
VSchuppan-arXiv_1212.3884v1-2012.pdf


Extracting Unsatisfiable Cores for LTL via
Temporal Resolution


(full version; r352 December 18, 2012)


Viktor Schuppan (Email: Viktor.Schuppan@gmx.de)


Abstract. Unsatisfiable cores (UCs) are a well established means for
debugging in a declarative setting. Still, tools that perform automated
extraction of UCs for LTL are scarce. Using resolution graphs to extract
UCs is common in many domains. In this paper we show how to con-
struct resolution graphs for temporal resolution as implemented in the
temporal resolution-based solver TRP++ and how to use them to extract
UCs for propositional LTL. We implement our method in TRP++, and we
experimentally evaluate it. Source code of our tool is available.


1 Introduction


Motivation Unsatisfiable cores (UCs) are well established in formal verification,
with important uses being debugging in a declarative setting (e.g., [BDTW93])
and avoiding the exploration of parts of a search space that can be known not
to contain a solution for reasons “equivalent” to the reasons for previous failures
(e.g., [CTVW03]).


LTL (e.g., [Pnu77,Eme90]) and its relatives are important specification lan-
guages for reactive systems (e.g., [EF06]). Experience in verification (e.g., [BB-
DER01,Kup06]) as well as in synthesis (e.g., [BGJ+07]) has lead to specifications
themselves becoming objects of analysis. Consider two ways to examine a spec-
ification φ in LTL [PSC+06]. First, one can ask whether a certain scenario φ′,
also given as an LTL formula, is permitted by φ. That is the case iff φ ∧ φ′ is
satisfiable. Second, one can check whether φ ensures a certain property φ′′ given
in LTL. φ′′ holds in φ iff φ∧¬φ′′ is unsatisfiable. In the first case, if the scenario
turns out not to be permitted by the specification, a UC can help to understand
which parts of the specification and the scenario are responsible for that. In the
second case a UC can show which parts of the specification imply the prop-
erty. Moreover, if there are parts of the property that are not part of the UC,
then those parts of the property could be strengthened without invalidating the
property in the specification; i.e., the property is vacuously satisfied (e.g., [BB-
DER01, KV03, AFF+03, FKSFV08, Kup06]). Despite this relevance interest in
UCs for LTL has been somewhat limited (e.g., [CRST07, Sch12b, HH11]). In
particular, publicly available tools that automatically extract fine-grained UCs
for propositional LTL are scarce.


Extracting UCs is often possible using any solver for the logic under con-
sideration by weakening subformulas one by one and using the solver to test


ar
X


iv
:1


21
2.


38
84


v1
  [


cs
.L


O
] 


 1
7 


D
ec


 2
01


2



mailto:Viktor.Schuppan@gmx.de





whether the weakened formula is still unsatisfiable (e.g., [Sil10]). While that
is simple to implement, repeated testing for preservation of unsatisfiability may
impose a significant run time burden. Hence, it is interesting to investigate meth-
ods to extract UCs from a single run of a solver. Extracting UCs from resolu-
tion graphs is common in propositional SAT (e.g., [GN03,ZM03a]). A resolution
method (e.g., [BG01,Rob65]) for LTL, temporal resolution (TR), was suggested
by Fisher [Fis91,FDP01] and implemented in TRP++ [HK04,HK03, trp].


Contributions In this paper we make the following contributions. 1. We construct
resolution graphs for TR for propositional LTL as implemented in TRP++ [HK04,
HK03,trp], and we show how to use them to extract UCs. 2. We implement our
method in TRP++, and we experimentally evaluate it. We make the source code of
our solver available. Conceptually, under the frequently legitimate assumption
that a system description can be translated into an LTL formula, our results
extend to vacuity for LTL [BBDER01,KV03,AFF+03,FKSFV08,Kup06].


