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Abstract


LTL is frequently used to express specifications in many domains such as embedded systems or business processes.
Witnesses can help to understand why an LTL specification is satisfiable, and a number of approaches exist to make
understanding a witness easier. In the case of unsatisfiable specifications unsatisfiable cores (UCs), i.e., parts of an
unsatisfiable formula that are themselves unsatisfiable, are a well established means for debugging. However, little
work has been done to help understanding a UC of an unsatisfiable LTL formula. In this paper we suggest to enhance
a UC of an unsatisfiable LTL formula with information about the time points at which the subformulas of the UC are
relevant for unsatisfiability. In previous work we showed how to obtain a UC in LTL by translating the LTL formula
into a clausal normal form, applying temporal resolution, extracting a clausal UC from the resolution proof, and
mapping the clausal UC back to a UC in LTL. In this paper we extend that method by extracting information at which
time points the clauses of a clausal UC are relevant for unsatisfiability from a resolution proof and by transferring that
information to a UC in LTL. We implement our method in TRP++, and we experimentally evaluate it.
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1. Introduction


1.1. Motivation


Typically, a specification is expected to be satisfiable. If it turns out to be unsatisfiable, finding a reason for
unsatisfiability can help with the ensuing debugging. Given the sizes of specifications of real world systems (e.g.,
[CCM+10]) automated support for determining a reason for unsatisfiability of a specification is crucial. For many
specification languages it is possible to point out a part of the unsatisfiable specification, which has been obtained
by removing or relaxing parts of the unsatisfiable specification and which is by itself unsatisfiable, as a reason for
unsatisfiability (e.g., [Sch12b, BDTW93, CD91]). In some domains such as SAT (e.g., [GN03, ZM03, Hoo99]), SMT
(e.g., [CGS11]), declarative specifications (e.g., [TCJ08]), and LTL (e.g., [Sch12b]) this is called an unsatisfiable core
(UC).


LTL (e.g., [Pnu77, Eme90]) and its relatives are important specification languages for reactive systems (e.g.,
[EF06]) and for business processes (e.g., [PvdA06]). Experience in verification (e.g., [BBDER01, Kup06]) and in
synthesis (e.g., [BGJ+07]) has lead to specifications in LTL becoming objects of analysis themselves. Clearly, deter-
mining satisfiability of a specification in LTL is an important check (e.g., [RV10]), and providing a UC for an unsatis-
fiable specification can help the user track down the problem (e.g., [AGH+12]). Besides checking satisfiability other,
less simplistic, ways to examine an LTL specification φ exist [PSC+06], and understanding their results also benefits
from availability of UCs. First, one can ask whether a certain scenario φ′, given as an LTL formula, is permitted by φ.
That is the case iff φ∧ φ′ is satisfiable. Second, one can check whether φ ensures a certain LTL property φ′′. φ′′ holds
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in φ iff φ∧¬φ′′ is unsatisfiable. In the first case, if the scenario turns out not to be permitted by the specification, a UC
can help to understand which parts of the specification and the scenario are responsible for that. In the second case
a UC can show which parts of the specification imply the property. Moreover, if there are parts of the property that
are not part of the UC, then those parts of the property could be strengthened without invalidating the property in the
specification; i.e., the property is vacuously satisfied (e.g., [BBDER01, KV03, AFF+03, GC04, FKSFV08, Kup06]).


Trying to help users to understand counterexamples in verification, which are essentially witnesses to satisfiable
formulas, is a well established research topic (see, e.g., [BBDC+09] for some references). In particular, it is common
to add information to a counterexample on which parts of a counterexample are relevant at which points in time (e.g.,
[RS04, BBDC+09]). According to [BBDC+09] such explanations are an integral part of every counterexample trace
in IBM’s verification platform RuleBase PE. Checks for vacuous specifications, which are closely related to UCs
[Sch12b, Sch15], are an important feature of industrial hardware verification tools (see, e.g., [BBDER01, AFF+03]).
In the academic world UCs are an important part of design methods for embedded systems (e.g., [PSC+06]) as well
as for business processes (e.g., [AGH+12]). Despite this relevance of UCs efforts to provide additional information in
the context of UCs or vacuity have remained isolated (e.g., [SDGC10]). In this paper we suggest to enhance UCs for
LTL with information on the time points at which their subformulas are relevant for unsatisfiability.


1.2. Example
As illustration consider the example in (1). It can be read as ”globally p and next time not p” (an alternative


verbalization to “globally” is “always”). It is evaluated on infinite words over the alphabet {∅, {p}}; intuitively, a word
maps each time point in N = 0, 1, 2, . . . to the set of atomic propositions true at that time point. The first conjunct,
Gp, requires p to be true at all time points, which of course includes time point 1. The second conjunct, X¬p, requires
p to be false at time point 1. Clearly, on any word at most one of the two conjuncts can hold, i.e., (1) is unsatisfiable.


(Gp) ∧ X¬p (1)


When (1) is evaluated on some word π according to the standard semantics of LTL (see Sec. 3), (1) and both of
its conjuncts, Gp and X¬p, are evaluated at time point 0, the operand of the G operator, p, is evaluated at all time
points in N, and the operand of the X operator, ¬p, as well as its operand, p, are evaluated at time point 1. We can
include this information into (1) by writing the set of time points at which an operand is evaluated directly below
the corresponding operator. Note that in this scheme there is no place for the set of time points at which (1) itself is
evaluated; however, (1) (as any LTL formula) will always be evaluated only at time point 0, so this need not be spelled
out explicitly. We then obtain (2).


(G
N


p) ∧
{0},{0}


X
{1}
¬
{1}


p (2)


Remember that the second conjunct, X¬p, requires p to be false at time point 1. Therefore, to conclude unsatis-
fiability of (1) it is sufficient to know that the first conjunct, Gp, requires p to be true at time point 1; the fact that
Gp requires p to be true also at all time points in N \ {1} is immaterial. This means that in the evaluation of Gp the
operand p would only need to be evaluated at time point 1. At all other time points in N \ {1} it could be replaced
with, e.g., true without losing unsatisfiability. Using this information, (2) can be modified by replacing N below G
with {1}, obtaining (3). (3) can be seen as a UC of (1).


( G
{1}


p) ∧
{0},{0}


X
{1}
¬
{1}


p (3)


1.3. Contributions
Enhancing UCs for LTL with Sets of Time Points In [Sch12b, Sch15] a basic notion of UCs for LTL is used that


replaces positive polarity occurrences of subformulas of an LTL formula φ with true and negative polarity
occurrences of subformulas of φ with false provided that the modified formula is still unsatisfiable. After
[Sch12b] we term that notion of UCs “UCs for LTL via syntax trees”. In this paper we extend that notion of
UCs by incorporating information on the time points at which the occurrences of the subformulas of a UC,
which were not replaced with true or false, are relevant for unsatisfiability.


UCs for LTL with sets of time points can help users understand why a UC is unsatisfiable by making the
following information explicit. (i) Sets of time points can show that invariants only need to hold at certain
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time points rather than always to guarantee unsatisfiability. For an example see (3). (ii) Sets of time points can
make cyclic interaction between subformulas that lead to unsatisfiability clear, including period and offset of
the cycle. This is particularly noteworthy because, as is well known, LTL cannot count (e.g., [Wol83]). For an
example see (5). (iii) Finally, because positive and negative polarity occurrences of propositions need to interact
at the same time points to obtain unsatisfiability, sets of time points can limit the subformulas that need to be
taken into account when trying to understand why a UC is unsatisfiable. For an example see (10).


Making the above mentioned additional information explicit to help users’ understanding is achieved by pro-
viding a more fine-grained notion of UCs for LTL rather than by providing a proof of unsatisfiability as an
explanation. This makes it unnecessary for users to learn a proof calculus and keeps the door open for appli-
cations other than debugging (see below). Note also that not all proof calculi that might be chosen as a means
to explain the unsatisfiability of a UC will make information regarding the relevance of parts of a UC at certain
time points as clear to the user as our proposed notion of UCs for LTL with sets of time points.1 Hence, depend-
ing on the proof calculus, our suggestion to enhance UCs for LTL with sets of time points may be orthogonal
to the idea of explaining the unsatisfiability of an LTL formula by providing a proof.


The notion of UCs for LTL with sets of time points naturally extends the notion of UCs for LTL via syntax trees
as follows. The notion of UCs for LTL via syntax trees removes whole occurrences of subformulas from an
unsatisfiable LTL formula by replacing them with true or false depending on polarity. The notion of UCs for
LTL with sets of time points extends that by replacing occurrences of subformulas with true or false depending
on polarity only at specific time points. Hence, removing a whole occurrence of a subformula ψ by replacing it
with true or false as is done in the notion of UCs for LTL via syntax trees is the limiting case of assigning that
occurrence of ψ an empty set of time points at which that occurrence of ψ is relevant in the notion of UCs for
LTL with sets of time points. For a proof see Prop. 5.


The notion of UCs for LTL with sets of time points is more fine-grained than the notions of UCs for LTL in
previous work [Sch12b, Sch15, AGH+12, GHST13, HH11, HSH12]. In [Sch12b] we discuss various notions
of UCs for LTL, and we briefly mention the idea to indicate time points at which subformulas of a UC in LTL
are relevant for unsatisfiability. However, the idea is not formalized, it first appears in the context of a UC
extraction algorithm that is complete only for a strict subset of LTL, and it is not implemented. Later, example
(4) is proposed, and it is conjectured that sets of time points can be obtained from a tableau method and that
these sets are semilinear. In this paper we take up where we left off in [Sch12b] by formalizing the idea of
indicating time points at which subformulas of a UC in LTL are relevant, showing how to obtain the required
information, and providing an implementation and experimental evaluation. [Sch15] suggests, implements, and
experimentally evaluates a method to obtain UCs for LTL via syntax trees. In addition, it extends that notion of
UCs by pointing out which occurrences of atomic propositions interact in a UC. This extension is orthogonal
to the extension presented in this paper; combining both is left as future work. [HH11] and [HSH12] use the
notion of UCs for LTL via syntax trees. [AGH+12] and [GHST13] take as input a set of LTL formulas φ.2 If
that set of LTL formulas is unsatisfiable, then they produce a subset φuc ⊆ φ that is still unsatisfiable. However,
they treat the LTL formulas that are the elements of φ as atomic entities; i.e., they do not analyze whether all
subformulas of the LTL formulas that make up φuc are required for unsatisfiability. This notion of UCs for LTL
is less fine-grained than the notion of UCs for LTL via syntax trees.


Temporal Resolution-Based Method to Obtain UCs for LTL with Sets of Time Points In [Sch15] we present a
temporal resolution-based method to obtain UCs for LTL via syntax trees. The method translates an LTL for-
mula into a clausal normal form, applies temporal resolution, extracts a clausal UC from the resolution proof,
and maps the clausal UC back to a UC in LTL. In this paper we extend that method to obtain information on
the time points at which subformulas of a UC in LTL are relevant for unsatisfiability by performing a detailed
analysis of the resolution proof. As a first step we determine whether in an application of a resolution rule a
premise is time-shifted one step into the future with respect to the conclusion or not. Then we count the number


1Temporal resolution as used in this article is an example of a proof calculus that does not make information on temporal relevance immediately
clear to the user.


2A set of LTL formulas φ is interpreted as the conjunction of the members of φ.
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of such time-shifts that occur in any sequence of proof steps between a clause from the set of clauses whose un-
satisfiability is being proved and the empty clause that concludes the proof. Finally, we transfer the information
from the clausal UC to the UC in LTL. The analysis takes time cubic in the size of the resolution proof.3


Temporal resolution [Fis91, FDP01] lends itself as a basis for enhancing UCs for LTL with information on
temporal relevance for two reasons. First, the temporal resolution-based solver TRP++ [HK03, HK04, trp]
proved to be competitive in a recent evaluation of solvers for LTL satisfiability, in particular on unsatisfiable
instances (see pp. 51–55 of the full version of [SD11]). Second, a temporal resolution proof naturally induces
a resolution graph [Sch15], which provides a clean framework for extracting information from the proof. Note,
that while the BDD-based solver NuSMV [CCG+02] also performed well on unsatisfiable instances in [SD11],
the BDD layer makes extraction of information from the proof more involved. On the other hand, the tableau-
based solvers LWB [HJSS95] and pltl [plt] provide access to a proof of unsatisfiability comparable to temporal
resolution, yet tended to perform not as good on unsatisfiable instances in [SD11].


Publicly Available Implementation We implement our method in TRP++. We make the source code of our solver
publicly available. We are not aware of any other tool that performs extraction of UCs for propositional LTL
at that level of granularity. The granularity of existing tools has been discussed above; for a more extensive
comparison we refer to [Sch15].


Experimental Evaluation Our experimental evaluation demonstrates that (i) non-trivial and interesting sets of time
points at which subformulas of a UC in LTL are relevant for unsatisfiability are indeed obtained on practical
examples and (ii) computation of time points is possible with quite acceptable overhead in terms of run time
and memory usage.


Besides debugging as outlined above UCs are also used for avoiding the exploration of parts of a search space that
can be known not to contain a solution for reasons “equivalent” to the reasons for previous failures (e.g., [CTVW03,
CRST07]). While our results might also benefit that application, we focus on debugging.


Conceptually, under the frequently legitimate assumption that a system description can be translated into an LTL
formula, our results extend to vacuity for LTL (see [Sch15]).


1.4. Related Work
Related work concerning the granularity of other notions of UCs for LTL was just discussed in Sec. 1.3. Below


we mention some work regarding the role of time points in other work in formal verification, the issue of granularity
in notions of UCs in other domains, and possibilities for explaining proofs. For work related to the extraction of UCs
for LTL in general we refer to [Sch15, Sch12b].


Simmonds et al. [SDGC10] use SAT-based bounded model checking (e.g., [BCCZ99, Bie09]) for vacuity detec-
tion. They indicate which time points are relevant for showing that a variable is non-vacuous. They only consider
k-step vacuity, i.e., taking into account bounded model checking runs up to a bound k, and leave the problem of
removing the bound k open. Given a specification as an LTL formula and an infinite word that does not satisfy the
specification Pill and Quaritsch [PQ13] use Reiter’s approach to diagnosis [Rei87, GSW89] to compute the set of po-
tential changes to the specification (diagnoses) such that the word satisfies the modified specification. The algorithm
they use to compute diagnoses [Rei87, GSW89] amounts to enumerating all UCs of the specification conjoined with
the word. The diagnoses they compute are at the granularity of an occurrence of a subformula; they avoid computing
diagnoses that take time points into account because of the expected increase in computational effort. Some work
[RS04, BBDC+09] determines the time points at which propositions in witnesses of satisfiable LTL formulas are
relevant for satisfiability. An unsatisfiable LTL specification is an instance of overconstraint in a specification (e.g.,
[SSJ+03]); an example of an approach that deals with the complementary case of underconstraint is [Cla07], which
finds pairs of output signals and time points in a specification such that the value of that output signal is not covered
by the specification at that time point. Dong et al. [DSRS02] propose a fine-grained notion of vacuity for the modal
µ-calculus (e.g., [Koz83, BS01]). In [DRS03] Dong et al. present a method and a tool to explore proofs of correctness
in model checking the modal µ-calculus.


3Note that the size of the resolution proof may be exponential in the size of the given LTL formula [Sch15, FDP01, Dix98].
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UCs are frequently used in description logics (e.g., [BCM+07]) to help debugging inconsistent ontologies. At
first, subsets of axioms were proposed as a UC [BH95]. Later, more fine-grained notions of UC were introduced
that are similar to our notion of a UC via syntax tree but go beyond that by allowing to replace concepts with more
general concepts and to numerically relax cardinality restrictions (e.g., [HPS08, Kal06, SC03]). To help understanding
more complex UCs it is suggested to extend a UC to a proof (e.g., [HPS10b, DHS05]). The proof may then be
converted into natural language (e.g., [NPPW12]). For a more extensive discussion of UCs in description logics see
[Hor11, Ngu13, Kal06, Den10].


In [GMP07] Grégoire et al. propose a notion of UCs for constraint satisfaction problems (e.g., [Apt03]), which is
more fine-grained than previous notions in that it does not remove a whole constraint (which is interpreted in [GMP07]
as a set of forbidden solutions) but only a part of a constraint (corresponding to a single or few forbidden solutions).


Helping users understand automatically generated proofs is a major concern in automated theorem proving (e.g.,
[RV01]). Some approaches are the transformation of proofs from a more machine-oriented calculus such as resolution
to a more human-oriented calculus such as natural deduction (e.g., [Lin89]), the presentation of proofs at higher levels
of abstraction (e.g., [Hua94]), the adaptation of the abstraction level in a user-dependent fashion with the possibility of
user interaction (e.g., [Fie01]), the presentation of proofs in natural language (e.g., [Fie01]), and, of course, graphical
user interfaces (e.g., [SHB+99]).


1.5. Structure of the Paper


This paper builds on a fair amount of previous work: we use temporal resolution as implemented in TRP++


[FDP01, Dix98, Dix97, HK03, HK04, trp] and its extension to extract UCs [Sch15]. To make this paper self-contained
we provide a brief description of both. However, to allow sufficient room for the contributions of this paper we have
to limit the amount of explanation for previous work.


A reader who is mostly interested in the application of this work without necessarily understanding how it works
is referred to Sec. 2 with several motivating examples. A walk-through of the core part of the approach by way of
example is given in Sec. 6.1. Section 2 requires no and Sec. 6.1 only a basic idea of resolution.


We start with a number of motivating examples in Sec. 2. In Sec. 3 the more formal exposition begins with
preliminaries. In Sec. 4 we restate the construction of a resolution graph and its use to obtain a UC from [Sch15]. The
main technical part of our contribution in this paper can be found in Sec. 5 and 6 where we show how to compute the
time points at which subformulas are relevant for unsatisfiability. We discuss our implementation and experimental
evaluation in Sec. 7. Some other aspects are discussed in Sec. 8. Section 9 concludes. Due to space constraints
some proofs are sketched or omitted in the main part; these can be found in the appendices. For our implementation,
examples, and log files see http://www.schuppan.de/viktor/theoreticalcomputerscience16/.


2. Motivating Examples


In this section we present examples that show the utility of UCs with sets of time points for debugging. The first
example is more involved than the introductory example (1)–(3) in the previous section but still artificial to allow
focusing entirely on sets of time points. The subsequent examples are then closer to real world situations. The
UCs in this as well as in all other parts of this paper were obtained with our implementation, possibly except for
minor rewriting. Note, though, that the examples in this section illustrate the benefits of UCs with sets of time points
independent of the method they are obtained with. For an additional example from the business process domain see
Appendix B.


We formally introduce LTL only in Sec. 3 and LTL with sets of time points (LTLp) only in Sec. 5. Readers entirely
unfamiliar with LTL may therefore prefer to skip to Sec. 3 first. For readers with some knowledge of LTL we next
provide an intuition on the semantics of LTLp but refer to the formal treatment in Sec. 5 for details.


Let ψ ≡ ◦1
I
ψ′ be an occurrence of a subformula with a unary operator ◦1 and an operand ψ′ that has a set of time


points I (the case of binary operators is analogous). Assume that the valuation of ψ′ is known for all time points and
that we now would like to evaluate ψ at some time point i. The valuation of ψ at time point i is essentially determined
in the same way as in the standard definition of LTL without sets of time points, except for the following. When in
the evaluation of ψ at time point i the valuation of ψ′ is required at some time point i′ such that i′ is not contained in I,
then the valuation of ψ′ at time point i′ is replaced with true if ψ has positive polarity and with false if ψ has negative
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polarity. As an example consider ψ ≡ G
{1}


p from (3). When ψ is evaluated at time point 0 on some word π over {∅, {p}},


then the valuation of ψ is obtained as the conjunction of true at time point 0 (because 0 is not contained in {1} and,
therefore, true is used rather than the valuation of p), the valuation of p at time point 1 (because 1 is contained in {1}
and, therefore, the valuation of p is used as in standard LTL without sets of time points), and true at all time points
≥ 2 (because these time points are not contained in {1} and, therefore, true is used rather than the valuation of p):
((π, 0) |= G


{1}
p)⇔ (∀i ∈ N . ((i < {1}) ∨ ((π, i) |= p)))⇔ (true ∧ (p ∈ π[1]) ∧


∧
i≥2 true).


