of failed loop search iterations from the resolution
graph in Fig. 4 (h) (the former implies the latter) and of
disabling pruning non-reachable vertices from the resolution
graph between loop searches in Fig. 4 (k) is quite significant.
The impact in the remaining cases (Fig. 4 (g), (1), ()) is
negligible. However, in cases (i) and (j) there is an instance
where disabling the optimization leads to a larger (non-
minimal) UC. This occurs more often also in case (h).

IX. CONCLUSIONS

In this paper we showed how to obtain UCs for LTL via
temporal resolution, and we demonstrated with an imple-
mentation in TRP++ that UC extraction can be performed
efficiently. The resulting UCs are significantly smaller than the
corresponding input formulas. In parallel work [33] this paper
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Example of an execution of the TR algorithm with corresponding resolution graph and UC extraction in SNF.

has been used as a basis to suggest enhancing UCs for LTL
with information on when subformulas of a UC are relevant for
unsatisfiability. The similarity of temporal resolution and some
BDD-based algorithms at a high level and work on resolution
with BDDs ([48]) suggests to explore whether computation of
UG:s is feasible for BDD-based algorithms. Another direction
for transfer of our results is resolution-based computation of
unrealizable cores [49].
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