Related Work In [CRST07] Cimatti et al. perform extraction of UCs for PSL to
accelerate a PSL satisfiability solver by performing Boolean abstraction. Their
notion of UCs is coarser than ours and their solver is based on BDDs and on
SAT. An investigation of notions of UCs for LTL including the relation between
UCs and vacuity is performed in [Sch12b]. No implementation or experimental
results are reported, and TR is not considered. Hantry et al. suggest a method
to extract UCs for LTL in a tableau-based solver [HH11]. No implementation or
experiments are reported. Awad et al. [AGH+12] use tableaux to extract UCs
in the context of synthesizing business process templates. The description of the
method is sketchy and incomplete, the notion of UC appears to be one of a sub-
set of a set of formulas, and no detailed experimental evaluation is carried out.
In [CMT11] Cimatti et al. show how to prove and explain unfeasibility of mes-
sage sequence charts for networks of hybrid automata. They consider a different
specification language and use an SMT-based algorithm. Some work deals with
unrealizable rather than unsatisfiable cores. [CRST08] handles specifications in
GR(1), which is a proper subset of LTL. Könighofer et al. present methods to
help debugging unrealizable specifications by extracting unrealizable cores and
simulating counterstrategies [KHB09] as well as performing error localization us-
ing model-based diagnosis [KHB10]. Raman and Kress-Gazit [RKG11] present a
tool that points out unrealizable cores in the context of robot control. [Sch12b]
explores more fine-grained notions of unrealizable cores than [CRST08,KHB09].


Structure of the Paper Section 2 starts with preliminaries. TR and its clausal
normal form SNF are introduced in Sec. 3. In Sec. 4 we describe the construc-
tion of a resolution graph and its use to obtain a UC. The UCs obtained in
Sec. 4 are lifted from SNF to LTL in Sec. 5. In Sec. 6 we provide examples that
illustrate why these UCs are useful and how to obtain them. We discuss our
implementation and experimental evaluation in Sec. 7. Section 8 concludes. Due
to space constraints proofs are sketched or omitted. For a full version [Sch12a] of


2







this paper including proofs and for our implementation, examples, and log files
see [pap].


2 Preliminaries


We use a standard version of LTL, see, e.g., [Eme90]. LetB be the set of Booleans,
and let AP be a finite set of atomic propositions. The set of LTL formulas is
constructed inductively as follows. The Boolean constants 0 (false), 1 (true) ∈ B
and any atomic proposition p ∈ AP are LTL formulas. If ψ, ψ′ are LTL formulas,
so are ¬ψ (not), ψ ∨ψ′ (or), ψ ∧ψ′ (and), Xψ (next time), ψUψ′ (until), ψRψ′


(releases), Fψ (finally), and Gψ (globally). We use ψ → ψ′ (implies) as an
abbreviation for ¬ψ ∨ ψ′.


3 Temporal Resolution (TR)


In this section we describe TR [FDP01] as implemented in TRP++ [HK03,HK04,
trp]. We first explain the clausal normal form TR is based on. In Sec. 3.2 we
provide a concise description of TR as required for the purposes of this paper.
In Sec. 3.3 we give some intuition on how TR works with a slant towards BDD-
based symbolic model checking (e.g., [BCM+92, CGH97, CGP01]). We wish to
emphasize that TR is an existing technique that has been developed since the
early 1990s [Fis91]. Our contribution in this paper is an extension of TR that
allows to extract UCs from a run of TRP++ on an unsatisfiable LTL formula.
Hence, while in this section we do our best to provide both a precise description
of TR as well as some intuition on how it works, space constraints limit the
extent of this description. Therefore, we refer readers interested in more details,
a more extensive explanation, or correctness proofs of TR to [FDP01] for a
general overview, to [Dix98,Dix97,Dix96,Dix95] for details on loop search, and
to [HK03,HK04, trp] for the implementation in TRP++.


3.1 Separated Normal Form (SNF)


TR works on formulas in a clausal normal form called separated normal form
(SNF) [Fis91, FN92, FDP01]. For any atomic proposition p ∈ AP p and ¬p
are literals. Let p1, . . . , pn, q1, . . . , qn′ , l with 0 ≤ n, n′ be literals such that
p1, . . . , pn and q1, . . . , qn′ are pairwise different. Then 1. (p1 ∨ . . . ∨ pn) is an
initial clause; 2. (G((p1 ∨ . . . ∨ pn)∨ (X(q1 ∨ . . . ∨ qn′)))) is a global clause; and
3. (G((p1 ∨ . . . ∨ pn) ∨ (F(l)))) is an eventuality clause. l is called an eventuality
literal. As usual an empty disjunction (resp. conjunction) stands for 0 (resp. 1).
() or (G()), denoted 2, stand for 0 or G(0) and are called empty clause. The set
of all SNF clauses is denoted C. Let c1, . . . , cn with 0 ≤ n be SNF clauses. Then∧


1≤i≤n ci is an LTL formula in SNF. Every LTL formula φ can be transformed
into an equisatisfiable formula φ′ in SNF [FDP01].