2.1. Every Second Time Point
Consider (4). The first conjunct, p, forces p to be true at time point 0. Triggered by that, the second conjunct,


G(p→ XXp), then forces p to be true at even time points ≥ 2. Finally, the third conjunct, F((¬p) ∧ X¬p), requires
that eventually p becomes false at two consecutive time points. Clearly, the first two conjuncts contradict the third,
i.e., (4) is unsatisfiable.


p ∧ (G(p→ XXp)) ∧ F((¬p) ∧ X¬p) (4)


In (5) we show (4) enhanced with sets of time points such that the result is still unsatisfiable. The three conjuncts
p, G(p→ XXp), and F((¬p) ∧ X¬p) are evaluated only at time point 0 (see the sets of time points below the first
two ∧ operators). The set of time points below the G operator, 2 · N, shows that the operand of the G operator,
p→ XXp, is evaluated only at even time points. This carries over to both operands of the→ operator. Consequently,
it is sufficient to evaluate Xp at odd time points and its operand, p, at even time points > 0. In the last conjunct the
operand of the F operator has to be evaluated at every time point; otherwise, if for some time point the operand of the
F operator were replaced with true, then F((¬p) ∧ X¬p) would evaluate to true. The sets of time points below the
∧ operator in (¬p) ∧ X¬p show that the left conjunct, ¬p, contradicts p from the first part of (5) when (¬p) ∧ X¬p is
evaluated at an even time point, and the right conjunct, X¬p, does the same when (¬p) ∧ X¬p is evaluated at an odd
time point. Finally, when the left conjunct, ¬p, is evaluated at even time points, then so is its operand, p, and when
the right conjunct, X¬p, is evaluated at time points 2 ·N + 1, then its operand, ¬p, as well as p itself are evaluated at
time points 2 ·N + 2. We call (5) a UC of (4) in LTL with sets of time points.


p ∧
{0},{0}


(( G
2·N


(p →
2·N,2·N


X
2·N+1


X
2·N+2


p)) ∧
{0},{0}


( F
N


(( ¬
2·N


p) ∧
2·N,2·N+1


X
2·N+2


¬
2·N+2


p))) (5)


Example (4) is still relatively small and, therefore, reasonably easy to comprehend in its entirety. Still, sets of time
points in (5) highlight two important aspects. First, the operand of the second conjunct, p → XXp, is evaluated only
every second time point, as can be seen from the set of time points below the G operator. Second, one of the two
conjuncts in the operand (¬p) ∧X¬p of the F operator contradicts p at even time points and the other one at odd time
points, as evidenced by the sets of time points below the last ∧ operator.


2.2. A Lift Specification
The example (6) modifies the example of a lift specification from [Sch15] (originally adapted from [Har05]) to


illustrate the use of sets of time points in debugging. The lift has two floors, indicated by f0 and f1. On each floor
there is a button to call the lift (b0, b1). sb is true if some button is pressed. If the lift moves up, then up must be true;
if it moves down, then up must be false. u switches turns between actions by users of the lift (u is true) and actions
by the lift (u is false). For a more detailed explanation we refer to [Har05].


(¬u) ∧ ( f0) ∧ (¬b0) ∧ (¬b1) ∧ (¬up) (6a)
∧ (G((u→ ¬Xu) ∧ ((¬Xu)→ u))) (6b)
∧ (G( f0 → ¬ f1)) (6c)
∧ (G(( f0 → X( f0 ∨ f1)) ∧ ( f1 → X( f0 ∨ f1)))) (6d)
∧ (G(u→ (( f0 → X f0) ∧ ((X f0)→ f0) ∧ ( f1 → X f1) ∧ ((X f1)→ f1)))) (6e)
∧ (G((¬u)→ ((b0 → Xb0) ∧ ((Xb0)→ b0) ∧ (b1 → Xb1) ∧ ((Xb1)→ b1)))) (6f)
∧ (G(((b0 ∧ ¬ f0)→ Xb0) ∧ ((b1 ∧ ¬ f1)→ Xb1))) (6g)
∧ (G(( f0 ∧ X f0)→ ((up→ Xup) ∧ ((Xup)→ up)))) (6h)
∧ (G(( f1 ∧ X f1)→ ((up→ Xup) ∧ ((Xup)→ up)))) (6i)
∧ (G((( f0 ∧ X f1)→ up) ∧ (( f1 ∧ X f0)→ ¬up))) (6j)
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∧ (G((sb→ (b0 ∨ b1)) ∧ ((b0 ∨ b1)→ sb))) (6k)
∧ (G(( f0 ∧ ¬sb)→ ( f0U(sbR((F f0) ∧ ¬up))))) (6l)
∧ (G(( f1 ∧ ¬sb)→ ( f1U(sbR((F f0) ∧ ¬up))))) (6m)
∧ (G((b0 → F f0) ∧ (b1 → F f1))) (6n)


We first assume that an engineer is interested in seeing whether it is possible that b1 is continuously pressed (7).
As the UC with sets of time points in (8) shows this is impossible because b1 must be false at time point 0. Notice
that (8) indicates that the operand of the G operator is only needed at time point 0 (trivial to see in this case).


Gb1 (7)
( ¬
{0}


b1) ∧
{0},{0}


G
{0}


b1 (8)


Now the engineer modifies her query such that b1 is pressed continuously only from time point 1 on (9). That
turns out to be impossible, too. The sets of time points in the UC in (10) highlight two aspects. First, the set of time
points below the second G operator shows that also this time the press of b1 is required only at one time point to
obtain unsatisfiability. Second, the sets of time points show that for unsatisfiability the first occurrence of b1 must
interact with the third occurrence of b1 (at time point 0) and the second occurrence of b1 must interact with the fourth
occurrence of b1 (at time point 1).


XGb1 (9)
(¬
{0}


u) ∧
{0},{0}


((¬
{0}


b1) ∧
{0},{0}


((G
{0}


(( ¬
{0}


u) →
{0},{0}


((X
{1}


b1) →
{0},{0}


b1))) ∧
{0},{0}


X
{1}


G
{1}


b1)) (10)


The engineer now tries to have b1 pressed continuously only from time point 2 on and also obtains a UC that
needs b1 pressed only at a single time point for unsatisfiability (not shown). She suspects that the fact that b1 is
pressed continuously in her scenario may play no role for unsatisfiability and checks whether b1 can be pressed at all.
She now sees that b1 cannot be pressed at any time point and, therefore, this specification of a lift must contain a bug.


2.3. An Example of Disjuncts of an Invariant Holding at Different Time Points
Example (11) below is based on a subset of the specification of a buffer in [BGJ+07]. The subset regulates the


communication between a sender and a buffer, where the sender can issue requests to the buffer (req) and the buffer
can acknowledge requests to the sender (ack). (11) characterizes a behavior in which the following sequence of steps
(i)–(iv) is repeated either infinitely often or until an instance of step (i) continues indefinitely: (i) A (finite or infinite)
non-empty sequence of time points in which both req and ack are false, (ii) followed by a finite non-empty sequence
of time points in which req is true and ack is false, (iii) followed by a single time point in which both req and ack are
true, (iv) followed by a finite non-empty sequence of time points in which req is false and ack is true. In other words,
a period of inactivity is followed by a request. The request remains asserted until it is eventually acknowledged. Once
the request has been acknowledged, the request is deasserted at the following time point. Finally, the acknowledgment
may be kept asserted for an arbitrary but finite amount of time, during which no further request may be issued. Then
the cycle repeats itself.


(¬req) ∧ (¬ack) (11a)
∧ (G((req ∧ ¬ack)→ Xreq)) (11b)
∧ (G(ack → X¬req)) (11c)
∧ (GF((req ∧ ack) ∨ ((¬req) ∧ ¬ack))) (11d)
∧ (G(((¬req) ∧ Xreq)→ X¬ack)) (11e)
∧ (G(((¬ack) ∧ Xack)→ req)) (11f)
∧ (G((ack ∧ req)→ Xack)) (11g)


The engineer considers a scenario in which a request is sent every fourth time point, starting at time point 1 (12a),
(12b). In this scenario she would like to verify an invariant (12c)–(12f). Notice that the four disjuncts of the invariant
essentially correspond to the four steps (i)–(iv) above (except for the occurrence of Xtick in (12c)). Hence, in a cycle
of length 4 each disjunct of the invariant should happen at exactly one time point.


(Xtick) ∧ (G(tick → XXXXtick)) (12a)


7







∧ (G((tick → req) ∧ ((Xtick)→ ¬req))) (12b)
∧ ¬G(((¬req) ∧ (¬ack) ∧ Xtick) (12c)


∨ (req ∧ ¬ack) (12d)
∨ (req ∧ ack) (12e)
∨ ((¬req) ∧ ack)) (12f)


The fact that the conjunction of (11) and (12) is unsatisfiable (only) proves that the invariant holds. Inspection of
the excerpt of the resulting UC with sets of time points for the invariant in (13a)–(13d) then explicitly confirms that
indeed each disjunct of the invariant holds every fourth point in time and in the exact order of the steps (i)–(iv) above,
as can be seen from the sets of time points below the ∧ operators in each of the disjuncts.


¬
{0}


G
N


( (( ¬
4·N


req) ∧
4·N,4·N


(( ¬
4·N


ack) ∧
4·N,4·N


X
4·N+1


tick)) (13a)


∨
4·N,{4·N+1,4·N+2,4·N+3}


((req ∧
4·N+1,4·N+1


¬
4·N+1


ack) (13b)


∨
4·N+1,{4·N+2,4·N+3}


((req ∧
4·N+2,4·N+2


ack) (13c)


∨
4·N+2,4·N+3


(( ¬
4·N+3


req) ∧
4·N+3,4·N+3


ack)))) (13d)


3. Preliminaries


3.1. Semilinear Sets and Parikh Images


Let N be the naturals, and let I ⊆ N be a set of naturals. I is linear iff there exist two naturals p (period) and o
(offset) such that I = p ·N + o. I is semilinear iff it is the union of finitely many linear sets.


Let Σ be a finite alphabet, σ ∈ Σ a letter in Σ, L ⊆ Σ∗ a language over Σ, and w ∈ L a word in L. Define a function
from words and letters to naturals Ψ : Σ∗ × Σ → N, (w, σ) 7→ m where m is the number of occurrences of σ in w. Ψ


is called Parikh mapping and Ψ(w, σ) is called the Parikh image of σ in w. The Parikh image of a set of words W is
defined in the natural way: Ψ(W, σ) = {Ψ(w, σ) | w ∈ W}. Parikh’s theorem [Par66] states that for every context-free
language L, for every letter σ, the Parikh image Ψ(L, σ) is semilinear. See also [Sal73].


3.2. LTL


We use a standard version of LTL, see, e.g., [Eme90]. Let B be the set of Booleans, and let AP be a finite
set of atomic propositions. The set of LTL formulas is constructed inductively as follows. The Boolean constants
false, true ∈ B and any atomic proposition p ∈ AP are LTL formulas. If ψ, ψ′ are LTL formulas, so are ¬ψ (not),
ψ ∨ ψ′ (or), ψ ∧ ψ′ (and), Xψ (next time), ψUψ′ (until), ψRψ′ (releases), Fψ (finally), and Gψ (globally). We use
ψ → ψ′ (implies) as an abbreviation for (¬ψ) ∨ ψ′, ψ ↔ ψ′ (equivalent) for (ψ→ ψ′) ∧ (ψ′ → ψ), and ψWψ (weak
until) for (ψUψ′) ∨Gψ. An occurrence of a subformula ψ of an LTL formula φ has positive polarity (+) if it appears
under an even number of negations in φ and negative polarity (−) otherwise. The size of an LTL formula φ is measured
as the sum of the numbers of occurrences of atomic propositions, Boolean operators, and temporal operators in φ.


LTL is interpreted over words in (2AP)ω. For the semantics of LTL see Fig. 1. A word π ∈ (2AP)ω satisfies an LTL
formula φ iff (π, 0) |= φ. A word π that satisfies φ is also called a satisfying assignment for φ. An LTL formula φ is
satisfiable if there exists a word π ∈ (2AP)ω that satisfies φ; otherwise, it is unsatisfiable. The problem of determining
the satisfiability of an LTL formula is PSPACE-complete [SC85, HR83].


LTL can be extended with existential quantification over atomic propositions, termed EQLTL (e.g., [SVW87,
Eme90]). The syntax and semantics of EQLTL are as follows. If p0, . . . , pn are atomic propositions in AP and ψ is an
LTL formula, then ∃p0 . · · · ∃pn . ψ is an EQLTL formula. A word π in (2AP)ω satisfies ∃p0 . · · · ∃pn . ψ iff there
exists a word π′ in (2AP)ω such that (i) π′ satisfies ψ and (ii) π differs from π′ only in the valuation of p0, . . . , pn. The
satisfiability problem for EQLTL is PSPACE-complete [SVW87].
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(π, i) |= true
(π, i) 6|= false
(π, i) |= p ⇔ p ∈ π[i]
(π, i) |= ¬ψ ⇔ (π, i) 6|= ψ
(π, i) |= ψ ∨ ψ′ ⇔ (π, i) |= ψ or (π, i) |= ψ′


(π, i) |= ψ ∧ ψ′ ⇔ (π, i) |= ψ and (π, i) |= ψ′


(π, i) |= Xψ ⇔ (π, i + 1) |= ψ
(π, i) |= ψUψ′ ⇔ ∃i′ ≥ i . ((π, i′) |= ψ′ ∧ ∀i ≤ i′′ < i′ . (π, i′′) |= ψ)
(π, i) |= ψRψ′ ⇔ ∀i′ ≥ i . ((π, i′) |= ψ′ ∨ ∃i ≤ i′′ < i′ . (π, i′′) |= ψ)
(π, i) |= Fψ ⇔ ∃i′ ≥ i . (π, i′) |= ψ
(π, i) |= Gψ ⇔ ∀i′ ≥ i . (π, i′) |= ψ


Figure 1: Semantics of LTL. π is a word in (2AP)ω, i is a time point inN.


3.3. Separated Normal Form


Temporal resolution works on formulas in a clausal normal form called Separated Normal Form (SNF) [Fis91,
FN92, FDP01]. For any atomic proposition p ∈ AP p and ¬p are literals. Let p1, . . . , pn, q1, . . . , qn′ , l with 0 ≤ n, n′


be literals such that ∀1 ≤ j < j′ ≤ n . p j , p j′ and ∀1 ≤ j < j′ ≤ n′ . q j , q j′ . Then (i) (p1 ∨ . . . ∨ pn) is an initial
clause; (ii) (G(p1 ∨ . . . ∨ pn ∨ X(q1 ∨ . . . ∨ qn′ ))) is a global clause; and (iii) (G(p1 ∨ . . . ∨ pn ∨ Fl)) is an eventuality
clause. p1 ∨ . . . ∨ pn is called the now part and q1 ∨ . . . ∨ qn′ is called the X part of a global clause. l is called an
eventuality literal. As usual an empty disjunction (resp. conjunction) stands for false (resp. true). () or (G()), denoted
2, stand for false or G(false) and are called empty clause. The set of all SNF clauses is denoted C. Let c1, . . . , cn


with 0 ≤ n be SNF clauses. Then
∧


1≤ j≤n c j is an LTL formula in SNF. Every LTL formula φ can be translated into an
equisatisfiable formula φ′ in SNF [FDP01].


3.4. Translating LTL into SNF


We use a structure-preserving translation (e.g., [PG86]) to translate an LTL formula into a set of SNF clauses. It is
based on the tableau construction for LTL that is often used in (symbolic) model checking (see, e.g., [LP85, BCM+92,
CGH97]).


Definition 1 (Translation from LTL into SNF). Let φ be an LTL formula over atomic propositions AP, and let X =


{x, x′, . . .} be a set of fresh atomic propositions that don’t occur in φ. Assign to each occurrence of a subformula
ψ in φ a Boolean value or a proposition according to column 2 of Tab. 1, which is used to reference ψ in the SNF
clauses for its superformula. Moreover, assign to each occurrence of ψ a set of SNF clauses according to column 3
or 4 of Tab. 1. Let SNFaux(φ) be the set of all SNF clauses obtained from φ that way. Then the SNF of φ is defined as
SNF(φ) ≡ xφ ∧


∧
c∈SNFaux(φ) c.


Note that to make the SNF clauses in columns 3 and 4 of Tab. 1 and elsewhere in this article easier to understand we
often use implication to formulate them. However, in TRP++ SNF clauses cannot contain implications and, therefore,
in our implementation of Def. 1 implication is expanded using its definition. The fact that some propositions are
marked blue boxed in Tab. 1 will be used later in Sec. 4 and 6 when translating a UC back from SNF to LTL. It is
well known that φ and SNF(φ) are equisatisfiable and that a satisfying assignment for φ (resp. SNF(φ)) can be extended
(resp. restricted) to a satisfying assignment for SNF(φ) (resp. φ). Below we sometimes identify the SNF of φ, SNF(φ),
with the set of SNF clauses {xφ} ∪ SNFaux(φ) that SNF(φ) is constructed from.


Remark 1 (Complexity Considerations Regarding the Translation from LTL into SNF). Let φ be an LTL formula over
atomic propositions AP, and let SNF(φ) be the SNF of φ. It is easy to see that (i) for each occurrence of a Boolean
or temporal operator in φ one fresh atomic proposition x, x′, . . . is introduced in SNF(φ) by the translation, (ii) the
number of clauses in SNF(φ) is linear in the size of φ, (iii) the size of SNF(φ) is linear in the size of φ, and (iv) SNF(φ)
can be computed in time linear in the size of φ.
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Table 1: Translation from LTL into SNF.
Subformula Proposition SNF Clauses (positive polarity occurrences) SNF Clauses (negative polarity occurrences)


true/false/p true/false/p none none
¬ψ x¬ψ (G(x¬ψ → ¬ xψ )) (G((¬x¬ψ)→ xψ ))
ψ ∨ ψ′ xψ∨ψ′ (G(xψ∨ψ′ → ( xψ ∨ xψ′ ))) (G((¬xψ∨ψ′ )→ ¬ xψ )), (G((¬xψ∨ψ′ )→ ¬ xψ′ ))
ψ ∧ ψ′ xψ∧ψ′ (G(xψ∧ψ′ → xψ )), (G(xψ∧ψ′ → xψ′ )) (G((¬xψ∧ψ′ )→ ((¬ xψ ) ∨ ¬ xψ′ )))
Xψ xXψ (G(xXψ → X xψ )) (G((¬xXψ)→ X¬ xψ ))
ψUψ′ xψUψ′ (G(xψUψ′ → ( xψ′ ∨ xψ ))), (G((¬xψUψ′ )→ ¬ xψ′ )),


(G(xψUψ′ → ( xψ′ ∨ XxψUψ′ ))), (G((¬xψUψ′ )→ ((¬ xψ ) ∨ X¬xψUψ′ )))
(G(xψUψ′ → F xψ′ ))


ψRψ′ xψRψ′ (G(xψRψ′ → xψ′ )), (G((¬xψRψ′ )→ ((¬ xψ′ ) ∨ ¬ xψ ))),
(G(xψRψ′ → ( xψ ∨ XxψRψ′ ))) (G((¬xψRψ′ )→ ((¬ xψ′ ) ∨ X¬xψRψ′ ))),


(G((¬xψRψ′ )→ F¬ xψ′ ))
Fψ xFψ (G(xFψ → F xψ )) (G((¬xFψ)→ X¬xFψ)), (G((¬xFψ)→ ¬ xψ ))
Gψ xGψ (G(xGψ → XxGψ)), (G(xGψ → xψ )) (G((¬xGψ)→ F¬ xψ ))


Running Example 1. As an example consider (14) below.


φ ≡ ((X¬p) ∧G¬q) ∧ (pU(q ∧ r)). (14)


Using Def. 1 (14) is translated into the following set of SNF clauses (15):


{(xφ),
(G(xφ → x(X¬p)∧G¬q)), (G(xφ → xpU(q∧r))),
(G(x(X¬p)∧G¬q → xX¬p)), (G(x(X¬p)∧G¬q → xG¬q)),
(G(xX¬p → Xx¬p)),
(G(x¬p → ¬p)),
(G(xG¬q → XxG¬q)), (G(xG¬q → x¬q)),
(G(x¬q → ¬q)),
(G(xpU(q∧r) → (xq∧r ∨ p))), (G(xpU(q∧r) → (xq∧r ∨ XxpU(q∧r)))), (G(xpU(q∧r) → Fxq∧r)),
(G(xq∧r → q)), (G(xq∧r → r))}.


(15)


This example will be continued in Sec. 4.2 to illustrate mapping a UC in SNF to a UC in LTL.


3.5. Temporal Resolution in TRP++


Temporal resolution (TR) [Fis91] extends resolution (e.g., [Rob65, FM09, BG01]) to temporal logics such as LTL
(e.g., [Fis91, FDP01]) and CTL (e.g., [BF99]). In this paper we use TR for LTL [Fis91, FDP01] with BFS for loop
search [Dix98, Dix97, Dix96, Dix95] as implemented in TRP++ [HK03, HK04, trp], and we refer to the corresponding
algorithm as the “TR algorithm” below.


Temporal resolution has been developed since the early 1990s [Fis91], and an extensive body of literature exists. It
is out of the scope of this article to provide a detailed introduction or a tutorial on the subject. The following references
are among the most suitable as an introduction to TR as needed for this article: [FDP01] provides a general overview
of the method and is a good starting point, [Dix97, Dix98] explains BFS loop search as used in TRP++, and [HK04]
covers the implementation of TR in TRP++. [Sch15] contains a concise description of the TR algorithm. In [Sch12a]
we provide some intuition on temporal resolution with a slant towards BDD-based symbolic model checking (e.g.,
[BCM+92, CGP01]).


The TR algorithm takes as input a set of SNF clauses C. A number of production rules allow to derive new clauses
from clauses in C and/or previously derived clauses, possibly under some side conditions. If the empty clause 2 can
be derived from C, then C is shown to be unsatisfiable. Otherwise, C is satisfiable.