3







rule premise 1 pa- premise 2 pa- conclusion pa- p.1 p.2 vt.
rt. rt. rt. – c – c c


saturation


init-ii (P ∨ l) M (¬l ∨ Q) M (P ∨ Q) M 4 4 4


init-in (P ∨ l) M (G(¬l ∨ Q)) M (P ∨ Q) M 4 4 4


step-nn (G(P ∨ l)) M (G(¬l ∨ Q)) M (G(P ∨ Q)) M 4 4 4


step-nx (G(P ∨ l)) M (G((Q) ∨ (X(¬l ∨ R)))) M (G((Q) ∨ (X(P ∨ R)))) M 4 4 4


step-xx (G((P) ∨
(X(Q ∨ l))))


ML (G((R) ∨ (X(¬l ∨ S)))) ML (G((P ∨ R) ∨ (X(Q ∨ S)))) ML 4 4 4


augmentation


aug1 (G((P) ∨ (F(l)))) M (G(P ∨ l ∨ wl)) M 4 — 4


aug2 (G((P) ∨ (F(l)))) M (G((¬wl) ∨ (X(l ∨ wl)))) M 6 — 4


BFS loop search


BFS-loop-
it-init-x


c ≡ (G((P) ∨ (X(Q)))) with |Q| > 0 M c L 4 — 4


BFS-loop-
it-init-n


(G(P)) M (G((0) ∨ (X(P)))) L 4 — 4


BFS-loop-
it-init-c


(G(P)) L′ (G((Q) ∨ (F(l)))) M (G((0) ∨ (X(P ∨ l)))) L 6 6 4


BFS-loop-
it-sub


c≡(G(P)) with c → (G(Q)) L (G((0) ∨ (X(Q ∨ l)))) gen-
erated by BFS-loop-it-init-c


L 4 — 6


BFS-loop-
conclusion1


(G(P)) L (G((Q) ∨ (F(l)))) M (G(P ∨ Q ∨ l)) M 4 4 4


BFS-loop-
conclusion2


(G(P)) L (G((Q) ∨ (F(l)))) M (G((¬wl) ∨ (X(P ∨ l)))) M 4 6 4


Table 1. Production rules used in TRP++. Let P ≡ p1 ∨ . . . ∨ pn, Q ≡ q1 ∨ . . . ∨ qn′ ,
R ≡ r1 ∨ . . . ∨ rn′′ , and S ≡ s1 ∨ . . . ∨ sn′′′ .


3.2 TR in TRP++


The production rules of TRP++ are shown in Tab. 1. The 1st column assigns a
name to a production rule. The 2nd and 4th columns list the premises. The 6th
column gives the conclusion. Columns 3, 5, and 7 are described below. Columns
8–10 become relevant only in later sections.


Algorithm 1 provides a high level view of TR in TRP++ [HK04]. The algo-
rithm takes a set of starting clauses C in SNF as input. It returns unsat if
C is found to be unsatisfiable (by deriving 2) and sat otherwise. Resolution
between two initial or two global clauses or between an initial and a global
clause is performed by a straightforward extension of propositional resolution
(e.g., [Rob65, FM09, BG01]). The corresponding production rules are listed un-
der saturation in Tab. 1. Given a set of SNF clauses C we say that one saturates
C if one applies these production rules to clauses in C until no new clauses are
generated. Resolution between a set of initial and global clauses and an even-
tuality clause with eventuality literal l requires finding a set of global clauses
that allows to infer conditions under which XG¬l holds. Such a set of clauses
is called a loop in ¬l . Loop search involves all production rules in Tab. 1 except
init-ii , init-in , step-nn , and step-nx .


In line 1 Alg. 1 initializes M with the set of starting clauses and terminates iff
one of these is the empty clause. Then, in line 2, it saturates M (terminating iff
the empty clause is generated). In line 3 it augments M by applying production
rule aug1 to each eventuality clause in M and aug2 once per eventuality literal
in M , where wl is a fresh proposition. This is followed by another round of
saturation in line 4. From now on Alg. 1 alternates between searching for a loop
for some eventuality clause c (lines 9–18) and saturating M if loop search has


4







Algorithm 1: LTL satisfiability checking via TR in TRP++.


Input: A set of SNF clauses C. Output: Unsat if C is unsatisfiable; sat otherwise.


1 M ← C; if 2 ∈M then return unsat;
2 saturate(M); if 2 ∈M then return unsat;
3 augment(M);
4 saturate(M); if 2 ∈M then return unsat;


5 M ′ ← ∅;
6 while M ′ 6= M do
7 M ′ ←M ;
8 for c ∈ C . c is an eventuality clause do
9 C′ ← {2};


10 repeat
11 initialize-BFS-loop-search-iteration(M , c, C′, L);
12 saturate-step-xx(L);


13 C′ ← {c′ ∈ L | c′ has empty X part};
14 C′′ ← {(G(Q)) | (G((0) ∨ (X(Q ∨ l)))) ∈ L generated by BFS-loop-it-init-c };
15 found← subsumes(C′, C′′);


16 until found or C′ = ∅;
17 if found then
18 derive-BFS-loop-search-conclusions(c, C′, M);
19 saturate(M); if 2 ∈M then return unsat;


20 return sat;


generated new clauses (line 19). It terminates, if either the empty clause was
derived (line 19) or if no new clauses were generated (line 20).


Loop search for some eventuality clause c may take several iterations (lines
11–15). Each loop search iteration uses saturation restricted to step-xx as a


subroutine (line 12). Therefore, each loop search iteration has its own set of
clauses L in which it works. We call M and L partitions. Columns 3, 5, and
7 in Tab. 1 indicate whether a premise (resp. conclusion) of a production rule
is taken from (resp. put into) the main partition (M), the loop partition of
the current loop search iteration (L), the loop partition of the previous loop
search iteration (L′), or either of M or L as long as premises and conclusion
are in the same partition (ML). In line 11 partition L of a loop search iteration
is initialized by applying production rule BFS-loop-it-init-x once to each global


clause with non-empty X part in M , rule BFS-loop-it-init-n once to each global


clause with empty X part in M , and rule BFS-loop-it-init-c once to each global
clause with empty X part in the partition of the previous loop search iteration
L′. Notice that by construction at this point L contains only global clauses with
non-empty X part. Then L is saturated using only rule step-xx (line 12). A
loop has been found iff each global clause with empty X part that was derived
in the previous loop search iteration is subsumed by at least one global clause
with empty X part that was derived in the current loop search iteration (lines
13–15). Subsumption between a pair of clauses corresponds to an instance of
production rule BFS-loop-it-sub ; note, though, that this rule does not produce
a new clause but records a relation between two clauses to be used later for
extraction of a UC. Loop search for c terminates, if either a loop has been found
or no clauses with empty X part were derived (line 16). If a loop has been found,


5







rules BFS-loop-conclusion1 and BFS-loop-conclusion2 are applied once to each global
clause with empty X part that was derived in the current loop search iteration
(line 18) to obtain the loop search conclusions for the main partition.


3.3 TR — Some Intuition


The following explanation is partly based on the correctness proofs used in TR
(e.g., [FDP01,Dix95]). At various points we draw parallels to BDD-based sym-
bolic model checking (below shortened to “model checking”; e.g., [BCM+92,
CGH97,CGP01]).


Transition Systems Given a set of atomic propositions AP a transition system
G = (V,E, I) is a directed graph with a finite set of vertices V ⊆ 2AP , a set of
directed edges E ⊆ V × V , and a set of initial vertices I ⊆ V . A set of SNF
clauses C induces a transition system as follows. C is partitioned into the 3 sets
of initial clauses, global clauses with empty X part, and global clauses with non-
empty X part (eventuality clauses are ignored). The set of vertices V is given by
those valuations of AP that fulfill the bodies of the global clauses with empty
X part. The set of edges is given by those pairs of vertices that fulfill the bodies
of the global clauses with non-empty X part. The set of initial vertices is the
subset of vertices that fulfill the initial clauses. Note that not all vertices may
be reachable from an initial vertex. Given a set of SNF clauses C it is easy to
see that its induced transition system contains an initialized infinite path that
fulfills the eventuality clauses in C if and only if C is satisfiable.