The production rules used in the TR algorithm are shown in Tab. 2. The first column assigns a name to a production
rule. The second and fourth columns list the premises. The sixth column gives the conclusion. Columns 3, 5, and 7
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Table 2: Production rules used in TRP++.
production rule premise 1 partition premise 2 partition conclusion partition


saturation
init-ii (P ∨ l) M ((¬l) ∨ Q) M (P ∨ Q) M
init-in (P ∨ l) M (G((¬l) ∨ Q)) M (P ∨ Q) M
step-nn (G(P ∨ l)) M (G((¬l) ∨ Q)) M (G(P ∨ Q)) M
step-nx (G(P ∨ l)) M (G(Q ∨ X((¬l) ∨ R))) M (G(Q ∨ X(P ∨ R))) M
step-xx (G(P ∨ X(Q ∨ l))) ML (G(R ∨ X((¬l) ∨ S))) ML (G(P ∨ R ∨ X(Q ∨ S))) ML


augmentation
aug1 (G(P ∨ Fl)) M (G(P ∨ l ∨ wl)) M
aug2 (G(P ∨ Fl)) M (G((¬wl) ∨ X(l ∨ wl))) M


BFS loop search
BFS-loop-it-init-x c ≡ (G(P ∨ X(q1 ∨ . . . ∨ qn′ ))) with n′ > 0 M c L
BFS-loop-it-init-n (G P) M (G X P) L
BFS-loop-it-init-c (G P) L′ (G(Q ∨ Fl)) M (GX(P ∨ l)) L


BFS-loop-it-sub (G P) L
(GX(P ∨ Q ∨ l)) generated
by BFS-loop-it-init-c L


BFS-loop-conclusion1 (G P) L (G(Q ∨ Fl)) M (G(P ∨ Q ∨ l)) M
BFS-loop-conclusion2 (G P) L (G(Q ∨ Fl)) M (G((¬wl) ∨ X(P ∨ l))) M


are described later. Let P ≡
∨


j=1...np
p j, Q ≡


∨
j=1...nq


q j, R ≡
∨


j=1...nr
r j, S ≡


∨
j=1...ns


s j. Correspondingly, for j ∈ N
let P j ≡


∨
j′=1...np, j


p j, j′ , Q j ≡
∨


j′=1...nq, j
q j, j′ , etc.


Resolution between two initial clauses, between two global clauses, or between an initial and a global clause is
performed by a straightforward extension of propositional resolution by the five production rules listed under “satu-
ration”. Resolution between a set of global clauses and an eventuality clause is more complex. Resolution with an
eventuality clause (G(P ∨ Fl)) requires to find a set of global clauses that allows one to infer conditions under which
XG¬l holds. Such a set of clauses is called a loop in ¬l. Loop search involves all production rules in Tab. 2 except
init-ii , init-in , step-nn , and step-nx .


An instance of loop search may take several iterations, called BFS loop search iterations. In a single BFS loop
search iteration for some eventuality clause (G(P ∨ Fl)) ∈ C one tries to show that a hypothetical fixed point is an
actual fixed point. Concretely, one makes the hypothesis that (16) holds.∧


1≤ j≤n


(GX(Q j ∨ R j ∨ l)) (16)


Now assume that one can derive (17) by applying rule step-xx to (16) and any global clauses contained in or previously
derived from C. ∧


1≤ j≤n


(G Q j) (17)


In that case one has shown that C and (16) imply (17). I.e., if some satisfying assignment for C, π, fulfills
∧


1≤ j≤n(Q j∨


R j ∨ l) at time point i + 1, then π must fulfill
∧


1≤ j≤n Q j at time point i. Reversing the implication, if some Q j is false
in π at time point i, then some Q j′ ∨ R j′ ∨ l must be false in π at time point i + 1. Note that this means that both Q j′


and l must be false in π at time point i + 1. Hence, by induction l must be false in π for all time points after i + 1. I.e.,
we have just shown that C implies (18). ∧


1≤ j≤n


(G(Q j ∨ XG¬l)) (18)


Now, with (G(P ∨ Fl)) ∈ C, we can conclude that C implies (19).∧
1≤ j≤n


(G(P ∨ (Q jWl))) (19)
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The TR algorithm performs each BFS loop search iteration in a context that is separate from other BFS loop
search iterations as well as from non-loop search. These contexts are essentially sets of SNF clauses, which we term
partitions. Columns 3, 5, and 7 in Tab. 2 show the partitions that the premises of a production rule are taken from
and the conclusion is put into. The main partition, M, contains C and the results of applying production rules init-ii ,
init-in , step-nn , step-nx , and step-xx . When a BFS loop search iteration is started, then first a new partition L is created.


Production rules BFS-loop-it-init-x and BFS-loop-it-init-n copy all global clauses from M to L. Production rule BFS-loop-it-init-c


creates the hypotheses for the loop search in L. Then production rule step-xx is applied inside L until no new clauses
can be generated. Now production rule BFS-loop-it-sub comes into play. It does not produce a new clause but records
the fact that the now part of some clause (G Q j) obtained from production rule step-xx in L subsumes the X part of
a clause (GX(Q j ∨ R j ∨ l)) obtained from production rule BFS-loop-it-init-c in L. If rule BFS-loop-it-sub can be applied to
every clause (GX(Q j ∨ R j ∨ l)) obtained from production rule BFS-loop-it-init-c in L, then that BFS loop search iteration
was successful. In that case the result of that BFS loop search iteration needs to be inserted into M. However, clearly
(19) is not in SNF. Therefore, (19) is replaced with


∧
1≤ j≤n(G(P ∨ Q j ∨ l)), (G(P ∨ l ∨ wl)), (G((¬wl) ∨ X(l ∨ wl))),


and
∧


1≤ j≤n(G((¬wl) ∨ X(Q j ∨ l))) in M, where wl is a fresh atomic proposition that is unique for each eventuality
literal occurring in C. Notice that (G(P ∨ l ∨ wl)) and (G((¬wl) ∨ X(l ∨ wl))) do not depend on the actual Q j obtained
in the BFS loop search iteration. These BFS loop search-independent clauses are therefore added to M before any BFS
loop search is performed by the production rules listed under “augmentation”. The remaining clauses are added to M
by rules BFS-loop-conclusion1 and BFS-loop-conclusion2 when a successful BFS loop search iteration has been completed.


Phases of applying the rules listed under “saturation” in M and BFS loop search alternate until either 2 has been
derived in M (in which case C is unsatisfiable) or no new clauses can be generated any more (in which case C is
satisfiable). For the exact sequencing of loop search and non-loop search phases of the TR algorithm we refer to the
literature mentioned above.


We have not explained how to obtain the hypotheses for BFS loop search iterations. This is essentially a com-
pleteness issue and, therefore, not relevant for this paper. We only say here that hypotheses are either initialized to a
default value or taken from a previous unsuccessful BFS loop search iteration for the same eventuality literal. This
explains the entry L′ for the partition of premise 1 of rule BFS-loop-it-init-c in Tab. 2.


The TR algorithm is a sound and complete decision procedure for the satisfiability of a set of SNF clauses [HK03,
HK04, FDP01, Dix97, Dix98, Dix95]. We are not aware of a detailed complexity analysis of TR as implemented
in TRP++; for complexity analyses of parts of the TR method relevant to the implementation in TRP++ see [FDP01,
Dix98].


For example executions of the TR algorithm see the examples for constructing a resolution graph in Sec. 4.1.1.


4. UC Extraction via TR


In this section we describe our method from [Sch15] to construct UCs via TR. We present our method to obtain a
UC in SNF via TR in Sec. 4.1. Then, in Sec. 4.2 we show how to map a UC in SNF back to LTL.


4.1. Extracting a UC in SNF
We now describe our method to extract a UC in SNF via TR from [Sch15]. Given an unsatisfiable set of SNF


clauses C we would like to obtain a subset of C, Cuc, that is by itself unsatisfiable. The general idea of the method is
unsurprising in that the production rules of the TR algorithm are used to construct a resolution graph whose nodes are
labeled with SNF clauses and each of whose edges point from a vertex labeled with a premise to a vertex labeled with
the conclusion of an application of a production rule. When the empty clause is derived, then the resolution graph
is traversed backward from the empty clause to find the subset of C that was actually used to prove unsatisfiability,
giving Cuc as desired.


4.1.1. Resolution Graphs
The presentation of a resolution graph in this paper makes a major change compared to [Sch15]. In [Sch15] a


resolution graph is defined procedurally by constructing it during an execution of the TR algorithm. This requires the
presentation of the TR algorithm at a fairly detailed level. In this paper we employ a definition of a resolution graph by
the properties it exhibits. This allowed for the more abstract presentation of the TR algorithm in the previous section.


12







Another difference with respect to the presentation in [Sch15] is that in [Sch15] first an unoptimized and then
an optimized resolution graph are presented. The optimized resolution graph drops some edges between selected
premises and conclusions. The proofs that the resulting resolution graph and, therefore, also the resulting UCs still
contain all the required information are fairly low level and mostly not required for the understanding of this paper.
Therefore, here we present the optimized resolution graph right away (dropping “optimized”) and simply refer to the
results in [Sch15] where appropriate.


The definition of a resolution graph is stated in Def. 2 below. Essentially, it says that for each application of
a production rule from Tab. 2 a new vertex is created, labeled with the SNF clause that is the conclusion of that
production rule, and linked via incoming edges to the vertices that are labeled with the premises of that production
rule. Notice that we repurpose the notion of partitions. In the previous section partitions grouped SNF clauses, while
in Def. 2 they group vertices of a resolution graph (which of course are in turn labeled with SNF clauses). Moreover,
we impose a total order on the vertices of a resolution graph. By forcing conclusions to be obtained only from premises
that label smaller vertices and BFS loop search iterations to form a contiguous subsequence of vertices this allows to
prevent circular reasoning.


Definition 2 (Resolution Graph). Let C be a set of SNF clauses. A resolution graph G for C is a directed graph
consisting of (i) a totally ordered set of vertices V, (ii) a set of directed edges E ⊆ V × V, (iii) a labeling of vertices
with SNF clauses LV : V → C, and (iv) a partitioning QV of the set of vertices V into one main partition MV and a
finite number of BFS loop search iteration partitions LV


j : QV : V = MV ] LV
0 ] . . . ] LV


n ,4 fulfilling conditions 1–4
below.


Let get wl be a function that maps every eventuality literal l that occurs in C to a fresh atomic proposition wl:
get wl : {l | (G(P ∨ Fl)) ∈ C} 7→ {wl | wl ∈ AP is fresh}. Let get l be a function that maps every BFS loop search
iteration partition to an eventuality literal that occurs in C: get l : {LV


0 , . . . , L
V
n } 7→ {l | (G(P ∨ Fl)) ∈ C}. Let


P ≡
∨


j=1...np
p j, Q ≡


∨
j=1...nq


q j, R ≡
∨


j=1...nr
r j, S ≡


∨
j=1...ns


s j.


1. The vertices and edges obtained from conditions 3 and 4 below are the only vertices and edges of G.


2. In a partition vertex labels are unique: ∀v, v′ ∈ V . (v , v′ ∧ ((v ∈ MV ∧ v′ ∈ MV )∨ (∃0 ≤ j ≤ n . v ∈ LV
j ∧ v′ ∈


LV
j )))→ LV (v) , LV (v′).


3. Conditions for the main partition MV :


(a) Every SNF clause in C labels a vertex in MV : ∀c ∈ C . ∃v ∈ MV . LV (v) = c. These vertices have no
incoming edges: ∀v ∈ MV . LV (v) ∈ C → deg−(v) = 0.5


(b) Every vertex v in MV that is not labeled with an SNF clause from C is obtained from one of the following
production rules:


init-ii v has two incoming edges from vertices v′ < v, v′′ < v in MV labeled with initial clauses c′ = (P ∨ l)
and c′′ = ((¬l) ∨ Q). v is labeled with an initial clause c = (P ∨ Q).


init-in v has two incoming edges from vertices v′ < v, v′′ < v in MV labeled with an initial clause
c′ = (P ∨ l) and a global clause with empty X part c′′ = (G((¬l) ∨ Q)). v is labeled with an initial
clause c = (P ∨ Q).


step-nn v has two incoming edges from vertices v′ < v, v′′ < v in MV labeled with global clauses
with empty X part c′ = (G(P ∨ l)) and c′′ = (G((¬l) ∨ Q)). v is labeled with a global clause c =


(G(P ∨ Q)).
step-nx v has two incoming edges from vertices v′ < v, v′′ < v in MV labeled with a global clause with


empty X part c′ = (G(P ∨ l)) and a global clause with non-empty X part c′′ = (G(Q ∨ X((¬l) ∨ R))).
v is labeled with a global clause c = (G(Q ∨ X(P ∨ R))).


4] denotes disjoint union of sets.
5deg−(v) (resp. deg+(v)) denotes the indegree (resp. outdegree) of a vertex v, i.e., its number of incoming (resp. outgoing) edges.


13







step-xx v has two incoming edges from vertices v′ < v, v′′ < v in MV labeled with global clauses with
non-empty X part c′ = (G(P ∨ X(Q ∨ l))) and c′′ = (G(R ∨ X((¬l) ∨ S))). v is labeled with a global
clause c = (G(P ∨ R ∨ X(Q ∨ S))).


aug1 v has an incoming edge from a vertex v′ < v in MV labeled with an eventuality clause c′ =


(G(P ∨ Fl)). v is labeled with a global clause c = (G(P ∨ l ∨ wl)) such that wl = get wl(l).
aug2 There exists a vertex v′ < v in MV labeled with an eventuality clause c′ = (G(P ∨ Fl)). v is labeled


with a global clause c = (G((¬wl) ∨ X(l ∨ wl))) such that wl = get wl(l).
BFS-loop-conclusion1 v has an incoming edge from a vertex v′ < v in a successful BFS loop search iteration


partition LV
j labeled with a global clause with empty X part c′ = (G P) and another incoming edge


from a vertex v′′ < v in MV labeled with an eventuality clause c′′ = (G(Q ∨ Fl)) such that l =


get l(LV
j ). v is labeled with a global clause c = (G(P ∨ Q ∨ l)).


BFS-loop-conclusion2 v has an incoming edge from a vertex v′ < v in a successful BFS loop search iteration
partition LV


j labeled with a global clause with empty X part c′ = (G P). There exists a vertex v′′ < v
in MV labeled with an eventuality clause c′′ = (G(Q ∨ Fl)) such that l = get l(LV


j ). v is labeled with
a global clause c = (G((¬wl) ∨ X(P ∨ l))) such that wl = get wl(l).


(c) If a vertex v in the main partition MV is labeled with the empty clause, then v has no outgoing edges:
∀v ∈ MV . LV (v) = 2→ deg+(v) = 0.


4. Conditions for a BFS loop search iteration partition LV
j :


(a) The vertices in LV
j form a contiguous subsequence in the total order on V: ∀v, v′, v′′ ∈ V . (v ≤ v′ ≤


v′′ ∧ v, v′′ ∈ LV
j )→ v′ ∈ LV


j .


(b) Every vertex v in LV
j is obtained from one of the following production rules:


BFS-loop-it-init-x v has an incoming edge from a vertex v′ < v in MV labeled with a global clause with
non-empty X part c′ = (G(P ∨ XQ)). v is labeled with c = c′.


BFS-loop-it-init-n v has an incoming edge from a vertex v′ < v in MV labeled with a global clause with
empty X part c′ = (G P). v is labeled with a global clause c = (G X P).


BFS-loop-it-init-c Either P ≡ 2 or there exists a vertex v′ < v in a different BFS loop search iteration
partition LV


j′ with j′ , j, v′ is labeled with a global clause with empty X part c′ = (G P), and
get l(LV


j′ ) = get l(LV
j ). v is labeled with a global clause c = (GX(P ∨ l)) such that l = get l(LV


j ).


step-xx v has two incoming edges from vertices v′ < v, v′′ < v in LV
j labeled with global clauses with


non-empty X part c′ = (G(P ∨ X(Q ∨ l))) and c′′ = (G(R ∨ X((¬l) ∨ S))). v is labeled with a global
clause c = (G(P ∨ R ∨ X(Q ∨ S))).


(c) A vertex v in LV
j obtained from BFS-loop-it-init-c can have (at most) one incoming edge according to the


following rule:


BFS-loop-it-sub v has an incoming edge from a vertex v′ > v in LV
j labeled with a global clause with empty


X part c′ = (G P). v is labeled with a global clause with empty now part c = (GX(P ∨ Q ∨ l)) such
that l = get l(LV


j ). I.e., the now part of c′ subsumes the X part of c.


(d) LV
j is successful iff every vertex v in LV


j obtained from BFS-loop-it-init-c has an incoming edge obtained from
BFS-loop-it-sub .


In Lemma 1 we state that an optimized resolution graph according to [Sch15] is a resolution graph according to
Def. 2. This is then used in Prop. 1 to establish that every unsatisfiable set of SNF clauses has a resolution graph with
a vertex labeled with the empty clause in the main partition.


Lemma 1 (Optimized Resolution Graph in [Sch15] is Resolution Graph). An optimized resolution graph constructed
according to Def. 2, 3, 7 in [Sch15] during an execution of the TR algorithm is a resolution graph.


14







G(a)


{0, 2}


G((¬d) ∨ X¬a)


{1}


G((¬b) ∨ c ∨ Xd)


{0}


G((¬a) ∨ ¬c)


{0}


b


{0}


G((¬b) ∨ Xb)


G(¬d) {1}


G((¬b) ∨ c) {0}


G((¬a) ∨ ¬b) {0}


¬a {0} G((¬b) ∨ X¬a)


2 {0}


starting
clauses


ste
p-


nx


step-nx


step-nx


ste
p-


nx


step-nn


ste
p-


nn


init-in


ini
t-i


n


step-nx
step-nx


init-in


in
it-


in


Figure 2: Example of a resolution graph without BFS loop search obtained from an execution of the TR algorithm.


Proof. (Idea.) By induction on the sequence of vertices in which the optimized resolution graph is constructed in
Def. 2, 3, 7 in [Sch15] during an execution of the TR algorithm.


Proposition 1 (Unsatisfiable Set of SNF Clauses has Resolution Graph with Empty Clause in Main Partition). Let C
be an unsatisfiable set of SNF clauses. Then there exists a resolution graph G with set of vertices V, vertex labeling LV ,
and main partition MV such that MV contains a vertex v that is labeled with the empty clause 2: ∃v ∈ MV . LV (v) = 2.


Proof. This follows directly from the completeness of the TR algorithm, the construction of an optimized resolution
graph in Def. 2, 3, 7 in [Sch15] during an execution of the TR algorithm, and Lemma 1.


Running Example 2. In Fig. 2 we show an example of a resolution graph obtained from an execution of the TR
algorithm that did not require BFS loop search. This and the following example will later be continued in Sec. 4.1.2
to illustrate the extraction of a UC in SNF and in Sec. 6 to illustrate the computation of sets of time points for a UC
in SNF. The set of SNF clauses C to be solved contains b, G((¬b) ∨ c ∨ Xd), G((¬a) ∨ ¬c), G((¬d) ∨ X¬a), G(a),
and G((¬b) ∨ Xb). The first four clauses b, G((¬b) ∨ c ∨ Xd), G((¬a) ∨ ¬c), G((¬d) ∨ X¬a) force a to be false at
time point 0 or 2. This is contradicted by the fifth clause G(a). Clearly, C is unsatisfiable. Notice that the sixth clause
G((¬b) ∨ Xb) is not required for unsatisfiability; it is present in C to demonstrate later that SNF clauses not used in a
proof of unsatisfiability are removed by our method of UC extraction.


In the following description we identify vertices with the SNF clauses they are labeled with. SNF clauses are
connected with edges according to Def. 2, with corresponding labels on the edges. In Fig. 2 the TR algorithm proceeds
from bottom to top. In the first row from the bottom (in the light red shaded rectangle) are the starting clauses from
C. In the top row is only the empty clause 2, which signals unsatisfiability of C. All SNF clauses not in C are derived
from production rules listed under “saturation” in Tab. 2. For example, G(¬d) in row 2 is obtained using production
rule step-nx with G(a) in row 1 as premise 1 and G((¬d) ∨ X¬a) in row 1 as premise 2. In this example the main
partition is the only partition, containing all SNF clauses.


Running Example 3. In Fig. 3 we show a more complex example of a resolution graph obtained from an execution of
the TR algorithm that also includes BFS loop search. The set of SNF clauses C to be solved contains a, G((¬a) ∨ Xb),
G((¬b) ∨ Xa), G((¬a) ∨ ¬c), G((¬c) ∨ X¬a), and G(Fc). The first three clauses a, G((¬a) ∨ Xb), and G((¬b) ∨ Xa)
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Figure 3: Example of a resolution graph with BFS loop search obtained from an execution of the TR algorithm.


force a to be true at even time points. This is contradicted by the last three clauses G((¬a) ∨ ¬c), G((¬c) ∨ X¬a),
and G(Fc): they require that a eventually becomes false for two consecutive time points. Clearly, C is unsatisfiable.
This example is based on the same idea as (4) in Sec. 2. However, the SNF obtained by our translation from LTL into
SNF for (4) is larger than C, with the corresponding figure harder to fit on one page.


In the following description we proceed along the lines of the execution of the TR algorithm. “BFS-loop” is
abbreviated to “loop”, “init” to “i”, and “conclusion” to “conc”. In the first row from the bottom (in the light red
shaded rectangle) are the starting clauses from C. In the top right corner is the empty clause 2 signaling unsatisfiability
of C. The main partition contains the starting clauses from C and all SNF clauses not contained in either of the two
dark and light green shaded rectangles. Each of the two dark and light green shaded rectangles represents a BFS loop
search iteration partition.