Saturation Saturation adds clauses to a set of SNF clauses C such that the
resulting induced transition system G′ is restricted to those vertices of G that
are the start of an infinite path in G. Resolution within each of the sets of initial
clauses ( init-ii ), global clauses with empty X part ( step-nn ), and global clauses


with non-empty X part ( step-xx ) — provided the result has a non-empty X
part — induce the same transition system before and after such resolution. The
same is true for resolution between a global clause with empty X part and a
global clause with non-empty X part ( step-nx ) that results in a global clause
with non-empty X part as well as for resolution between an initial clause and a
global clause with empty X part ( init-in ). Note that while such resolution does
not lead to a change in the induced transition system, these resolutions serve 2
purposes: 1. to generate clauses that are needed as input for resolution that does
lead to a change in the induced transition system and 2. to generate the empty
clause as a sign for unsatisfiability. Resolution between two global clauses with
non-empty X part ( step-xx ) that results in a global clause with empty X part c
may induce different transition systems before and after such resolution: before
resolution is carried out, the induced transition system may have vertices not
fulfilling the body of c, albeit with no outgoing edges; after resolution is carried
out, the induced transition system will have no such vertices. This is also true
for resolution between a global clause with empty X part and a global clause
with non-empty X part ( step-nx ) that results in a global clause with empty


6







X part. As propositional resolution is complete and the above resolution steps
are carried out until no new clauses are generated, at that point the induced
transition system contains only vertices that are the start of an infinite path
as stated above. This is somewhat comparable to model checking pruning a
transition system to the set of vertices that are the start of an infinite path by
repeatedly computing a backward image for a set of vertices and intersecting
with that set of vertices until a fixed point is reached; note though, that model
checking tends to proceed in a breadth-first manner, while TR is more flexible.


BFS Loop Search Given a set of SNF clauses C with an eventuality clause
(G((P) ∨ (F(l)))) BFS loop search adds clauses to C that remove those vertices
from the induced transition system that do not fulfill P but cannot reach a vertex
that fulfills l . Assume an eventuality clause (G((P) ∨ (F(l)))). The first iteration
of a BFS loop search for a loop in ¬l produces global clauses with empty X part
whose body is fulfilled by those vertices in the induced transition system G that
can reach a vertex in G that fulfills l in one step. The second iteration extends
that to one or two steps. This continues until a fixed point is reached where the
bodies of the produced global clauses with empty X part are fulfilled by those
vertices in the induced transition system G that can reach a vertex in G that
fulfills l in one or more steps. The loop search conclusions then combine this new
information with P and wl . In model checking the computation of vertices that
can reach l in one or more steps by repeated computation of backward images
is very similar; note, though, that in typical model checking with Büchi fairness
(e.g., [BCM+92,CGH97,CGP01]) P and wl are not present.


High Level View In App. A we turn the above discussion into a high level view of
TR in TRP++ and we discuss the relation to cycle detection algorithms in model
checking.


4 UC Extraction


In this section we describe, given an unsatisfiable set of SNF clauses C, how to
obtain a subset of C, Cuc, that is by itself unsatisfiable from an execution of
Alg. 1. The general idea of the construction is unsurprising in that during the
execution of Alg. 1 a resolution graph is built that records which clauses were
used to generate other clauses (Def. 1). Then the resolution graph is traversed
backwards from the empty clause to find the subset of C that was actually used
to prove unsatisfiability (Def. 2). The main concern of Def. 1, 2, and their proof
of correctness in Thm. 1 is therefore that/why certain parts of the TR proof do
not need to be taken into account when determining Cuc.


Definition 1 (Resolution Graph). A resolution graph G is a directed graph
consisting of 1. a set of vertices V , 2. a set of directed edges E ⊆ V × V , 3. a
labeling of vertices with SNF clauses LV : V → C, and 4. a partitioning QV of
the set of vertices V into one main partition MV and one partition LVi for each


7







BFS loop search iteration: QV : V = MV ] LV0 ] . . . ] LVn . Let C be a set of
SNF clauses. During an execution of Alg. 1 with input C a resolution graph G
is constructed as follows.


In line 1 G is initialized: 1. V contains one vertex v per clause c in C:
V = {vc | c ∈ C}, 2. E is empty: E = ∅, 3. each vertex is labeled with the
corresponding clause: LV : V → C,LV (vc) = c, and 4. the partitioning QV
contains only the main partition MV , which contains all vertices: QV : MV = V .