Row 2 contains the SNF clauses that result from applying the rules listed under “saturation” and “augmentation”
in Tab. 2 to C. In accordance with Def. 2 clause G((¬wc) ∨ X(c ∨ wc)), which was obtained from clause G(Fc) by
applying production rule aug2 , has no incoming edge from its premise.


The dark green shaded rectangle is the partition for the first iteration of a BFS loop search for a loop in ¬c.
Row 3 contains the result of BFS loop search initialization with production rules BFS-loop-it-init-x , BFS-loop-it-init-n , and
BFS-loop-it-init-c . Clause G(Xc) was obtained by an application of production rule BFS-loop-it-init-c and, hence, has no
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incoming edges from its premises. Row 4 then shows the SNF clauses obtained by applying production rule step-xx to
the SNF clauses in this BFS loop search iteration partition. As none of the SNF clauses in row 4 subsumes 2 (notice
that G(Xc) can be thought of as G(X(false ∨ c))), this iteration terminates without having found a loop.


The second BFS loop search iteration partition is in the light green shaded rectangle. Again, row 5 contains the
result of BFS loop search initialization and row 6 the SNF clauses obtained by applying production rule step-xx . Now
there are two SNF clauses obtained from production rule BFS-loop-it-init-c : G(X((¬a) ∨ c)) and G(X((¬b) ∨ c)). This
time, there are global clauses G(¬a) and G(¬b) in row 6 subsuming G(X((¬a) ∨ c)) and G(X((¬b) ∨ c)) in row 5
according to production rule BFS-loop-it-sub ; hence, this BFS loop search iteration is successful.


In row 7 we are back in the main partition and show the conclusions obtained by applying production rules
BFS-loop-conclusion1 and BFS-loop-conclusion2 to the just completed, successful BFS loop search iteration. Notice that in


accordance with Def. 2 both clauses G((¬wc) ∨ X((¬b) ∨ c)) and G((¬wc) ∨ X((¬a) ∨ c)) obtained from production
rule BFS-loop-conclusion2 have no incoming edge from their premise 2, G(Fc). The last row finally contains the derivation
of 2.


As a final note we remark that, while it may seem that some SNF clauses are not considered for BFS loop search
initialization or during an application of the production rules listed under “saturation” in Tab. 2, this is due to either
subsumption of one SNF clause by another (e.g., G((¬wc) ∨ X(c ∨ wc)) by G(c ∨ wc)) or the fact that TRP++ uses
ordered resolution (e.g., a with G((¬a) ∨ ¬c); [HK03, BG01]). Both are issues of completeness of TR and, therefore,
not discussed in this paper.


4.1.2. Extracting a UC in SNF from a Resolution Graph
Proposition 1 above allows, after a standard definition of a UC in SNF in Def. 3, to state the definition of UC


extraction in SNF via TR in Def. 4. Theorem 1 then shows the correctness of UC extraction in SNF via TR.


Definition 3 (UC in SNF). Let C be an unsatisfiable set of SNF clauses. Let Cuc be an unsatisfiable subset of C. Then
Cuc is a UC of C in SNF.


Definition 4 (UC in SNF via TR). Let C be an unsatisfiable set of SNF clauses, let G be a resolution graph with v2
the (unique) vertex in the main partition MV of the resolution graph G labeled with the empty clause 2. Let G′ be
the smallest subgraph of G that contains v2 and all vertices in G (and the corresponding edges) that are backward
reachable from v2. The UC of C in SNF via TR, Cuc, is the subset of C such that there exists a vertex v in the subgraph
G′, labeled with c ∈ C, and contained in the main partition MV of G: Cuc = {c ∈ C | ∃v ∈ VG′ . LV (v) = c ∧ v ∈ MV }.


Theorem 1 (Unsatisfiability of UC in SNF via TR). Let C be an unsatisfiable set of SNF clauses, and let Cuc be a UC
of C in SNF via TR. Then Cuc is unsatisfiable.


Proof. (Sketch.) First, notice that in Def. 2 production rules aug2 , BFS-loop-it-init-c , and BFS-loop-conclusion2 have an
eventuality clause as a premise but do not include an edge from that premise to the conclusion in the resolution graph.
Hence, we need to show that despite the absence of corresponding edges in the resolution graph these premises are
still included in a UC in SNF via TR. This can be proved as in Lemmas 2–4 in [Sch15].


Next we have to show for each of the production rules in Def. 2 that the conclusion (i) constitutes a correct
inference ( init-ii , init-in , step-nn , step-nx , step-xx , BFS-loop-conclusion1 , BFS-loop-conclusion2 ), (ii) can be added to C without
removing any satisfying assignments ( aug1 , aug2 ), (iii) propagates information correctly from the main partition
to a BFS loop search iteration partition ( BFS-loop-it-init-x , BFS-loop-it-init-n , BFS-loop-it-init-c ), or (iv) correctly records a
subsumption relation ( BFS-loop-it-sub ). For production rules init-ii , init-in , step-nn , step-nx , and step-xx it is easy to
see that in each case the conclusion follows from the premises. For production rules aug1 and aug2 one can show
that adding the conclusions of these production rules to C preserves satisfiability of C [FDP01]. Production rules
BFS-loop-it-init-x and BFS-loop-it-init-n clearly propagate information correctly from the main partition to a BFS loop


search iteration partition. By construction production rule BFS-loop-it-init-c creates an SNF clause that contains the
eventuality literal of some eventuality clause in C, and production rule BFS-loop-it-sub links two vertices such that the
now part of the SNF clause labeling the source vertex implies the X part of the SNF clause labeling the target vertex.
It is left to show that the conclusions of production rules BFS-loop-conclusion1 and BFS-loop-conclusion2 indeed follow from
Cuc. This can be proved as in Lemma 5 in [Sch15].
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Figure 4: Example of extracting a UC in SNF from a resolution graph without BFS loop search.


Finally, remember that the main partition of the resolution graph contains a vertex v2 labeled with the empty
clause 2. By the above reasoning the empty clause 2 follows from the UC in SNF via TR, Cuc and, hence, Cuc is
unsatisfiable.


As Cuc is a subset of C, we have the following corollary.


Corollary 1 (UC in SNF via TR is UC in SNF). Let C be an unsatisfiable set of SNF clauses, and let Cuc be a UC of
C in SNF via TR. Then Cuc is a UC of C in SNF.


Lemma 1 allows to construct a resolution graph for an unsatisfiable set of SNF clauses as a byproduct of an
execution of the TR algorithm as in [Sch15]. As shown in [Sch15] this establishes a bound on the effort that is
induced by our method for UC extraction in addition to the effort required by an execution of the TR algorithm that is
linear in the effort required by an execution of the TR algorithm.


Proposition 2 (Added Complexity of UC Extraction). Let C be an unsatisfiable set of SNF clauses. Construction of
Cuc according to Def. 4 can be performed in time exponential in |AP| + log(|C|) in addition to the time required to run
the TR algorithm.


Running Example 2 (continuing from p. 15). In Fig. 4 we continue the running example from Sec. 4.1.1 and show
how to extract a UC in SNF from a resolution graph. That UC in SNF will later be enriched with sets of time points in
Sec. 6, as will be the UC in the following example. The SNF clauses that are backward reachable from 2 in the main
partition are shown in blue with blue, thick, dashed boxes. The corresponding edges are also blue, thick, and dashed.
The resulting UC comprises all SNF clauses in C except for G((¬b) ∨ Xb), which is not backward reachable from the
empty clause 2.


Running Example 3 (continuing from p. 15). In Fig. 5 we continue the more complex running example from
Sec. 4.1.1. SNF clauses and edges that are backward reachable from 2 are highlighted in the same way as in the
previous example. The resulting UC comprises all SNF clauses in C (note that this example shows the mechanism
rather than the benefits of extracting UCs).
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Figure 5: Example of extracting a UC in SNF from a resolution graph with BFS loop search.


4.2. Extracting a UC in LTL


A potential disadvantage of using TR for extracting UCs for LTL is the fact that TR does not work directly on
LTL but on the clausal normal form SNF. Translating an LTL formula into an equisatisfiable formula in SNF is
straightforward (see Sec. 3.4). However, for optimal support of a user who tries to track down the source of the
unsatisfiability of a formula it is likely to be helpful if the UC that is presented to her is “syntactically close” to the
formula that she provided as an input to the solver. Hence, it is necessary to map a UC obtained in SNF back to LTL.


In this subsection we restate our method from [Sch15] to map a UC in SNF back to a UC in LTL. The notion of
UC in LTL that we use is one where occurrences of subformulas in the input formula provided by the user are replaced
with true or false depending on polarity. The resulting UC in LTL is “syntactically close” to the input formula in
two respects: (i) Syntactic structure: Seen from the root node of the syntax tree of the input formula the higher level
syntactic structure of the syntax tree remains unchanged. (ii) Set of atomic propositions: While the translation from
LTL into SNF in Def. 1 introduces fresh atomic propositions, which may appear in the UC in SNF, these fresh atomic
propositions are not used in the UC in LTL. I.e., the UC in LTL only contains atomic propositions that are also present
in the input formula.


Definition 5 provides a straightforward definition of a UC in LTL. Definition 6 then describes the mapping from a
UC in SNF to a UC in LTL. An occurrence of a subformula ψ is not replaced with true or false in the UC in LTL if
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the UC in SNF contains an SNF clause c such that xψ occurs in c in a position that is marked blue boxed in Tab. 1.
The correctness of the construction is stated in Thm. 2. The main idea in the proof is to compare the SNF of φ and of
its UC in LTL by partitioning the SNF clauses into three sets: one that is shared by the two SNFs, one that replaces
some occurrences of propositions in SNF(φ) with true or false, and one whose SNF clauses are only in SNF(φ). Then
one can show that the UC of φ in SNF must be contained in the first partition. For a formal proof see [Sch15].


Definition 5 (UC in LTL). (cf. Def. 10 of [Sch12b]) Let φ be an unsatisfiable LTL formula. Let φuc (i) be obtained
from φ by replacing a set of positive polarity occurrences of subformulas of φ with true and a set of negative polarity
occurrences of subformulas of φ with false and (ii) be unsatisfiable. Then φuc is a UC of φ in LTL.


Definition 6 (UC in LTL from SNF). Let φ be an unsatisfiable LTL formula, let SNF(φ) be its SNF, and let Cuc be a UC
of SNF(φ) in SNF. Then the UC of φ in LTL from SNF, φuc, is obtained as follows. For each positive (resp. negative)
polarity occurrence of a proper subformula ψ of φ with proposition xψ according to Tab. 1, replace ψ in φ with true
(resp. false) iff Cuc contains no SNF clause with an occurrence of proposition xψ that is marked blue boxed in Tab. 1.
(We are sloppy in that we “replace” subformulas of replaced subformulas, while in effect they simply vanish.)


Theorem 2 (Unsatisfiability of UC in LTL from SNF). Let φ be an unsatisfiable LTL formula, and let φuc be a UC of
φ in LTL from SNF. Then φuc is unsatisfiable.


As a UC in LTL from SNF fulfills requirement (i) in Def. 5, we obtain the following corollary.


Corollary 2 (UC in LTL from SNF is UC in LTL). Let φ be an unsatisfiable LTL formula, and let φuc be a UC of φ in
LTL from SNF. Then φuc is a UC of φ in LTL.


Running Example 1 (continuing from p. 10). We now continue the running example from Sec. 3.4 and show how to
map a UC in SNF to a UC in LTL. The UC of (15) in SNF is shown in (20).


{(xφ),
(G(xφ → x(X¬p)∧G¬q)), (G(xφ → xpU(q∧r))),
(G(x(X¬p)∧G¬q → xX¬p)), (G(x(X¬p)∧G¬q → xG¬q)),
(G(xX¬p → Xx¬p)),
(G(x¬p → ¬p)),
(G(xG¬q → XxG¬q)), (G(xG¬q → x¬q)),
(G(x¬q → ¬q)),
(G(xpU(q∧r) → (xq∧r ∨ p))), (G(xpU(q∧r) → (xq∧r ∨ XxpU(q∧r)))),
(G(xq∧r → q))}


(20)


Two SNF clauses are removed from (15) in (20): (G(xpU(q∧r) → Fxq∧r)) and (G(xq∧r → r)). xq∧r and r occur in the
removed SNF clauses in positions that are marked blue boxed in Tab. 1. However, xq∧r also occurs in a position that
is marked blue boxed in Tab. 1 in clause (G(xpU(q∧r) → (xq∧r ∨ p))), which is part of the UC in SNF in (20). Hence,
according to Def. 6 r is the only occurrence of a subformula that can be removed in (14) to obtain a UC in LTL. The
occurrence of r has positive polarity in (14) and, therefore, this occurrence is replaced with true leading to the UC of
(14) in LTL shown in (21).6


φuc = ((X¬p) ∧G¬q) ∧ (pU(q ∧ true)) (21)


This example will be continued Sec. 6.3 to illustrate mapping a UC in SNF with sets of time points to a UC in LTL
with sets of time points.


6Note that there is an alternative UC of (14) that uses only the second and third conjunct: (true ∧G¬q)∧ (trueU(q ∧ true)). The TR algorithm
exhaustively applies the production rules listed under “saturation” in Tab. 2 and stops when the empty clause is derived before the first BFS loop
search is started, which prevents that alternative UC from being found. If BFS loop search were initiated at an arbitrary point during a possibly
incomplete round of saturation, then also that alternative UC could be found using our method.
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Table 3: Semantics of LTLp.


formula positive polarity negative polarity


(π, i) |= true ⇔ true true


(π, i) |= false ⇔ false false


(π, i) |= p ⇔ p ∈ π[i] p ∈ π[i]


(π, i) |= ¬
I
τ ⇔ (i < I) ∨ ((π, i) 6|= τ) (i ∈ I) ∧ ((π, i) 6|= τ)


(π, i) |= τ ∨
I,I′
τ′ ⇔ ((i < I) ∨ ((π, i) |= τ)) ∨ ((i < I′) ∨ ((π, i) |= τ′)) ((i ∈ I) ∧ ((π, i) |= τ)) ∨ ((i ∈ I′) ∧ ((π, i) |= τ′))


(π, i) |= τ ∧
I,I′
τ′ ⇔ ((i < I) ∨ ((π, i) |= τ)) ∧ ((i < I′) ∨ ((π, i) |= τ′)) ((i ∈ I) ∧ ((π, i) |= τ)) ∧ ((i ∈ I′) ∧ ((π, i) |= τ′))


(π, i) |= X
I
τ ⇔ (i + 1 < I) ∨ ((π, i + 1) |= τ) (i + 1 ∈ I) ∧ ((π, i + 1) |= τ)


(π, i) |= τ U
I,I′
τ′ ⇔ ∃i′ ≥ i . (((i′ < I′) ∨ ((π, i′) |= τ′)) ∧ ∃i′ ≥ i . (((i′ ∈ I′) ∧ ((π, i′) |= τ′)) ∧


(∀i ≤ i′′ < i′ . ((i′′ < I) ∨ ((π, i′′) |= τ)))) (∀i ≤ i′′ < i′ . ((i′′ ∈ I) ∧ ((π, i′′) |= τ))))


(π, i) |= τ R
I,I′
τ′ ⇔ ∀i′ ≥ i . (((i′ < I′) ∨ ((π, i′) |= τ′)) ∨ ∀i′ ≥ i . (((i′ ∈ I′) ∧ ((π, i′) |= τ′)) ∨


(∃i ≤ i′′ < i′ . ((i′′ < I) ∨ ((π, i′′) |= τ)))) (∃i ≤ i′′ < i′ . ((i′′ ∈ I) ∧ ((π, i′′) |= τ))))


(π, i) |= F
I
τ ⇔ ∃i′ ≥ i . ((i′ < I) ∨ ((π, i′) |= τ)) ∃i′ ≥ i . ((i′ ∈ I) ∧ ((π, i′) |= τ))


(π, i) |= G
I
τ ⇔ ∀i′ ≥ i . ((i′ < I) ∨ ((π, i′) |= τ)) ∀i′ ≥ i . ((i′ ∈ I) ∧ ((π, i′) |= τ))


5. LTL with Sets of Time Points (LTLp)


In this section we propose a notation that allows to integrate more detailed information from a resolution proof of
the unsatisfiability of some LTL formula φ into the UC φuc. The information we are interested in are the time points
at which a part of an LTL formula is needed to prove unsatisfiability. Hence, we assign to each subformula a set of
time points that indicates at which time points that subformula will be evaluated; at other time points the subformula
is considered to be true or false depending on polarity. Note that this can be seen as an extension of a notion of UC
in [Sch12b], where subformulas are replaced with true or false depending on polarity. We wish to emphasize that it
is not our goal to introduce a “new logic”, but merely to suggest a notation with well defined semantics that allows to
smoothly integrate such information. For examples of LTLp formulas see Sec. 2.


Definition 7 (LTLp Syntax). The set of LTLp formulas is constructed inductively as follows. The Boolean constants
false, true ∈ B and any atomic proposition p ∈ AP are LTLp formulas. If I, I′ ⊆ N are sets of time points and if τ,
τ′ are LTLp formulas, so are ¬


I
τ (not), τ ∨


I,I′
τ′ (or), τ ∧


I,I′
τ′ (and), X


I
τ (next time), τ U


I,I′
τ′ (until), τ R


I,I′
τ′ (releases), F


I
τ


(finally), and G
I
τ (globally). τ→


I,I′
τ′ (implies) abbreviates (¬


I
τ) ∨


I,I′
τ′.


We now recursively define the semantics of an LTLp formula at time points i ∈ N of a word π ∈ (2AP)ω. Note that
the semantics depends on the polarity of the occurrence of a subformula. The intuition for the semantics is that if a
time point i is not contained in a set I, then the corresponding operand at that time point cannot be used to establish
unsatisfiability.


Definition 8 (LTLp Semantics). Let π be a word in (2AP)ω, and let i be a time point in N. The semantics of LTLp is
given in Tab. 3. π satisfies a formula φ iff the formula holds at the beginning of π: π |= φ⇔ (π, 0) |= φ.


Our definition leaves the top level formula without a set of time points. This is justified, as the only useful value
there is {0}; it is required for satisfaction of an LTLp formula in Def. 8.


In Prop. 3–6 we state some properties of LTLp. The first three propositions link LTLp to methods for obtaining
UCs from sets of elements by removing elements from those sets (e.g., [BDTW93, CD91, GN03, Zha03, Sch12b]) as
follows. Proposition 3 allows to turn an LTL formula φ into an equivalent LTLp formula by simply addingN as set(s)
of time points to all operators of φ. Then Prop. 4 shows that removing elements from a set of time points syntactically
weakens an LTLp formula. Finally, Prop. 5 establishes that UCs in LTL that are obtained by replacing occurrences of
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subformulas with true or false depending on polarity [Sch12b] are limit cases of UCs in LTLp that are obtained by
removing elements from sets of time points. Below let LTLp2LTL denote the function that takes an LTLp formula θ
and returns an LTL formula φ by removing all sets of time points.


Proposition 3 (LTLp with all sets of time pointsN is LTL). Let θ be an LTLp formula such that all sets of time points
are N, and let φ ≡ LTLp2LTL(θ). Then θ and φ are equivalent.


Proof. By induction on θ. Base cases: Boolean constants and atomic propositions do not have sets of time points.
Inductive cases: Each test for non-inclusion (i.e., i < I) in Tab. 3 is a left operand of a disjunction that, with i < N being
false, evaluates to its right operand. The latter evaluates to the corresponding LTL operand by inductive assumption.
The case for inclusion is analogous.


We take Prop. 3 as justification to use LTL operators (i.e., operators without sets of time points) to abbreviate
LTLp operators with N as sets of time points.


Proposition 4 (Enlarging sets of time points strengthens positive and weakens negative polarity subformulas). Let θ
be an LTLp formula, let χ be such a modification of θ such that LTLp2LTL(θ) = LTLp2LTL(χ) and all sets of time
points in χ are (possibly non-strict) supersets of those in θ. Then χ →


N,N
θ is valid.


Proof. We show by induction on θ that for each subformula τ in θ with corresponding subformula σ in χ of positive
(resp. negative) polarity σ →


N,N
τ (resp. τ →


N,N
σ). Base cases: Boolean constants and atomic propositions do not have


sets of time points. Inductive cases: For any LTLp operator except ¬ the operands τ′ (, τ′′) with associated sets
of time points I′ (, I′′) have the same polarity as τ. The result follows by inductive assumption and increasing
(resp. decreasing) monotonicity of Def. 8 in the operands and decreasing monotonicity in the sets of time points. For
¬ it is sufficient to note that it is monotonically decreasing (resp. increasing) in its operand, monotonically decreasing
in its set of time points, and τ has opposite polarity of ¬


I′
τ′.


Proposition 5 (An LTLp operator with sets of time points ∅ is equivalent to true/false). Let θ be an LTLp formula
with a positive (resp. negative) polarity subformula τ that is neither a Boolean constant nor an atomic proposition
and with the sets of time points of the top level operator of τ being ∅. Then θ and θ such that τ is replaced with true
(resp. false) are equivalent.


Proof. Directly from Def. 8: if τ has positive polarity, then the tests for non-inclusion (such as i < I) in Tab. 3 are left
operands of disjunctions and evaluate to true; the case for negative polarity is analogous.


In Prop. 7 in Sec. 6 we show that the sets of time points that we obtain for UCs with our method are semilinear.
Remember that LTL cannot count and, in particular, LTL cannot express the property that some atomic proposition p
is true at every even time point (but leaving it open what should happen at odd time points) (see, e.g., [Wol83]). It is
easy to see that the LTLp formula G


2·N
p expresses precisely that property. Hence, LTLp with semilinear sets of time


points is strictly more expressive than LTL. In Prop. 6 below we establish an upper bound on the expressiveness of
LTLp with semilinear sets of time points. We show that an LTLp formula with semilinear sets of time points can be
expressed in EQLTL.


Proposition 6. LTLp with sets of time points restricted to semilinear sets is no more expressive than EQLTL.


Proof. Let θ be an LTLp formula with sets of time points I1, . . . , In. Each set of time points I j in θ can be written as⋃
1≤ j′≤n j


p j, j′ · N + o j, j′ for some n j ∈ N, p j,1 . . . , p j,n j , o j,1, . . . , o j,n j ∈ N. For m ∈ N let Xmψ abbreviate X . . .X︸  ︷︷  ︸
m


ψ.


Construct a EQLTL formula θ′′ as follows:


1. For each set of time points I j introduce n j + 1 fresh Boolean propositions q j, q j,1, . . . , q j,n j .


2. Let ◦1 ∈ {¬,X,F,G} and ◦2 ∈ {∨,∧,U,R}. Construct θ′ from θ by replacing each


(a) positive polarity occurrence of ◦1
I j


τ in θ with ◦1(q j → τ),
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(b) negative polarity occurrence of ◦1
I j


τ in θ with ◦1(q j ∧ τ),


(c) positive polarity occurrence of τ ◦2
I j,I j′


τ′ in θ with (q j → τ) ◦2 (q j′ → τ′), and


(d) negative polarity occurrence of τ ◦2
I j,I j′


τ′ in θ with (q j ∧ τ) ◦2 (q j′ ∧ τ
′).


3. Define θ′′ as


∃q1,1 . · · · ∃q1,n1 . ∃q1 .
...


∃qn,1 . · · · ∃qn,nn . ∃qn . (
(
∧


0≤ j<o1,1
X j¬q1,1) ∧ (Xo1,1 (q1,1 ∧G(q1,1 → ((


∧
1≤ j<p1,1


X j¬q1,1) ∧ (Xp1,1 q1,1))))) ∧
· · ·


(
∧


0≤ j<o1,n1
X j¬q1,n1 ) ∧ (Xo1,n1 (q1,n1 ∧G(q1,n1 → ((


∧
1≤ j<p1,n1


X j¬q1,n1 ) ∧ (Xp1,n1 q1,n1 ))))) ∧
(G(q1 ↔


∨
1≤ j≤n1


q1, j)) ∧
...


(
∧


0≤ j<on,1
X j¬qn,1) ∧ (Xon,1 (qn,1 ∧G(qn,1 → ((


∧
1≤ j<pn,1


X j¬qn,1) ∧ (Xpn,1 qn,1))))) ∧
· · ·


(
∧


0≤ j<on,nn
X j¬qn,nn ) ∧ (Xon,nn (qn,nn ∧G(qn,nn → ((


∧
1≤ j<pn,nn


X j¬qn,nn ) ∧ (Xpn,nn qn,nn ))))) ∧
(G(qn ↔


∨
1≤ j≤nn


qn, j)) ∧
θ′)


It’s not hard to see that the resulting EQLTL formula θ′′ has the same set of satisfying assignments as θ. This concludes
the proof.


6. UC Extraction with Sets of Time Points


In this section we show how to enhance a UC in SNF and in LTL with the sets of time points at which its clauses
or subformulas are used in its TR proof of unsatisfiability. This is the main contribution of this paper. We start by
providing an intuition using one of our running examples in Sec. 6.1 before the formal exposition in Sec. 6.2 and 6.3.


6.1. Intuition


Running Example 2 (continuing from p. 18). We now continue the running example from Sec. 4.1.2 in Fig. 6 to
provide some intuition on how the information is obtained at which time points the SNF clauses that occur in a TR
proof of unsatisfiability are relevant.


Consider the empty clause 2 in the top row of Fig. 6, which signals unsatisfiability of the set of starting clauses C.
It is obtained by an application of production rule init-in . Hence, in this case 2 is an initial clause. This fact implies
that the contradiction in the TR proof, which the resolution graph in Fig. 6 corresponds to, happens at time point 0.
Therefore, 2 is relevant in the TR proof at time point 0. This is indicated by labeling 2 in Fig. 6 with {0} shown in a
black box. Starting at 2 we trace that information back through the resolution graph to obtain the sets of time points
at which the other SNF clauses that participate in the proof of unsatisfiability are relevant. Notice that below we can
restrict ourselves to the part of the resolution graph that is backward reachable from 2.


Production rule init-in that 2 was obtained from takes an initial clause and a global clause with empty X part
as premises and resolves them to obtain the conclusion, which is also an initial clause. Production rule init-in can
be interpreted as performing propositional resolution between its premises (the global clause being stripped of its G
operator) at a single time point, namely, time point 0. Therefore, each of its premises is relevant in the TR proof at
time point 0. This is indicated in Fig. 6 by labeling G(a) in row 1 and ¬a in row 5 with sets of time point that contain
0 (the fact that the set of time points labeling G(a) also contains 2 will be explained later).
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Figure 6: Example of computing sets of time points for a UC in SNF without BFS loop search.


As ¬a in row 5 is also obtained from an instance of production rule init-in , its premises G((¬a) ∨ ¬b) in row 4 and
b in row 1 are relevant in the TR proof at time point 0, indicated by the corresponding labels with {0} in Fig. 6.


G((¬a) ∨ ¬b) in row 4 is produced by applying production rule step-nn to G((¬b) ∨ c) in row 3 and G((¬a) ∨ ¬c)
in row 1. Production rule step-nn takes two global clauses with empty X part and produces a global clause with empty
X part. It can be interpreted as performing propositional resolution between its premises (stripped of their G operators)
at all time points in N. Now assume that we know that the conclusion is relevant in the TR proof at some set of time
points I ⊆ N. Then we can infer that also both premises are relevant in the TR proof at least at the time points in I.
Hence, the sets of time points labeling the two premises must contain I. In Fig. 6 the two premises G((¬b) ∨ c) in row
3 and G((¬a) ∨ ¬c) in row 1 are therefore labeled with {0}.


The next case is slightly more complicated. G((¬b) ∨ c) is obtained from an instance of production rule step-nx


with premises G(¬d) in row 2 and G((¬b) ∨ c ∨ Xd) in row 1. Notice that the occurrence of ¬d in the now part of
G(¬d) is resolved with the occurrence of d in the X part of G((¬b) ∨ c ∨ Xd). In general, production rule step-nx takes
a global clause with empty X part as premise 1 and a global clause with non-empty X part as premise 2 and resolves
the now part of premise 1 with the X part of premise 2. Hence, this can be interpreted as first “time-shifting” premise 1
one step into the future and then performing propositional resolution between the modified premises at all time points
in N. If we know that the conclusion is relevant in the TR proof at some set of time points I ⊆ N, then also premise
2 is relevant in the TR proof at least at the time points in I. For premise 1 we have to take the time-shift into account.
Therefore, premise 1 is relevant in the TR proof at least at the time points in I shifted one step into the future, i.e., at
the time points in 1 + I. This leads to labels 1 + {0} = {1} for G(¬d) in row 2 and {0} for G((¬b) ∨ c ∨ Xd) in row 1 in
Fig. 6. The fact that the edge between premise 1 and the conclusion of production rule step-nx involves a time-shift is
shown in Fig. 6 by marking this edge red, dotted.


Finally, G(¬d) in row 2 is obtained from another instance of production rule step-nx in a similar fashion as in
the previous case from G(a) and G((¬d) ∨ X¬a) in row 1. Premise G((¬d) ∨ X¬a) in row 1 is not the time-shifted
premise and, therefore, labeled with the same set of time points as the conclusion, namely, {1}. Premise G(a) in row 1
is time-shifted in this production. Hence, because G(¬d) in row 2 is relevant in the TR proof at time points {1} in the
TR proof, we know that G(a) in row 1 is relevant in the TR proof at least at time points 1 + {1} = {2}. However, we
know from before that G(a) in row 1 is also relevant in the TR proof at least at time points {0}. Therefore, we form
the union of both sets of time points and obtain {0} ∪ {2} = {0, 2} as the set of time points at which G(a) in row 1 is
relevant in the TR proof.
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Now we have obtained for each clause in Cuc a set of time points at which it is relevant in the TR proof. In remains
to use this information to produce a UC in SNF with sets of time points. This is done by a straightforward definition
of what it means to label an SNF clause with sets of time points in Def. 10 and a corresponding definition of a UC in
SNF with sets of time points in Def. 11.


In the description above we pushed the information on when clauses are relevant in the TR proof backwards from
the empty clause 2 towards the starting clauses C step by step until a fixed point was reached. This worked because
the resolution graph in Fig. 6 is acyclic. However, as evidenced in the more complex running example in Fig. 5,
resolution graphs may indeed be cyclic. Therefore, we need to extend our approach to actually compute sets of time
points to handle cycles in resolution graphs.


Assume there is a path π from some starting clause c ∈ C to 2 in the resolution graph such that π traverses i edges
that involve a time-shift. The set of time points I labeling 2 is “pushed back“ to c backwards on π such that each edge
that involves a time-shift adds 1 to the current set of time points. I.e., c receives via π the set of time points i+ {0} = {i}.
To obtain the set of all time points at which c is relevant in the TR proof one has to take all paths from c to 2 into
account. Hence, c is relevant at time point i in the TR proof iff there exists a path from c to 2 that traverses i edges
that involve a time-shift. For example, in Fig. 6 G(a) in row 1 has two paths to 2, one of which traverses 0, the other
one 2 edges that involve a time-shift. This matches the set of time points {0, 2} that is assigned to G(a) in row 1.


Now we are left with the problem to obtain the set of all numbers of edges that involve a time-shift on some path
from c to 2. Fortunately, it turns out that this is a well known problem in formal languages. If the resolution graph is
seen as a transition-labeled nondeterministic finite automaton (NFA) over the alphabet 0 (no time-shift; blue, dashed
edges in Fig. 6) and 1 (time-shift; red, dotted edges in Fig. 6) with initial state c and final state 2, then the desired
information for c is just the Parikh image [Par66] of the letter 1 in the regular language accepted by that NFA.7 In
Fig. 6 the NFA with initial state G(a) in row 1 and final state 2 accepts the language {0, 11000}, whose Parikh image
of the letter 1 is just {0, 2} as required.


The approach is formalized in Def. 9 and Prop. 7. This example will be finished after formal definitions and proofs
of correctness at the end of Sec. 6.2 when we illustrate the extraction of a UC in SNF with sets of time points.


6.2. UCs in SNF with Sets of Time Points


Let C be an unsatisfiable set of SNF clauses, let G be a resolution graph with a vertex v2 in the main partition
that is LV -labeled with 2, and let G′ be the subgraph according to Def. 4 with corresponding UC in SNF Cuc. In
Def. 9 we start by labeling edges of G′ with 1 if the source vertex is time-shifted one step into the future with respect
to the target vertex and all other edges with 0. This requires to extend the intuition that we provided in Sec. 6.1
for the production rules listed under “saturation” in Tab. 2 to the full set of production rules. In particular, to see
where a time-shift occurs, we need to identify pairs of premises and conclusions such that elements from the now
part of a premise interact with elements from the X part of another premise and/or are propagated to the X part
of the conclusion. The case of production rule step-nx was discussed in Sec. 6.1. Another, straightforward case is
production rule BFS-loop-it-init-n : the now part of the premise becomes the X part of the conclusion. For production rule
BFS-loop-it-sub the entire now part of the premise is propagated to the X part of the conclusion. Similarly, for production


rule BFS-loop-conclusion2 the now part of premise 1 is propagated to the X part of the conclusion. Notice that there also
occurs a time-shift between premise 1 and the conclusion of production rule BFS-loop-it-init-c . However, because the
resolution graph does not contain an edge between instances of this premise and conclusion, this case can be ignored.
All other pairs of premises and conclusions do not involve a time-shift. In the second part of Def. 9 we obtain a set of
time points for each vertex in G′ by assigning time point 0 to v2 (i.e., the contradiction is assumed to happen at time
point 0); any other vertex v is assigned the set of the sums of the time-shifts that occur on any path from v to v2 in G′.


Definition 9 (Labeling Edges with Time-Shifts and Vertices with Sets of Time Points). LE′ is a labeling of the set
of edges in G′, E′, with time-shifts in {0, 1}. LE′ maps an edge e to 1 if e is an edge (i) from a vertex labeled with
premise 1 to a vertex labeled with the conclusion obtained from production rule step-nx , (ii) from a vertex labeled
with the premise to a vertex labeled with the conclusion obtained from production rule BFS-loop-it-init-n , (iii) from a


7For technical reasons we will later reverse the edges in the resolution graph and switch the role of initial and final state.
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Figure 7: Example of computing sets of time points for a UC in SNF with BFS loop search.


vertex labeled with the premise to a vertex labeled with the conclusion obtained from production rule BFS-loop-it-sub ,
or (iv) from a vertex labeled with premise 1 to a vertex labeled with the conclusion obtained from production rule
BFS-loop-conclusion2 . All other edges are mapped to 0.


Let the edges of G′ be LE′ -labeled. L′V ′ is another labeling of the set of vertices in G′, V ′, with sets of time points
in 2N as follows. v2 is L′V ′ -labeled with {0}. Any other vertex v is L′V ′ -labeled with a set of time points I that contains
a time point i iff there exists a path π in G′ from v to v2 such that the sum of the LE′ -labels of π is i.


Notice that v2 can be LV -labeled with either () (an initial clause) or (G()) (a global clause). In the first case it’s
clear that the contradiction happens at time point 0. In the second case we could assume the contradiction to happen
at any non-empty subset I of N. In that case we could report to the user that some clause c = LV (vc) is used in the
TR proof of unsatisfiability at time points I + L′V ′ (vc) rather than at time points L′V ′ (vc). As this does not seem to add
much information for the user (the fact that the empty clause derived at the end of the proof is a global clause can be
easily seen from a log of the proof), we decided to assume the contradiction to happen at time point 0 in both cases.


Running Example 3 (continuing from p. 18). We now continue the more complex running example from Sec. 4.1.2
in Fig. 7. This example will be finished later in this section when we illustrate the extraction of a UC in SNF with
sets of time points. Edges in the subgraph backward reachable from 2 that involve a time-shift between source
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and target vertex according to Def. 9 are marked red, dotted. Backward reachable edges that involve no such time-
shift are marked blue, dashed. In the backward reachable subgraph there are four edges that involve a time-shift
between source and target vertex. Two of those originate from instances of production rule BFS-loop-it-init-n : from
G((¬a) ∨ ¬c) in row 1 to G(X((¬a) ∨ ¬c)) in row 5 and from G((¬b) ∨ ¬c) in row 2 to G(X((¬b) ∨ ¬c)) in row 5.
Two others come from instances of production rule BFS-loop-it-sub : from G(¬b) to G(X((¬b) ∨ c)) and from G(¬a)
to G(X((¬a) ∨ c)), both from row 6 to row 5. Furthermore, there are two edges from instances of production rule
BFS-loop-conclusion2 that would be labeled with a time-shift of 1, if they were backward reachable from 2: from G(¬b)


(row 6) to G((¬wc) ∨ X((¬b) ∨ c)) (row 7) and from G(¬a) (row 6) to G((¬wc) ∨ X((¬a) ∨ c)) (row 7). Figure 7
contains no edges induced by an instance of production rule step-nx . Notice how in each case the literals that are taken
from the source vertex and put into the target vertex are in the X part of the target vertex while they are not in the
X part of the source vertex; this is not the case for pairs of source and target vertex connected by an edge that is (or
would be) labeled with time-shift 0.


Each SNF clause c in the backward reachable subgraph is labeled with a set of time points (shown in a black box)
obtained by counting the number of red, dotted edges that are traversed on any — possibly looping — path from c to
2 according to Def. 9. For example, a in row 1 can only reach 2 directly via a blue, dashed edge, leading to set of
time points {0} (which is the only one making sense for an initial clause; see Lemma 2). Similarly, G(¬a) (row 8),
G((¬a) ∨ c) (row 7), and G(Fc) (row 1) can only reach 2 via sequences of blue, dashed edges, so they are also labeled
with {0}. Only one of the SNF clauses comprising the second BFS loop search iteration (rows 5 and 6 in the light green
shaded rectangle) can reach 2 without passing through any other SNF clause in rows 5 or 6, namely G(¬a) (row 6) via
a sequence of blue, dashed edges. I.e., its set of time points must contain {0}. However, G(¬a) is also part of the loop
G(¬a)—G(X((¬a) ∨ c))—G(X¬a)—G(¬b)—G(X((¬b) ∨ c))—G(X¬b)—G(¬a) that involves a time-shift between
G(¬a) and G(X((¬a) ∨ c)) as well as between G(¬b) and G(X((¬b) ∨ c)). Hence, for each even i there exists a path
such that G(¬a) can reach 2 on that path and that path contains i edges involving time-shifts. Consequently, G(¬a) is
labeled with 2 ·N. The same holds for all vertices in rows 5 and 6 that are either on the loop between G(X((¬b) ∨ c))
and G(¬a) or backward reachable from those via blue, dashed edges: G(X((¬b) ∨ c)), G(X¬b), G(X((¬b) ∨ ¬c)), and
G((¬a) ∨ Xb). Analogously all vertices in rows 5 and 6 that are on the loop between G(X((¬a) ∨ c)) and G(¬b) or
backward reachable from those via blue, dashed edges are labeled with 2 ·N + 1: G(X((¬a) ∨ c)), G(X¬a), G(¬b),
G(X((¬a) ∨ ¬c)), and G((¬b) ∨ Xa). Finally, consider G((¬a) ∨ ¬c) in row 1. It reaches 2 via G(¬a) traversing no
red, dotted edge, giving {0}. However, there is also the set of paths through the partition of the second BFS loop search
iteration, which uses 2 · N + 2 red, dotted edges. Taking both contributions together we obtain 2 · N for this SNF
clause.


From now on we assume in this section that the edges and vertices of G′ are labeled according to Def. 9. The
following two lemmas are needed to prove correctness of UC extraction in SNF with sets of time points in Thm. 3.
They can easily be proved from Def. 9. Proposition 7 establishes that the sets of time points obtained in Def. 9 are
semilinear (as suggested for tableaux in [Sch12b]). The construction in its proof will later be a fundamental step to
actually compute the sets of time points.


Lemma 2 (Sets of Time Points for Vertices Labeled with Initial Clauses are {0}). Every vertex v in G′ that is LV -
labeled with an initial clause is L′V ′ -labeled with {0}.


Proof. By Tab. 2 the only production rules that have initial clauses as premises are the initial resolution rules init-ii


and init-in . Both rules have (as the only ones) an initial clause as conclusion. We denote with v2 the unique vertex in
the main partition LV -labeled with the empty clause 2. Hence, either G′ contains no vertex LV -labeled with an initial
clause, in which case the claim is vacuously true. Otherwise, the empty clause that LV -labels v2 is an initial clause
and v2 and all vertices LV -labeled with initial clauses are connected via edges LE′ -labeled with 0. The claim now
follows with Def. 9 by induction on the distance of a vertex LV -labeled with an initial clause from v2.


Lemma 3 (Labeling of Target Vertex is (Possibly Time-Shifted) Subset of Labeling of Source Vertex). For each pair
of vertices v, v′ in G′ such that there is an edge from v to v′ in G′, the labeling L′V ′ (v


′) is a — possibly time-shifted —
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subset of the labeling L′V ′ (v):


L′V ′ (v
′) ⊆



(L′V ′ (v) − 1) ∩N if v and v′ are labeled with premise 1 and the conclusion of produc-


tion rule step-nx or BFS-loop-conclusion2 or with the premise and the
conclusion of production rule BFS-loop-it-init-n or BFS-loop-it-sub ; or


L′V ′ (v) otherwise.


Proof. Directly by Def. 9.


Proposition 7 (Sets of Time Points are Semilinear Sets). For each vertex v in G′ the labeling L′V ′ (v) is a semilinear
set.


Proof. For each vertex v turn the graph G′ into a transition-labeled NFA on finite words over {0, 1} as follows: (i) The
set of states is the set of vertices of the graph G′, V ′. (ii) The set of transitions is the set of reversed edges of the graph
G′. (iii) The labeling of the transitions is given by the LE′ -labeling of the corresponding edges. (iv) The (only) initial
state is v2. (v) The (only) final state is v. Now it’s clear from Def. 9 that the L′V ′ -labeling of the vertex v is the
Parikh image of the letter 1 of the regular language given by the automaton. The claim follows from Parikh’s theorem
[Par66].


We now define UCs in SNF with sets of time points. To simplify notation we first define what it means to assign
a set of time points to an SNF clause (Def. 10). The definition of a UC in SNF with sets of time points is then
immediate in Def. 11. Theorem 3 establishes correctness of the construction. In Prop. 8 we state an upper bound on
the complexity of extracting a UC in SNF with sets of time points.