Whenever a new BFS loop search iteration is entered (line 11), a new parti-
tion LVi is created and added to QV . For each application of a production rule
from Tab. 1 that either generates a new clause in partition M or L or is the first
application of rule BFS-loop-it-sub to clause c′′ in C ′′ in line 15: 1. if column 10


( vt. c) of Tab. 1 contains 4, then a new vertex v is created for the conclusion
c (which is a new clause), labeled with c, and put into partition MV or LVi ;
2. if column 8 ( p.1 – c) (resp. column 9 ( p.2 – c)) contains 4, then an edge is
created from the vertex labeled with premise 1 (resp. premise 2) in partition MV


or LVi to the vertex labeled with the conclusion in partition MV or LVi .


Definition 2 (UC in SNF). Let C be a set of SNF clauses to which Alg. 1 has
been applied and shown unsatisfiability, let G be the resolution graph, and let v2
be the (unique) vertex in the main partition MV of the resolution graph G labeled
with the empty clause 2. Let G′ be the smallest subgraph of G that contains v2
and all vertices in G (and the corresponding edges) that are backward reachable
from v2. The UC of C in SNF, Cuc, is the subset of C such that there exists
a vertex v in the subgraph G′, labeled with c ∈ C, and contained in the main
partition MV of G: Cuc = {c ∈ C | ∃v ∈ VG′ . LV (v) = c ∧ v ∈MV }.


Theorem 1 (Unsatisfiability of UC in SNF). Let C be a set of SNF clauses
to which Alg. 1 has been applied and shown unsatisfiability, and let Cuc be the
UC of C in SNF. Then Cuc is unsat.


Assume for a moment that in columns 8 (p.1 – c) and 9 (p.2 – c) of Tab. 1
all 6 are replaced with 4, i.e., that each conclusion in the resolution graph is
connected by an edge to each of its premises rather than only to a subset of
them. In that case the UC in SNF according to Def. 2 would contain all clauses
of the set of starting clauses C that contributed to deriving the empty clause and,
hence, to establishing unsatisfiability of C. In that case it would follow directly
from the correctness of TR that Cuc is unsatisfiable. In the proof (see App. B) it
remains to show that not including an edge 1. from premise 1 to the conclusion
for rule aug2 , 2. from premise 2 to the conclusion for rule BFS-loop-conclusion2 ,


3. from premise 2 to the conclusion for rule BFS-loop-it-init-c , and 4. from premise


1 to the conclusion for rule BFS-loop-it-init-c in the resolution graph G maintains
the fact that the resulting Cuc is unsatisfiable.


By taking the fact that each vertex in the resolution graph has at most 2
incoming edges into account, the first part of the following Prop. 1 is immediate
from Def. 1 and 2. The second part is obtained by bounding the number of
1. different clauses in each partition, 2. iterations in each loop search by the


8







Subf. Prop. SNF Clauses (+ polarity occurrences) SNF Clauses (− polarity occurrences)


1/0/p 1/0/p — —


¬ψ x¬ψ (G(x¬ψ → (¬ xψ ))) (G((¬x¬ψ) → xψ ))


ψ ∧ ψ′ x
ψ∧ψ′ (G(x


ψ∧ψ′ → xψ )), (G(x
ψ∧ψ′ → x


ψ′ )) (G((¬x
ψ∧ψ′ ) → ((¬ xψ ) ∨ (¬ x


ψ′ ))))


ψ ∨ ψ′ x
ψ∨ψ′ (G(x


ψ∨ψ′ → ( xψ ∨ x
ψ′ ))) (G((¬x


ψ∨ψ′ ) → (¬ xψ ))), (G((¬x
ψ∨ψ′ ) → (¬ x


ψ′ )))


Xψ xXψ (G(xXψ → (X xψ ))) (G((¬xXψ) → (X¬ xψ )))


Gψ xGψ (G(xGψ → (XxGψ))), (G(xGψ → xψ )) (G((¬xGψ) → (F¬ xψ )))


Fψ xFψ (G(xFψ → (F xψ ))) (G((¬xFψ) → (X¬xFψ))), (G((¬xFψ) → (¬ xψ )))


ψUψ′ x
ψUψ′ (G(x


ψUψ′ → ( x
ψ′ ∨ xψ ))), (G((¬x


ψUψ′ ) → (¬ x
ψ′ ))),


(G(x
ψUψ′ → ( x


ψ′ ∨ (Xx
ψUψ′ )))), (G((¬x


ψUψ′ ) → ((¬ xψ ) ∨ (X¬x
ψUψ′ ))))