Definition 10 (SNF Clauses with Sets of Time Points). Let I be a set of time points. Let c be an SNF clause. Then c
with set of time points I, c


I
, is the following LT Lp formula:8


c
I


=





((¬
I
)p1 ∨


I,I
. . . ∨


I,I
(¬


I
)pn)


if c = ((¬)p1 ∨ . . . ∨ (¬)pn) is an initial clause; or


(G
I


((¬
I
)p1 ∨


I,I
. . . ∨


I,I
(¬


I
)pn ∨


I,I
X
I+1


(( ¬
I+1


)q1 ∨
I+1,I+1


. . . ∨
I+1,I+1


( ¬
I+1


)qn′ )))


if c = (G((¬)p1 ∨ . . . ∨ (¬)pn ∨ X((¬)q1 ∨ . . . ∨ (¬)qn′ ))) is a global clause; or


(G
I


((¬
I
)p1 ∨


I,I
. . . ∨


I,I
(¬


I
)pn ∨


I,I
F


[min(I),∞)
( ¬


[min(I),∞)
)l))


if c = (G((¬)p1 ∨ . . . ∨ (¬)pn ∨ F(¬)l)) is an eventuality clause.


Definition 11 (UC in SNF with Sets of Time Points). Let c1,1, . . . , c1,n1 be the initial clauses in Cuc, c2,1, . . ., c2,n2


the global clauses in Cuc, and c3,1, . . ., c3,n3 the eventuality clauses in Cuc. Let vm,m′ be the unique vertex in the main
partition M of G′ LV -labeled with clause cm,m′ . Let Im,m′ be the set of time points that vertex vm,m′ is L′V ′ -labeled with
in G′. The UC of C in SNF with sets of time points, θuc, is given by


c1,1
I1,1


∧
{0},{0}


. . . ∧
{0},{0}


c1,n1
I1,n1


∧
{0},{0}


c2,1
I2,1


∧
{0},{0}


. . . ∧
{0},{0}


c2,n2
I2,n2


∧
{0},{0}


c3,1
I3,1


∧
{0},{0}


. . . ∧
{0},{0}


c3,n3
I3,n3


.


Theorem 3 (Unsatisfiability of UC in SNF with Sets of Time Points). Let θuc be the UC of C in SNF with sets of time
points. Then θuc is unsatisfiable.


8In this definition (¬) indicates a negation that may or may not be present.
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Proof. In this proof we assume that the clauses in the LV -labeling of G′ are assigned the sets of time points in the
L′V ′ -labeling of G′ according to Def. 10. I.e., for any vertex v in the subgraph G′, if c = LV (v) and I = L′V ′ (v), then we
identify c and c


I
.


For each production rule of TR we take two steps. First, we show, given some sets of time points labeling the
premises of a production rule, what set of time points could correctly label the conclusion. Second, we show that our
construction ensures that the set of time points actually labeling a clause is a subset of the set according to the previous
step. We proceed as follows. We first show that inferences based on initial and step resolution rules init-ii , init-in ,
step-nn , step-nx , and step-xx also hold when taking sets of time points into account. We continue with augmentation
aug1 and aug2 . Then we show that production rules BFS-loop-it-init-x , BFS-loop-it-init-n , BFS-loop-it-init-c , and BFS-loop-it-sub


required as part of BFS loop search also apply with sets of time points. Based on that we show what a BFS loop search
with sets of time points actually proves, and we finally use that result to establish validity of the remaining BFS loop
search conclusions BFS-loop-conclusion1 and BFS-loop-conclusion2 .


For initial and step resolution notice, that these inference rules can be seen as essentially conjunctions of proposi-
tional inferences at a single (initial resolution) or all (step resolution) time points. For example, step resolution step-nn


between (G(p1 ∨ . . . ∨ pn)) and (G(q1 ∨ . . . ∨ qn′ )) can be seen as propositional resolution between (p1 ∨ . . . ∨ pn) and
(q1 ∨ . . . ∨ qn′ ) applied at all time points i ∈ N. Hence, for production rules init-ii and init-in , as long as time point
0 is contained in the sets of time points of the premises, the conclusion can be inferred at time point 0. Similarly, for
production rules step-nn and step-xx , if I is the set of time points of premise 1 and I′ is the set of time points of premise
2, then the conclusion holds at time points I ∩ I′. Taking time-shift into account, for production rule step-nx , if I is the
set of time points of premise 1 and I′ is the set of time points of premise 2, then the conclusion holds at time points
((I − 1) ∩N) ∩ I′. Using Lemmas 2 and 3, we can conclude that all instances of initial and step resolution in G′ are
correct inferences also when taking sets of time points into account.


For production rules aug1 and aug2 assume that some word π in (2AP)ω satisfies θuc. Let
(G


I
(p1 ∨


I,I
. . . ∨


I,I
pn ∨


I,I
F


[min(I),∞)
l)) be an eventuality clause in θuc, and let wl be a fresh atomic proposition. Let π′


be a word in (2AP∪{wl})ω where π′ restricted to AP is identical to π and wl is true in π′ in the smallest set of
time points such that (i) if for some time point i ∈ I both p1 ∨ . . . ∨ pn and l are false in π′, then wl is true
in π′ at that time point: ∀i ∈ N . ((i ∈ I) ∧ (∀1 ≤ j ≤ n . p j < π


′[i]) ∧ (l < π′[i])) → (wl ∈ π′[i]), and (ii) if for
some time point i ∈ N wl is true in π′, then wl is true in π′ either indefinitely or until l becomes true in π′:
∀i ∈ N . (wl ∈ π′[i]) → ((l ∈ π′[i + 1]) ∨ (wl ∈ π′[i + 1])). Clearly, π′ satisfies θuc. Moreover, π′ also satisfies the re-
sult of augmentation (G


I
(p1 ∨


I,I
. . . ∨


I,I
pn ∨


I,I
l ∨


I,I
wl)) and (G


N
((¬
N


wl) ∨
N,N


( X
N


(l ∨
N,N


wl)))). Using Lemma 3 for production


rule aug1 and the fact that every set of time points is a subset ofN for production rule aug2 , we can conclude that all
instances of augmentation are correct also when taking sets of time points into account.


The role of production rules BFS-loop-it-init-x and BFS-loop-it-init-n is the propagation of information from the main
partition to the loop partition. By Lemma 3 it is clear that information is propagated correctly also with sets of time
points. The conclusions of production rule BFS-loop-it-init-c are disjunctions of the literal l a loop is searched for and
parts of a hypothetical fixed point (see also the proof of Lemma 5 in [Sch15]). A successful BFS loop search iteration
proves a hypothetical fixed point to be an actual fixed point. As can be seen below when we show what a successful
BFS loop search iteration actually proves, it does not matter where the hypothetical fixed point comes from. Neither
is it required that the literal l a loop is searched for is derived from an actual eventuality clause. Hence, no information
needs to be propagated correctly by production rule BFS-loop-it-init-c for the result of a successful BFS loop search
iteration to be correct, and therefore there is nothing more to prove w.r.t. production rule BFS-loop-it-init-c when taking
sets of time points into account. Production rule BFS-loop-it-sub continues to record a correct relation between two
clauses by a similar argument as for the rules used in saturation.


Now we show what a successful BFS loop search iteration actually proves in the presence of sets of time points.
Let L be the partition of a successful BFS loop search iteration restricted to the subgraph G′, let C′ be the set of global
clauses with empty X part labeling a vertex in L, and let c = (G(p1 ∨ . . . ∨ pn)) ∈ C′. Let vc be the corresponding
vertex in G′ and let I be the L′V ′ -labeling of vc. We trace c, starting at a single time point i ∈ I, backward through L.
We inductively define the following sets of clauses:


1. Let V ′i be the singleton set containing vc: V ′i = {vc}. Let C′i be the singleton set containing c with set of time
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points {i} assigned: C′i = { c
{i}
} = {( G


{i}
(p1 ∨


{i},{i}
. . . ∨
{i},{i}


pn))}.


2. For all i ≤ i′ we define C′′i′ as follows. Let V ′′i′ be the set of vertices in partition L that are backward reachable
from some vertex in V ′i′ via edges generated by saturation restricted to production rule step-xx and that are LV -
labeled with a clause generated by production rule BFS-loop-it-init-c . Then C′′i′ is the set of all clauses LV -labeling
some vertex in V ′′i′ with set of time points {i′} assigned: C′′i′ = { c′′


{i′}
| ∃v′′ ∈ V ′′i′ . c′′ = LV (v′′)}.


3. For all i < i′ we define C′i′ as follows. Let V ′i′ be the set of vertices in partition L that are backward reachable
from vertices in V ′′i′−1 via edges generated by production rule BFS-loop-it-sub . Then C′i′ is the set of all clauses
LV -labeling some vertex in V ′i′ with set of time points {i′} assigned: C′i′ = { c′


{i′}
| ∃v′ ∈ V ′i′ . c′ = LV (v′)}.


Intuitively, for a given i′, C′′i′ represents the set of clauses that are required (in addition to the clauses produced by
production rules BFS-loop-it-init-x and BFS-loop-it-init-n ) to prove the clauses in C′i′ at time point i′ by saturation restricted to
production rule step-xx . In turn, C′i′+1 is needed to establish C′′i′ by subsumption BFS-loop-it-sub . Note that, disregarding
sets of time points, C′′i′ is bounded from above by the set of clauses in partition L that are generated by production rule
BFS-loop-it-init-c and C′i′ is bounded from above by C′. Hence, disregarding sets of time points, the sequences C′′i′ and


C′i′ eventually will become cyclic.
Using the definition of C′′i′ and C′i′ in 1.–3. above as well as the correctness of production rule step-xx in the


presence of sets of time points as argued above, we can infer that, assuming the clauses produced by production rules
BFS-loop-it-init-x and BFS-loop-it-init-n , it is provable that the conjunction of the clauses in C′′i′ at any time point i′ ≥ i


implies the conjunction of the clauses in C′i′ at that time point. I.e., assuming the clauses produced by production rules
BFS-loop-it-init-x and BFS-loop-it-init-n , it is provable that


∀i ≤ i′ . (
∧


c′′∈C′′i′
c′′)→ (


∧
c′∈C′i′


c′). (22)


Again using the definition of C′′i′ and C′i′ in 1.–3. above as well as the correctness of production rule BFS-loop-it-sub


in the presence of sets of time points sets as argued above, we can infer that the conjunction of the clauses in C′i′ at
any time point i′ > i implies the conjunction of the clauses in C′′i′−1 at time point i′ − 1. I.e.,


∀i < i′ . (
∧


c′∈C′i′
c′)→ (


∧
c′′∈C′′i′−1


c′′). (23)


Notice that for all time points i′ ≥ i any element of the set C′′i′ is of the form


( G
{i′}


X
{i′+1}


(q1 ∨
{i′+1},{i′+1}


. . . ∨
{i′+1},{i′+1}


qn ∨
{i′+1},{i′+1}


l)).


I.e., we have
∀i ≤ i′ . ∀c′′ ∈ C′′i′ . (X G


{i′+1}
l)→ c′′. (24)


Finally, remember that c = (G(p1 ∨ . . . ∨ pn)) is a clause contained in C′ of a successful BFS loop search iteration
and that I is the L′V ′ -labeling of the corresponding vertex vc with i ∈ I. Taking (22) – (24) with some rewriting we
obtain (25) to tell us what a successful BFS loop search with sets of time points actually proves:


( G
{i}


((p1 ∨
{i},{i}


. . . ∨
{i},{i}


pn) ∨
{i},{i}


( X
{i+1}


G
[i+1,∞)


¬
[i+1,∞)


l))). (25)


For production rule BFS-loop-conclusion1 consider an eventuality clause (G
I


(q1 ∨
I,I
. . . ∨


I,I
qn′ ∨


I,I
F


[min(I),∞)
l)) and a clause


(G
I′


((p1 ∨
I′,I′


. . . ∨
I′,I′


pn) ∨
I′,I′


( X
I′+1


G
[min(I′)+1,∞)


¬
[min(I′)+1,∞)


l))) obtained from a successful BFS loop search iteration for l.


Let i ∈ I ∩ I′. Now it’s easy to see that if neither q1 ∨ . . . ∨ qn′ nor p1 ∨ . . . ∨ pn hold at time point i, then l must hold.
Hence, we have


( G
I∩I′


((q1 ∨
I∩I′,I∩I′


. . . ∨
I∩I′,I∩I′


qn′ ) ∨
I∩I′,I∩I′


(p1 ∨
I∩I′,I∩I′


. . . ∨
I∩I′,I∩I′


pn) ∨
I∩I′,I∩I′


l)).
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By Lemma 3 the set of time points L′V ′ -labeling the target vertex is a subset of the sets of time points L′V ′ -labeling the
source vertices. As I ∩ I′ is the largest set that is a subset of both I and I′, production rule BFS-loop-conclusion1 remains
correct with sets of time points.


For production rule BFS-loop-conclusion2 consider an eventuality clause (G
I


(q1 ∨
I,I
. . . ∨


I,I
qn′ ∨


I,I
F


[min(I),∞)
l)), the results of


augmentation for the eventuality clause (G
I


(q1 ∨
I,I
. . . ∨


I,I
qn′ ∨


I,I
l ∨


I,I
wl)) and (G


N
((¬
N


wl) ∨
N,N


( X
N


(l ∨
N,N


wl)))), and a clause


(G
I′


((p1 ∨
I′,I′


. . . ∨
I′,I′


pn) ∨
I′,I′


( X
I′+1


G
[min(I′)+1,∞)


¬
[min(I′)+1,∞)


l))) obtained from a successful BFS loop search iteration for l.


Assume a word π′ in (2AP∪{wl})ω that satisfies θuc, (G
I


(q1 ∨
I,I
. . . ∨


I,I
qn′ ∨


I,I
l ∨


I,I
wl)), (G


N
((¬
N


wl) ∨
N,N


( X
N


(l ∨
N,N


wl)))), and


(G
I′


((p1 ∨
I′,I′


. . . ∨
I′,I′


pn) ∨
I′,I′


( X
I′+1


G
[min(I′)+1,∞)


¬
[min(I′)+1,∞)


l))), and whose valuation of wl is as in the case for augmentation


above. We show that π′ also satisfies c ≡ ( G
I′−1


(( ¬
I′−1


wl) ∨
I′−1,I′−1


(X
I′


(p1 ∨
I′,I′


. . . ∨
I′,I′


pn ∨
I′,I′


l)))). Notice that, given our


valuation of wl in π′, if wl is true in π′ at some time point i, then l becomes true in π′ at some later time point
i′ > i. First consider the case that for each time point i ∈ N i is not in I′ − 1, or wl is false in π′ at time point i,
or p1 ∨


I′,I′
. . . ∨


I′,I′
pn is true in π′ at time point i + 1, or l is true in π′ at time point i + 1. In that case π′ also satisfies


c. Now consider the remaining case in which there exists a time point i ∈ N such that i ∈ I′ − 1, wl ∈ π′[i],
∀0 < j ≤ n . p j < π


′[i + 1], and l < π′[i + 1]. However, this is impossible. On the one hand, wl being true in π′ at time
point i implies that l becomes true in π′ for some i′ > i. On the other hand, ∀0 < j ≤ n . p j < π


′[i + 1], l < π′[i + 1],
and (G


I′
((p1 ∨


I′,I′
. . . ∨


I′,I′
pn) ∨


I′,I′
( X


I′+1
G


[min(I′)+1,∞)
¬


[min(I′)+1,∞)
l))) imply that l cannot become true in π′ after i. Hence, π′


also satisfies c. Using Lemma 3, we can conclude that all instances of production rule BFS-loop-conclusion2 are correct
also when taking sets of time points into account.


We have just shown that all productions in G′ remain correct in the presence of time points. Moreover, by con-
struction of G′ a contradiction is obtained at time point 0 from θuc. Hence, θuc is unsatisfiable.


Proposition 8 (Complexity of UC Extraction with Sets of Time Points). Let θuc be the UC of C in SNF with sets of
time points. Construction of θuc from G′ can be performed in time O(|V ′|3), where |V ′| is exponential in |AP|+log(|C|).9


Proof. We assume that for each vertex in the graph there is a list of incoming and outgoing edges. Sets are represented
as arrays of bits of predetermined, fixed size with 1 bit for each potential set element. With n potential set elements
that incurs cost O(1) for element addition, removal, and membership test as well as O(n) for set creation and reset to
∅. A list of length n incurs cost O(1) for creation, element addition, and emptiness check as well as O(n) for iterating
over all of its elements. The vertex v2 in the main partition is stored in a designated variable; the vertices LV -labeled
with clauses in Cuc in the main partition are stored in a list. Sets of time points are represented as lists of linear sets,
which, in turn, are stored as pairs of naturals.


We proceed as follows. (i) As preparation we reverse all edges in the subgraph G′. (ii) We turn the subgraph
G′ into a unary NFA10 by treating all edges11 LE′ -labeled with 0 as ε-transitions and applying a standard method for
elimination of ε-transitions in NFA [HU79]. That leaves us with an NFA with only 1-LE′ -labeled transitions, i.e., a
unary NFA. (iii) We initialize the sets of time points. (iv) We use an algorithm by Gawrychowski [Gaw11] extended
to handle all final vertices in parallel to compute Parikh images.


Preparation. Reversing all edges in the subgraph G′ can be performed in time O(|V ′| + |E′|).


Turning G′ into a Unary NFA. (i) Designate v2 as the initial vertex: O(1). (ii) For each vertex compute the set of
vertices reachable from that vertex via a sequence of 0-LE′ -labeled edges. This can be done, e.g., by using DFS
from each vertex: O(|V ′| · (|V ′| + |E′|)). (iii) For each vertex compute the set of vertices reachable from that vertex
via a 1-LE′ -labeled edge followed by a sequence of 0-LE′ -labeled edges: O(|V ′|2 + |V ′| · |E′|). (iv) For each vertex
compute the set and list of vertices reachable from that vertex via a sequence of 0-LE′ -labeled edges, followed by a
1-LE′ -labeled edge, and followed by a sequence of 0-LE′ -labeled edges: O(|V ′|3). (v) Replace the set of edges E′ with


9Note that when using the translation from LTL into SNF in Def. 1 both |AP| and |C| are linear in the size of the input LTL formula.
10A unary NFA is an NFA over a unary alphabet.
11We use the terms “vertex” and “state” as well as “edge” and “transition” interchangeably.


31







the edges such that there is one 1-LE′ -labeled edge for each pair of vertices v, v′ where v′ is reachable from v via a
sequence of edges as in the previous step. Call the new set of edges E′′: O(|V ′| + |E′| + |E′′|). The overall cost for
turning G′ into a unary NFA is, therefore, O(|V ′|3 + |V ′| · (|V ′| + |E′|) + |E′′|).


Initializing Sets of Time Points. Initialize all sets of time points with ∅ and then add 0 to those of clauses in Cuc that
are labeling vertices in the main partition reachable via a sequence of 0-LE′ -edges from v2. The required information
is available from the conversion to a unary NFA. This can be done in time O(|Cuc|).


Computing Parikh Images. Extending Gawrychowski’s algorithm [Gaw11] to handle multiple final vertices in parallel
is straightforward. Essentially, when the original algorithm checks whether a single final vertex has been reached, the
extended version carries out that check for each final vertex. Due to space constraints we refer to Appendix A for
details of the algorithm and the analysis of its complexity. It turns out that the overall time to compute Parikh images is
O(|V ′|3 + |Cuc| · |V ′|2 + |V ′| · |E′′|) (the original algorithm in [Gaw11] also runs in time cubic in the number of vertices).


Summing Up. The time taken for all steps is bounded by O(|V ′|3 + |Cuc| · |V ′|2 + |V ′| · (|V ′| + |E′|) + |V ′| · |E′′|) =


O(|V ′|3). For a proof of the fact that |V ′| is exponential in |AP| + log(|C|) see Lemma 1 in [Sch15]. This concludes the
proof.


Running Example 2 (continuing from p. 23). We now apply Def. 11 to the running example in Fig. 6 and obtain (26)
as a UC in SNF with sets of time points. Notice that (G((¬b) ∨ Xb)) is not contained in (26) and that all sets of time
points are subsets of {0, 1, 2}. This concludes this running example.


b ∧
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X
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¬
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a)) ∧
{0},{0}


( G
{0,2}


a) (26)


Running Example 3 (continuing from p. 26). We also finish the more complex running example in Fig. 7 by applying
Def. 11 and obtaining (27) as a UC in SNF with sets of time points. Notice, that all occurrences of a occur at even
time points and how both occurrences of b interact at odd time points. Moreover, the last SNF clause shows that only
a single occurrence of c is required for unsatisfiability. Finally, the fourth SNF clause has ¬c at even time points,
while the fifth SNF clause becomes relevant at odd time points; thus all potential occurrences of c are covered.


a ∧
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c)) (27)


6.3. UCs in LTL with Sets of Time Points
Definition 12 adds sets of time points to a UC in LTL by transferring them from a UC in SNF with sets of time


points to a UC in LTL. The mapping of a UC in SNF with sets of time points to a UC in LTL with sets of time points
is a direct extension of the corresponding mapping without sets of time points in Def. 6. Remember that in Def. 6 an
occurrence of a subformula ψ is not replaced with true or false in the UC in LTL if the UC in SNF contains an SNF
clause c such that xψ occurs in c in a position that is marked blue boxed in Tab. 1. To obtain the set of time points at
which subformula ψ is relevant we simply take the union of the sets of time points that are labeling the occurrences of
xψ that are marked blue boxed in Tab. 1 in the SNF clauses of the UC in SNF. The proof idea for Thm. 4 is similar to
that of Thm. 2 (see [Sch15]), but in addition we need to define a translation from the corresponding fragment of LTLp
into SNF with sets of time points, which must be shown to be satisfiability-preserving.


Definition 12 (Mapping a UC in SNF with Sets of Time Points to a UC in LTL with Sets of Time Points). Let φ be
an unsatisfiable LTL formula, let SNF(φ) be its SNF, let φuc be the UC of φ in LTL, and let θuc be the UC of SNF(φ)
in SNF with sets of time points. Construct the UC of φ in LTL with sets of time points, θ′uc, by assigning a set of
time points I to each occurrence of a subformula ψ in φuc as follows. Let I′, I′′, . . . be the sets of time points of the
occurrences of the proposition xψ in θuc that are marked blue boxed in Tab. 1. Then assign the occurrence of ψ in φuc


the set of time points I that is the union of I′, I′′, . . ..


Theorem 4 (Unsatisfiability of UC in LTL with Sets of Time Points). Let φ be an unsatisfiable LTL formula, and let
θ′uc be the UC of φ in LTL with sets of time points. Then θ′uc is unsatisfiable.
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Table 4: Satisfiability-preserving translation from a UC in LTL with sets of time points into SNF used in the proof of Thm. 4.


Subformula Proposition SNF Clauses (positive polarity occurrences) SNF Clauses (negative polarity occurrences)


true/false/p true/false/p none none
¬
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ψ x¬ψ (G


I
(x¬ψ→


I,I
¬
I
xψ)) (G


I
((¬


I
x¬ψ)→


I,I
xψ))


ψ ∨
I,I′
ψ′ xψ∨ψ′ (G


I
(xψ∨ψ′→


I,I
(xψ ∨


I,I
xψ′ ))) (G


I
((¬


I
xψ∨ψ′ )→


I,I
¬
I
xψ)), (G


I′
((¬


I′
xψ∨ψ′ ) →


I′ ,I′
¬
I′


xψ′ ))


ψ ∧
I,I′
ψ′ xψ∧ψ′ (G


I
(xψ∧ψ′→


I,I
xψ)), (G


I′
(xψ∧ψ′ →


I′ ,I′
xψ′ )) (G


I
((¬


I
xψ∧ψ′ )→


I,I
((¬


I
xψ) ∨


I,I
¬
I
xψ′ )))


X
I
ψ xXψ ( G


I−1
(xXψ →


I−1,I−1
X
I


xψ)) ( G
I−1


(( ¬
I−1


xXψ) →
I−1,I−1


X
I
¬
I
xψ))


ψ U
I,I′
ψ′ xψUψ′ (G


I
(xψUψ′→


I,I
(xψ′ ∨


I,I
xψ))), (G


I′
((¬


I′
xψUψ′ ) →


I′ ,I′
¬
I′


xψ′ )),


(G
I′


(xψUψ′ →
I′ ,I′


(xψ′ ∨
I′ ,I′


X
I′+1


xψUψ′ ))), (G
I


((¬
I
xψUψ′ )→


I,I
((¬


I
xψ) ∨


I,I
X
I+1
¬


I+1
xψUψ′ )))


(G
I′


(xψUψ′ →
I′ ,I′


F
[min(I′),∞)


xψ′ ))


ψ R
I,I′
ψ′ xψRψ′ (G


I′
(xψRψ′ →


I′ ,I′
xψ′ )), (G


I
((¬


I
xψRψ′ )→


I,I
((¬


I
xψ′ ) ∨


I,I
¬
I
xψ))),


(G
I


(xψRψ′→
I,I


(xψ ∨
I,I


X
I+1


xψRψ′ ))) (G
I′


((¬
I′


xψRψ′ ) →
I′ ,I′


((¬
I′


xψ′ ) ∨
I′ ,I′


X
I′+1


¬
I′+1


xψRψ′ ))),


(G
I′


((¬
I′


xψRψ′ ) →
I′ ,I′


F
[min(I′),∞)


¬
[min(I′),∞)


xψ′ ))


F
I
ψ xFψ (G


I
(xFψ→


I,I
F


[min(I),∞)
xψ)) (G


N
((¬
N


xFψ) →
N,N


X
N+1


¬
N+1


xFψ)), (G
I


((¬
I
xFψ)→


I,I
¬
I
xψ))


G
I
ψ xGψ (G


N
(xGψ →


N,N
X
N+1


xGψ)), (G
I


(xGψ→
I,I


xψ)) (G
I


((¬
I
xGψ)→


I,I
F


[min(I),∞)
¬


[min(I),∞)
xψ))


Proof. Let SNF(φ) be the SNF of φ, let Cuc be the UC of SNF(φ) in SNF, and let θuc be the UC of SNF(φ) in SNF
with sets of time points.


Translate the UC in LTL with set of time points, θ′uc, into a set of SNF clauses with sets of time points θ′ as in
Def. 1 but using Tab. 4 instead of Tab. 1. Besides generating clauses (where Tab. 4 is identical to Tab. 1) Tab. 4 also
shows how to transfer sets of time points from occurrences of LTL subformulas to SNF clauses. Note that, by the
construction of θ′uc from θuc, in θ′uc we have that (i) for positive polarity occurrences of ∨-subformulas as well as for
negative polarity occurrences of ∧-subformulas I = I′, (ii) for occurrences of X-subformulas I does not contain 0, and
(iii) for positive polarity occurrences of U-subformulas and for negative polarity occurrences of R-subformulas I ⊆ I′.
In most cases the translation in Tab. 4 is an exact reversal of Def. 12. Exceptions are positive polarity occurrences
of U-subformulas, negative polarity occurrences of R-subformulas, negative polarity occurrences of F-subformulas,
and positive polarity occurrences of G-subformulas. In each of those cases at least one set of time points in θ′ may be
larger than that of the corresponding clause in θuc.


As in the proof of Thm. 2 (see [Sch15]) θ′ contains a superset of the clauses of θuc, if sets of time points are
disregarded. Moreover, by construction, the sets of time points in θ′ are supersets of the sets of time points in θuc.
With the unsatisfiability of θuc and Prop. 4 we have that θ′ is unsatisfiable. Hence, provided the translation from θ′uc


into θ′ is satisfiability preserving, θ′uc is unsatisfiable.
It is now left to show that the translation from θ′uc into θ′ preserves satisfiability. Assume a satisfying assignment


π for θ′uc. Extend π to a satisfying assignment π′ for θ′ as follows: For each occurrence of a subformula τ in θ′uc that
is not a Boolean constant or an atomic proposition introduce a fresh proposition xτ and assign it the truth values of τ in
θ′uc on the satisfying assignment π. It is easy to see that (π′, 0) fulfills xθuc . The fact that π′ is a satisfying assignment
for the remaining clauses of θ′ is easy to verify given the above translation and the semantics of LTLp. This concludes
the proof.


It is easy to see that no subformula in (1) or (4) can be replaced with true (for positive polarity occurrences) or
false (for negative polarity occurrences) without making (1) or (4) satisfiable. I.e., (1) or (4) are the only UCs of
themselves according to Def. 10 in [Sch12b] (and, hence, according to Def. 6). The corresponding UCs in LTL with
sets of time points in (3) and (5) show that UCs with sets of time points can be more fine-grained than UCs without.
Running Example 1 (continuing from p. 20). As an example for Def. 12 we now continue the running example from
Sec. 4.2. The unsatisfiability of (14) can be established by taking only time points 0 and 1 into account. Computing
a UC in SNF with sets of time points from (20) results in (28) shown below. Notice that all sets of time points are
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subsets of {0, 1}.
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With Def. 12 we translate the UC in SNF (28) back to the UC in LTL (29). All sets of time points in (28) that are used
to assign sets of time points in (29) are marked blue boxed . Most sets of time points in (29) are directly obtained
from a set of time points in (28). The right hand operand of the U-subformula, q ∧ r, is assigned the union of the sets
of time points labeling xq∧r in ( G
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7. Experimental Evaluation


Our implementation, examples, and log files are available from http://www.schuppan.de/viktor/


theoreticalcomputerscience16/.


7.1. Implementation


We use the version of TRP++ extended with extraction of UCs from [Sch15] as the basis for our implementation.
For data structures we used C++ Standard Library containers (e.g., [SL95, Jos12]), for graph operations the Boost
Graph Library [boo, SLL02].


In the preliminary version of this work [Sch13] we used sharing of same polarity occurrences of a subformula
in the translation from LTL into SNF (this improves performance and, therefore, is the default setting). To avoid
an influence on the sets of time points obtained we disabled sharing of same polarity occurrences of a subformula
in the translation from LTL into SNF in this paper. The data available from http://www.schuppan.de/viktor/


theoreticalcomputerscience16/ include results with both sharing disabled and sharing enabled.


7.2. Algorithms for Extracting Sets of Time Points


We implemented extraction of sets of time points along the lines of the proofs of Prop. 7, 8. To make an NFA
ε-free we use a standard algorithm that performs DFS from each state to find the sets of states that are reachable
via a sequence of ε-edges, inserts 1-edges between pairs of vertices v, v′ such that v can reach v′ by reading ε∗1ε∗,
and removes ε-edges (e.g., [HU79]). To compute Parikh images for unary NFAs we implemented an algorithm by
Gawrychowski [Gaw11] and one by Sawa [Saw13]. Both assume a single set of final states leading to a single Parikh
image. We, however, have one final state for each SNF clause in the UC in SNF, each of which we need to assign
a separate Parikh image. We adapted Gawrychowski’s algorithm to our setting by computing the Parikh images for
different final states in a single run of the algorithm. Similarly, we optimized Sawa’s algorithm by computing parts
that are common for different final states only once and by heuristically accelerating some of its steps.
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Table 5: Overview of benchmark families. All instances are unsatisfiable.
category family source # solved |largest solved|


UC w/o s.o.t.p. UC w/ s.o.t.p. (Gawrychowski) UC w/ s.o.t.p. (Sawa)
alaska lift [Har05, WDMR08] 69 69 69 4605


application anzu genbuf [BGJ+07] 15 15 15 1924
forobots [BDF09] 25 25 25 635
schuppan O1formula [SD11] 27 27 27 4006


crafted schuppan O2formula [SD11] 8 8 6 91
schuppan phltl [SD11] 4 4 4 125
rozier formulas [RV10] 61 61 61 155random
trp [HS02] 397 397 392 1421


7.3. Benchmarks
Our examples, all of which are unsatisfiable, are based on [SD11]. In categories crafted and random and in


family forobots we considered all unsatisfiable instances from [SD11]. The version of alaska lift used here contains
a small bug fix: in [WDMR08, SD11] the subformula Xu was erroneously written as literal Xu. Combining 2 variants
of alaska lift with 3 different scenarios we obtain 6 subfamilies of alaska lift. For anzu genbuf we invented 3
scenarios to obtain 3 subfamilies. For all benchmark families that consist of a sequence of instances of increasing
difficulty we stopped after two instances that could not be solved due to time or memory out. Some instances were
simplified to false during the translation from LTL into SNF; these instances were discarded. In Tab. 5 we give an
overview of the benchmark families. Columns 1–3 give the category, name, and the source of the family. Columns
4–6 list the numbers of instances that were solved by our implementation with UC extraction without sets of time
points, with UC extraction with sets of time points using Gawrychowski’s algorithm, and with UC extraction with sets
of time points using Sawa’s algorithm. Column 7 indicates the size (number of nodes in the syntax tree) of the largest
instance solved with UC extraction without sets of time points.


7.4. Aims of Experiments
With our experiments we aim to answer the following questions. The first two questions are related to the benefits


of UCs with sets of time points, while the latter two questions cover the costs. (i) Which sets of time points are
obtained in the UCs of which benchmark families, and how often are these sets of time points obtained? (ii) Do the
sets of time points obtained reveal interesting information? For this question we will only provide a qualitative rather
than a quantitative answer. (iii) How much run time and memory overhead does the extraction of UCs with sets of
time points incur compared to the extraction of UCs without sets of time points? (iv) How does extraction of UCs
with sets of time points using Gawrychowski’s algorithm compare to using Sawa’s algorithm in terms of run time and
memory usage?


7.5. Setup
The experiments were performed on a laptop with Intel Core i7 M 620 processor at 2 GHz running Ubuntu 14.04.


Run time and memory usage were measured with run [BJ]. The time and memory limits were 600 seconds and 6 GB.


7.6. Results
In the following we answer questions (i)–(iv) in sequence.
In Tab. 6 we show how often which sets of time points were obtained in the UCs of which benchmark families. The


first column lists the sets of time points that occurred in any of the UCs that we obtained on our examples. Columns
2–9 then show for each benchmark family the number of occurrences of the sets of time points in the UCs from this
benchmark family.12 On the one hand, many sets of time points are relatively simple such as {0}, {1}, N, or N + 1.
On the other hand, many other sets of time points are obtained, including ones indicating cyclic behavior with periods
greater than 1 as well asN shifted by offsets of up to 10. Finally, notice that also a frequent set of time points such as
{0} can provide interesting information if it occurs, e.g., below a G operator.


12Notice that while the exact numbers that we obtained in our experiments are stated in the table, they should be taken as an indication only.
For example, in parts of the output of our implementation a single n-ary conjunction or disjunction is used with n sets of time points (one for
each conjunct or disjunct). Alternatively, such a conjunction or disjunction could be written as a sequence of n − 1 nested binary conjunctions or
disjunctions with 2 · (n − 1) sets of time points, leading to an almost twofold difference in the number of sets of time points.
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Table 6: Number of occurrences of sets of time points in UCs of benchmark families. No entry stands for 0.
application crafted random
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{0} 1655 245 832 54 72 84 322 49774
{0, 1} 158 3 11
{0, 1, 2} 3
{0, 2} 1
{1} 767 4 51 81 221 14219
{1, 2} 69 21
{1, 2, 3} 6
{1, 2, 3, 4} 1
{1, 2, 4} 9
{1, 3} 4
{2} 167 41
{2, 3} 7
{2, 3, 4} 1
{3} 11
{4} 2
N 651 99 746 44 20 504 21434
N + 1 427 121 1085 396 29 275 16572
N + 2 104 423 23 65 1148
N + 3 106 86 30 21 5
N + 4 42 85 31 13
N + 5 30 92 21 8
N + 6 12 12
N + 7 13
N + 8 5
N + 9 5
N + 10 5
4 ·N 20
4 ·N + 1 72
{4 ·N + 1, 4 ·N + 2, 4 ·N + 3} 20
4 ·N + 2 24
{4 ·N + 2, 4 ·N + 3} 24
{4 ·N + 2, 4 ·N + 3, 4 ·N + 4} 4
4 ·N + 3 20
{4 ·N + 3, 4 ·N + 4} 4
4 ·N + 4 36
4 ·N + 5 20
5 ·N 368
5 ·N + 1 506
5 ·N + 2 506
5 ·N + 3 506
5 ·N + 4 506
5 ·N + 5 138
12 ·N 536
12 ·N + 1 737
12 ·N + 2 737
12 ·N + 3 737
12 ·N + 4 737
12 ·N + 5 737
12 ·N + 6 737
12 ·N + 7 737
12 ·N + 8 737
12 ·N + 9 737
12 ·N + 10 737
12 ·N + 11 737
12 ·N + 12 201


Sets of time points often help to understand why a UC is unsatisfiable. For some subfamilies of the anzu genbuf
and trp families sets of time points show that some subformulas are required only every 4th, 5th, or 12th time
point. For subfamilies of the anzu genbuf family sets of time points highlight that disjuncts of an invariant hold
at different time points of a cyclic interaction between subformulas. In some subfamilies of the alaska lift and the
schuppan phltl families occurrences of G


{0}
Fψ indicate that a single occurrence of ψ is sufficient for unsatisfiability


rather than infinitely many occurrences. In families alaska lift, forobots, and rozier formulas there are instances
in which — despite the presence of several temporal operators, including G, in the UC— all sets of time points of
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(a) run time [sec] (b) memory [MB] (c) run time [sec] (d) memory [MB]


Figure 8: Overhead of UC extraction with sets of time points: (a) and (b) show run time and memory for UC extraction with sets of time points
using Gawrychowski’s algorithm (y-axis) versus UC extraction without sets of time points (x-axis). (c) and (d) compare run time and memory for
Sawa’s algorithm (y-axis) and Gawrychowski’s algorithm (x-axis) for UC extraction with sets of time points. The off-center diagonal in (a) and (b)
shows where y = 2x.


the UC are a subset of a small finite set such as {0, 1, 2, 3} or even {0}. For the schuppan phltl family (a temporal
version of the pigeon hole problem (e.g., [BHvMW09]); n pigeon holes are turned into a single pigeon hole over n
time points) sets of time points indicate how the conditions of mutual exclusivity for the hole are invoked one after the
other. Finally, on some instances of the rozier formulas family sets of time points help to identify which occurrences
of a proposition interact to obtain unsatisfiability. For some of the above cases an example can be found in Sec. 2.


In Fig. 8 (a) and (b) we show the overhead that is incurred by extracting UCs with sets of time points compared to
extracting UCs without sets of time points. Our data show that extraction of UCs with sets of time points is possible
with quite acceptable overhead in run time and memory usage. In particular, out of the 701 instances we considered
with UC extraction without sets of time points, a UC was obtained for 606 instances, 24 instances timed out, and 71
instances were not tried because easier instances of the same benchmark family had already timed out. With sets of
time points enabled the same 606 instances were solved using Gawrychowski’s algorithm and 7 less using Sawa’s
algorithm. For 75 % of all instances solved the run time and memory overhead is at most 10 % for UC extraction with
sets of time points using Gawrychowski’s algorithm over UC extraction without sets of time points. An analysis by
category (for plots see Appendix C) shows that the corresponding maximum run time (resp., memory) overhead for
instances of the application category is at most 50 % (resp., 111 %).


Gawrychowski’s algorithm [Gaw11] has better worst case complexity than Sawa’s algorithm [Saw13]. We also
found it easier to understand and implement. Figure 8 (c) and (d) compare using Gawrychowski’s and Sawa’s algo-
rithm for computing sets of time points. On our benchmarks Gawrychowski’s algorithm tends to perform better than
Sawa’s algorithm, especially when the NFAs become larger.


All in all our experiments show that in many cases with a moderate overhead in run time and memory usage one
can obtain sets of time points that provide interesting additional information for a UC.


8. Discussion


8.1. On the Notion of UCs with Sets of Time Points
Below we discuss some aspects related to our notion of UCs with sets of time points. Note that this paper is


a first step in enhancing UCs for LTL with sets of time points. We therefore restrict ourselves to a notion of UCs
for LTL with sets of time points that computes a single, non-minimal UC with sets of time points based on a single
proof of unsatisfiability. Such notion can be expected to be required as an input to efficient solutions for some of the
potential shortcomings mentioned below. As it turns out, it can also be computed with little overhead from a proof of
unsatisfiability, which is assumed to be carried out anyway. Overcoming potential shortcomings is left as future work.
Note also that the aspects below are mostly not specific to the enhancement of UCs for LTL sets of time points; rather,
they apply to many notions of UC.


A notion of explanation of unsatisfiability for LTL formulas cannot disregard syntax completely. By definition every
unsatisfiable LTL formula has the same, empty set of satisfying assignments. Therefore, any notion of explanation
of unsatisfiability for LTL formulas that were solely based on the semantics of the unsatisfiable formula as a whole
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would be the same for all unsatisfiable LTL formulas. Hence, while this doesn’t rule out that semantical aspects are
taken into account when coming up with a notion of explanation of unsatisfiability for LTL formulas, the syntax of an
unsatisfiable LTL formula will have some role to play in a non-trivial notion of explanation of unsatisfiability for LTL
formulas. For a brief account of attempting an approach that is “blind to syntax” and then discovering the importance
of syntax for explanations in description logics see [Hor11], p. 153.


There are properties tied to the syntax of an unsatisfiable LTL formula that are worth pointing out. Consider, for
example, a formula of the form φ ≡ ψ ∧ ψ. Even if a perfect explanation were provided why ψ is unsatisfiable, it
would likely be worth pointing out to the user that with respect to the unsatisfiability of φ one of the two copies of ψ is
redundant. Note that in a realistically sized real world specification such redundancy might not be so obvious. In fact,
in formal verification vacuity is concerned with pointing out redundancies in specifications (e.g., [BBDER01, KV03,
AFF+03, GC04, FKSFV08, Kup06]), and vacuity is closely related to UCs for LTL [Sch12b, Sch15].


An explanation of an unsatisfiable LTL formula should be linked to the input as provided by the user. As stated in
Sec. 4.2 an explanation of an unsatisfiable LTL formula should be provided in a form that allows the user to make the
connection between the explanation and the input formula she provided. It is therefore frequent practice to map back
a UC obtained in some lower level formalism to the input or something close to the input that the user provided (e.g.,
[SSJ+03, Sch12b, Kal06]). Similarly, when proofs are used as explanations, it is recommended by some not to use
proof calculi for proof presentation that transform the input provided by the user too much; an example for this are
resolution calculi relying on a transformation into a clausal normal form (e.g., [Bun99, GG13]).


The UCs with sets of time points obtained with our implementation are sensitive to syntax. As discussed above it
is probably inevitable that syntax plays a role in determining a UC of an unsatisfiable LTL formula φ. We now
show an instance of sensitivity to syntax in our implementation: applying something apparently innocuous such as
commutativity of conjunction in φ may lead to a different UC with different sets of time points. The TR algorithm
stops as soon as the empty clause has been derived in the main partition. Hence, the order in which SNF clauses are
considered has an influence on which proof will be obtained. Because the syntax of φ determines that order, the UC
obtained depends on the syntax of φ. Using the “right” options our implementation produces (31) as a UC for (30)
and (33) as a UC for (32). A potential remedy is producing more than one UC. As syntax will have to play some role,
normalization of the input formula is likely to be only a partial remedy.13


(G(p ∧ q) ∧ (¬p)) ∧ X¬q (30)
( G
{1}


q) ∧
{0},{0}


X
{1}
¬
{1}


q (31)


(G(p ∧ q) ∧ (X¬q)) ∧ ¬p (32)
( G
{0}


p) ∧
{0},{0}


¬
{0}


p (33)


We restrict ourselves to non-minimal UCs in this paper. The fact that some part of an LTL formula φ is used at
some time point in a proof of unsatisfiability of φ does not mean that that part of φ at that time point is necessary to
prove unsatisfiability of φ. To obtain a minimal UC one can often use deletion-based extraction of minimal UCs (e.g.,
[CD91, BDTW93, Zha03, MS12, Sch15]). The method repeatedly attempts to remove parts of a UC. The modified
UC is tested for satisfiability. If it is unsatisfiable, then the removal is made permanent; if not, it is undone. While this
is simple to implement, the additional satisfiability tests may be costly. Hence, often a two step process is employed
where first a potentially non-minimal UC is obtained using some cheap means (such as extraction from a proof of
unsatisfiability), which is then minimized with deletion-based extraction of UCs (see, e.g., [CD91, BDTW93, Zha03,
MS12, Sch15]). More advanced solutions exist for computing minimally unsatisfiable sets of clauses in Boolean
satisfiability (see [KBK09] for references).


While some of these approaches might carry over to computing minimal sets of unsatisfiable SNF clauses, it is
unclear whether any of them can help to compute minimal sets of time points to annotate a UC in LTL with. When


13In fact, using default options our implementation performs some normalization and produces the same UC for both (30) and (32).
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considering to minimize sets of time points there are at least two candidate notions of minimality. As shown in Prop. 7
the sets of time points we obtain are semilinear sets, i.e., finite sets of linear sets. Therefore, one notion of minimality
could minimize the number of linear sets in each semilinear set. This could be implemented, e.g., with deletion-based
extraction of UCs using Prop. 6. This notion requires semilinear sets that are represented by more than one linear set
to get started. Another notion of minimality could minimize the number of natural numbers in each set of time points.
Notice that now we are possibly dealing with infinitely many candidates for removal; hence, simple deletion-based
extraction of UCs may not be applicable. Notions of minimum UCs are likely to be more involved both conceptually
and computationally.


We restrict ourselves to a single UC in this paper. Clearly, there is no guarantee that a single UC obtained from
one particular proof of the unsatisfiability of φ is representative for all UCs of φ. A common remedy in other logics
is therefore to compute all UCs for a given formula (e.g., [LS08, KPHS07]). Some work classifies parts of UCs
according to how often they occur in UCs (e.g., [KLM06, HPS10a]).


8.2. Display of UCs with Sets of Time Points


Judging from our experience with our implementation, which provides a command line interface only, sets of time
points should not be too dominant in the display of a UC for LTL with sets of time points. Instead, in a GUI the
display of the UC should be guided by the “normal” LTL part of the UC with sets of time points subordinate to the
“normal” LTL part. To help a user who is debugging a UC focus, it could be useful to allow the user to selectively
switch the display of sets of time points on and off for parts of the UC. Another possibility could be to develop a
heuristic that tries to distinguish interesting from uninteresting sets of time points and displays only the interesting
ones. Some criteria for a set of time points to be classified as interesting can be derived from the discussion of our
experimental results in Sec. 7. An example criterion for a set of time points to be deemed uninteresting could be the
fact that it can be easily derived from the set of time points of a superformula: for example, in ◦1


I
¬
I′
ψ, where ◦1 is a


unary operator, it makes no sense for I and I′ to be different (the case of a binary operator is analogous).


9. Conclusions


In this paper we showed how to obtain information on the time points at which subformulas of a UC for LTL are
required for unsatisfiability, providing useful information in many cases and leading to a more fine-grained notion
of UC than in [Sch12b]. We demonstrated with an implementation in TRP++ that UCs with sets of time points can
be extracted efficiently. Potential future work includes extending the computation of sets of time points to other
algorithms, be they tableau-based (e.g., [HH11]), BDD-based (e.g., [BCM+92, CGH97] and possibly utilizing [SB06,
JSB06]), or SAT-based (see, e.g., [Bie09]). One could investigate obtaining sets of time points by solving a system of
constraints over sets of time points based on Lemmas 2, 3 rather than the approach based on Parikh images explored
here. It would also be interesting to see whether/how minimal or minimum sets of time points can be obtained,
where ≤ is set inclusion (rather than syntactic expression size). LTL realizability (e.g., [PR89]) asks whether in a
two player game one player (a system to be implemented) has a strategy against the other player (the environment
that the system should be able to cope with) such that every play satisfies an LTL formula; if no such strategy exists,
then an unrealizable core can be computed (e.g., [Sch12b]). Possibly, sets of time points could be used to enhance
such unrealizable cores. One could also investigate fine-grained notions of UCs for branching time temporal logics.
Finally, note that in general improving the granularity of a notion of UC may be interesting when a notion of UC is
based on removing complex constraints from a set of constraints or complex statements from a Boolean combination
of statements without proceeding to simplify the complex constraints or statements themselves (for examples see LTL
(e.g., [AGH+12, GHST13, CRST07]) or SMT (e.g., [CGS11])).
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Appendix A. Gawrychowski’s Algorithm Extended to Handle Multiple Final Vertices in Parallel


Extending Gawrychowski’s algorithm [Gaw11] to handle multiple final vertices in parallel is straightforward.
Essentially, when the original algorithm checks whether a single final vertex has been reached, the extended ver-
sion carries out that check for each final vertex. To illustrate how the Parikh images can be computed in time
O(|V ′|3 + |Cuc| · |V ′|2 + |V ′| · |E′′|) we show the main part of the algorithm in Alg. 1a–1c. An explanation of how it
works is out of the scope of this paper; for that, please refer to [Gaw11]. Notice that the 3 parts of the algorithm are
intended to be executed in order Alg. 1a, Alg. 1b, Alg. 1c; below Alg. 1c is included before Alg. 1b only to improve
page layout. The parts that are affected by handling multiple final vertices in parallel are as follows: (i) in Alg. 1a:
line 5, (ii) in Alg. 1b: lines 9, 45–48, and (iii) in Alg. 1c: lines 13–15. These lines are marked blue and prefixed with
a * below.


The first part (Alg. 1a) is mostly preparation. It partitions the unary NFA into SCCs and computes the length
of the shortest loop in each SCC. This can be done, e.g., using Tarjan’s algorithm [Tar72] and then using BFS
from each vertex. The overall cost for preparation is O(|V ′| · (|V ′| + |E′′|) + |Cuc|). The second part (Alg. 1b)
processes non-trivial SCCs. It can be carried out in time O(|V ′|3 + |Cuc| · |V ′|2 + |V ′| · |E′′|). It is important to
note that the sum of the sizes of all SCCs is bounded by the number of vertices V ′. Moreover, each vertex
can appear in each of the 2d frontiers only once per SCC. The third part (Alg. 1c) processes trivial SCCs. It
can be carried out in time O(|V ′|2 + |Cuc| · |V ′| + |V ′| · |E′′|). Hence, the overall time to compute Parikh images is
O(|V ′|3 + |Cuc| · |V ′|2 + |V ′| · |E′′|).


Algorithm 1a: Gawrychowski’s algorithm extended to handle multiple final vertices in parallel. First part: preparation.


1 PartitionA into SCCs; /* Tarjan’s algorithm: O(|V ′ | + |E′′ |) */
2 foreach SCC A do /* O(|V ′ |) */
3 Find the length of the shortest loop in A; /* BFS from each vertex: O(|V ′ | · (|V ′ | + |E′′ |)) */


4 Create an empty set of vertices sforbidden; /* O(|V ′ |) */
*5 Create a list of vertices lfinal and assign it the list of vertices LV -labeled with clauses in Cuc; /* O(|Cuc |) */


Algorithm 1c: Gawrychowski’s algorithm extended to handle multiple final vertices in parallel. Third part: processing trivial SCCs.


1 Create a set of vertices scurr; scurr ← {v2}; /* O(|V ′ |) */
2 Create an empty set of vertices snext; /* O(|V ′ |) */
3 Create a list of vertices lcurr; lcurr ← [v2]; /* O(1) */
4 Create an empty list of vertices lnext; /* O(1) */
5 i← 0; /* O(1) */
6 while lcurr , [] do /* At most |V ′ | forward iterations in a graph of trivial SCCs: O(|V ′ |) */


7 foreach v ∈ lcurr do /* O(|V ′ |2) */
8 foreach target vertex v′ of each outgoing edge of v do /* O(|V ′ | · |E′′ |) */
9 if v′ ∈ sforbidden then continue; /* O(|V ′ | · |E′′ |) */


10 if v′ < snext then /* O(|V ′ | · |E′′ |) */


11 snext ← snext ∪ {v′}; /* O(|V ′ |2) */


12 lnext ← lnext ◦ [v′]; /* O(|V ′ |2) */


*13 foreach v ∈ lfinal do /* O(|Cuc | · |V ′ |) */
*14 if v ∈ snext then /* O(|Cuc | · |V ′ |) */
*15 Add 0 ·N + i + 1 to the Parikh image of LV (v); /* O(|Cuc | · |V ′ |) */


16 scurr ← snext; snext ← ∅; /* O(|V ′ |2) */
17 lcurr ← lnext; lnext ← []; /* O(|V ′ |) */
18 i← i + 1; /* O(|V ′ |) */


45







Algorithm 1b: Gawrychowski’s algorithm extended to handle multiple final vertices in parallel. Second part: processing non-trivial SCCs.


1 foreach SCC A do /* O(|V ′ |) */
2 d ← length of the shortest loop in A; /* O(|V ′ |) */


3 Create a set of vertices scurrentscc and a list of vertices lcurrentscc; /* O(|V ′ |2) */
4 scurrentscc← vertices of A; lcurrentscc← vertices of A; /* O(|V ′ |) */
5 foreach 0 ≤ i < d do /* The sum of all ds is at most |V ′ |: O(|V ′ |) */


6 Create empty sets of vertices simagefalse,i, sreachedfalse,i, sfrontierfalse,i; /* O(|V ′ |2) */


7 Create empty sets of vertices simagetrue,i, sreachedtrue,i, sfrontiertrue,i; /* O(|V ′ |2) */
8 Create empty lists of vertices limagefalse,i, lfrontierfalse,i, limagetrue,i, lfrontiertrue,i; /* O(|V ′ |) */


*9 Create an empty set of vertices sfinalseeni; /* O(|V ′ |2) */


10 sreachedfalse,0 ← sfrontierfalse,0 ← {v2}; /* O(|V ′ |) */
11 lfrontierfalse,0 ← [v2]; /* O(|V ′ |) */
12 i← 0; /* O(|V ′ |) */
13 while (lfrontierfalse,i mod d , []) ∨ (lfrontiertrue,i mod d , []) do /* At most 2 · |V ′ | frontier sets and each vertex can appear in each of


them at most once: O(|V ′ |2) */


14 im ← i mod d; /* O(|V ′ |2) */


15 im,next ← (i + 1) mod d; /* O(|V ′ |2) */


16 simagefalse,im,next ← sfrontierfalse,im,next ← simagetrue,im,next ← sfrontiertrue,im,next ← ∅; /* O(|V ′ |3) */


17 limagefalse,im,next ← lfrontierfalse,im,next ← limagetrue,im,next ← lfrontiertrue,im,next ← []; /* O(|V ′ |2) */


18 foreach v ∈ lfrontierfalse,im do /* O(|V ′ |2) */
19 foreach target vertex v′ of each outgoing edge of v do /* O(|V ′ | · |E′′ |) */
20 if v′ ∈ sforbidden then continue; /* O(|V ′ | · |E′′ |) */
21 if v′ ∈ scurrentscc then /* O(|V ′ | · |E′′ |) */
22 if v′ < simagetrue,im,next then /* O(|V ′ | · |E′′ |) */


23 simagetrue,im,next ← simagetrue,im,next ∪ {v
′}; /* O(|V ′ | · |E′′ |) */


24 limagetrue,im,next ← limagetrue,im,next ◦ [v′]; /* O(|V ′ | · |E′′ |) */


25 else
26 if v′ < simagefalse,im,next then /* O(|V ′ | · |E′′ |) */


27 simagefalse,im,next ← simagefalse,im,next ∪ {v
′}; /* O(|V ′ | · |E′′ |) */


28 limagefalse,im,next ← limagefalse,im,next ◦ [v′]; /* O(|V ′ | · |E′′ |) */


29 foreach v ∈ limagefalse,im,next do /* O(|V ′ | · |E′′ |) */


30 if v < sreachedfalse,im,next then /* O(|V ′ | · |E′′ |) */


31 sreachedfalse,im,next ← sreachedfalse,im,next ∪ {v}; /* At most 2 · |V ′ | reached sets and each vertex can be added to each


of them at most once: O(|V ′ |2) */


32 sfrontierfalse,im,next ← sfrontierfalse,im,next ∪ {v}; /* O(|V ′ |2) */


33 lfrontierfalse,im,next ← lfrontierfalse,im,next ◦ [v]; /* O(|V ′ |2) */


34 foreach v ∈ lfrontiertrue,im do /* O(|V ′ |2) */
35 foreach target vertex v′ of each outgoing edge of v do /* O(|V ′ | · |E′′ |) */
36 if v′ ∈ sforbidden then continue; /* O(|V ′ | · |E′′ |) */
37 if v′ < simagetrue,im,next then /* O(|V ′ | · |E′′ |) */


38 simagetrue,im,next ← simagetrue,im,next ∪ {v
′}; /* O(|V ′ | · |E′′ |) */


39 limagetrue,im,next ← limagetrue,im,next ◦ [v′]; /* O(|V ′ | · |E′′ |) */


40 foreach v ∈ limagetrue,im,next do /* O(|V ′ | · |E′′ |) */


41 if v < sreachedtrue,im,next then /* O(|V ′ | · |E′′ |) */


42 sreachedtrue,im,next ← sreachedtrue,im,next ∪ {v}; /* At most 2 · |V ′ | reached sets and each vertex can be added to each


of them at most once: O(|V ′ |2) */


43 sfrontiertrue,im,next ← sfrontiertrue,im,next ∪ {v}; /* O(|V ′ |2) */


44 lfrontiertrue,im,next ← lfrontiertrue,im,next ◦ [v]; /* O(|V ′ |2) */


*45 foreach v ∈ lfinal do /* O(|Cuc | · |V ′ |2) */


*46 if (v < sfinalseenim,next ) ∧ (v ∈ sfrontiertrue,im,next ) then /* O(|Cuc | · |V ′ |2) */


*47 Add d ·N + i + 1 to the Parikh image of LV (v); /* At most 2 · |V ′ | finalseen sets and each vertex can be added to


each of them at most once: O(|V ′ |2) */


*48 sfinalseenim,next ← sfinalseenim,next ∪ {v}; /* O(|V ′ |2) */


49 i← i + 1; /* O(|V ′ |2) */


50 foreach v ∈ lcurrentscc do /* O(|V ′ |) */
51 sforbidden← sforbidden ∪ {v}; /* O(|V ′ |) */
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Appendix B. An Example from the Business Process Domain


The example (B.1) shows applicability and utility of our approach in the business process domain. It is based on
example 3 in [HHT11]. We changed (B.1c) from F(i ∧ nr) to its current form, as this yields more interesting sets of
time points, and we omitted the last constraint in [HHT11], as it is the most complicated yet does not contribute to
what we would like to illustrate.


We restate the (slightly adapted) explanation from [HHT11]. (B.1a): An order (o) must occur. (B.1b): A payment
(p) with non-repudiation (nr) must occur. (B.1c): An insurance submission (i) with non-repudiation must occur at
time point 5. (B.1d): A goods delivery (g) must occur. (B.1e): Insurance before payment (p) is forbidden. (B.1f): If
a payment occurs, it must occur at least three time points after the order. (B.1g): Goods delivery before payment is
forbidden. (B.1h): If an insurance submission occurs, it must occur either at the time point of the order or one time
point later. And (B.1i): A golden (gold) customer must have goods delivered no later than three time points after the
time point at which the payment is accomplished.


(Fo) (B.1a)
∧ (F(p ∧ nr)) (B.1b)
∧ (XXXXX(i ∧ nr)) (B.1c)
∧ (Fg) (B.1d)
∧ ((¬i)Wp) (B.1e)
∧ ((¬p)W(o ∧ (¬p) ∧ (X¬p) ∧ (XX¬p))) (B.1f)
∧ ((¬g)Wp) (B.1g)
∧ (G(o→ XXG¬i)) (B.1h)
∧ (gold → (G(p→ (g ∨ (Xg) ∨ (XXg) ∨ (XXXg))))) (B.1i)


The UC with sets of time points in (B.2) consists of parts of (B.1c), (B.1e), (B.1f), and, (B.1h). We abbreviate the
interval of time points from a to b (inclusive) as [a, b]. (B.2a) prescribes that i is true at time point 5. With (B.2b) this
implies that p must become true between time points 0 and 5. Moreover, with (B.2d) o must be false from time point
0 to 3. Note, though, that the annotation of (B.2d) with sets of time points tells us that o having to be false matters
only between time points 0 and 2. (B.2c) demands that at or before the time point at which p becomes true the right
operand of its W operator becomes true. This operand becoming true cannot happen between time points 0 and 2,
as that would imply o being true at one of those time points. On the other hand, if it were to happen between time
points 3 and 5, one of the conjuncts ¬p, X¬p, or XX¬p would prevent p from being true at or before time point 5.
Hence, (B.2) is unsatisfiable.


( X
{1}


X
{2}


X
{3}


X
{4}


X
{5}


(i ∧
{5},∅
true)) (B.2a)


∧
{0},{0}


(( ¬
{5}


i) W
{5},[0,5]


p) (B.2b)


∧
{0},{0}


(( ¬
[0,5]


p) W
[0,5],[0,5]


(o ∧
[0,2],[0,5]


(( ¬
[0,5]


p) ∧
[0,5],{3,4}


(( X
{4,5}


¬
{4,5}


p) ∧
{3,4},{3}


( X
{4}


X
{5}
¬
{5}


p))))) (B.2c)


∧
{0},{0}


( G
[0,2]


(o →
[0,2],[0,2]


X
[1,3]


X
[2,4]


G
{5}
¬
{5}


i)) (B.2d)


(B.2) is the UC we obtained with our implementation. It shows that extracting UCs from proofs does not necessar-
ily lead to minimal ([Sch12b]: irreducible) or minimum ([Sch12b]: least-cost irreducible) UCs. Consider the variant
of (B.2) with sets of time points removed. While this variant is a UC of (B.1) without sets of time points, it is not mini-
mal: the last conjunct XX¬p in (B.2c) could be replaced with true without making the result satisfiable. In (B.2) with
sets of time points as shown above that subformula is required for unsatisfiability. However, ∧


[0,2],[0,5]
(( ¬


[0,5]
p) ∧


[0,5],{3,4}
in (B.2c) could be replaced with ∧


[0,2],[3,5]
(( ¬


[3,5]
p) ∧


[3,5],{3,4}
without sacrificing unsatisfiability. In the latter version the


sets of time points in ∧
[0,2],[3,5]


highlight the fact that o ∧ (¬p) ∧ (X¬p) ∧ (XX¬p) in (B.1f) cannot become true from


time point 0 to 2 because of o and from time point 3 to 5 because of (¬p) ∧ (X¬p) ∧ (XX¬p).
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Appendix C. Additional Plots


Figure C.9 shows the overhead that is incurred by extracting UCs with sets of time points by category. Figure
C.10 compares Gawrychowski’s and Sawa’s algorithm for computing sets of time points by category.
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Figure C.9: Overhead incurred by UC extraction in terms of run time (in seconds) and memory (in MB) separated by categories application,
crafted, and random. In each graph extraction of UCs with time points using Gawrychowski’s algorithm is on the y-axis and UC extraction
without sets of time points is on the x-axis. The off-center diagonal shows where y = 2x.
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Figure C.10: Comparison of using Sawa’s algorithm (y-axis) versus Gawrychowski’s algorithm (x-axis) for extracting UCs with sets of time points
in terms of run time (in seconds) and memory (in MB) separated by categories application, crafted, and random.
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