(G(x
ψUψ′ → (F x


ψ′ )))


ψRψ′ x
ψRψ′ (G(x


ψRψ′ → x
ψ′ )), (G((¬x


ψRψ′ ) → ((¬ x
ψ′ ) ∨ (¬ xψ )))),


(G(x
ψRψ′ → ( xψ ∨ (Xx


ψRψ′ )))) (G((¬x
ψRψ′ ) → ((¬ x


ψ′ ) ∨ (X¬x
ψRψ′ )))),


(G((¬x
ψRψ′ ) → (F¬ x


ψ′ )))


Table 2. Translation from LTL to SNF.


length of the longest monotonically increasing sequence of Boolean formulas over
AP , and 3. loop searches by the number of different loop search conclusions.


Proposition 1 (Complexity of UC Extraction). Let C be a set of SNF
clauses to which Alg. 1 is applied and shows unsatisfiability. Construction and
backward traversal of the resolution graph and, hence, construction of Cuc ac-
cording to Def. 2 can be performed in time O(|V |) in addition to the time required
to run Alg. 1. |V | is at most exponential in |AP |+ log(|C|).


5 From LTL to SNF and Back


We use a structure-preserving translation to translate an LTL formula into a set
of SNF clauses, which slightly differs from the translation suggested in [FDP01].
It is well known that φ and SNF (φ) according to Def. 3 are equisatisfiable and
that a satisfying assignment for φ (resp. SNF (φ)) can be extended (resp. re-
stricted) to a satisfying assignment of SNF (φ) (resp. φ).


Definition 3 (Translation from LTL to SNF). Let φ be an LTL formula
over atomic propositions AP, and let X = {x, x′, . . .} be a set of fresh atomic
propositions not in AP. Assign each occurrence of a subformula ψ in φ a Boolean
value or a proposition according to col. 2 of Tab. 2, which is used to reference
ψ in the SNF clauses for its superformula. Moreover, assign each occurrence of
ψ a set of SNF clauses according to col. 3 or 4 of Tab. 2. Let SNF aux (φ) be the
set of all SNF clauses obtained from φ that way. Then the SNF of φ is defined
as SNF (φ) ≡ xφ ∧


∧
c∈SNFaux (φ) c.


In the following Def. 4 we describe how to map a UC in SNF back to a UC
in LTL. The main idea in its proof of correctness (Thm. 2) is to compare the
SNF of φ and φuc by partitioning the SNF clauses into three sets: one that is
shared by the two SNFs, one that replaces some occurrences of propositions in
SNF (φ) with 1 or 0, and one whose clauses are only in SNF (φ). Then one can
show that the UC of φ in SNF must be contained in the first partition.


9







Definition 4 (Mapping a UC in SNF to a UC in LTL). Let φ be an
unsatisfiable LTL formula, let SNF (φ) be its SNF, and let Cuc be the UC of
SNF (φ) in SNF. Then the UC of φ in LTL, φuc, is obtained as follows. For
each positive (resp. negative) polarity occurrence of a proper subformula ψ of
φ with proposition xψ according to Tab. 2, replace ψ in φ with 1 (resp. 0) iff
Cuc contains no clause with an occurrence of proposition xψ that is marked
blue boxed in Tab. 2. (We are sloppy in that we “replace” subformulas of replaced
subformulas, while in effect they simply vanish.)


Theorem 2 (Unsatisfiability of UC in LTL). Let φ be an unsatisfiable LTL
formula, and let φuc be the UC of φ in LTL. Then φuc is unsat.


Remark 1. In Def. 10 of [Sch12b] a UC of an unsatisfiable formula in LTL is
obtained by replacing some occurrences of positive polarity subformulas with 1
and some occurrences of negative polarity subformulas with 0 while maintaining
unsatisfiability. By construction in Def. 4 and with Thm. 2 it is immediate that
a UC in LTL according to Def. 4 above is a UC according to Def. 10 of [Sch12b].


6 Examples


In this section we first present examples of using UCs for LTL to help under-
standing a specification given in LTL. Then we show an example of TR with the
corresponding resolution graph and UC extraction in SNF.


Using UCs in LTL to Help Understanding LTL Specifications We start with a
toy example and then proceed to a more realistic one. Except for minor rewriting,
all UCs in this section were obtained with our implementation. The first example
(1a)–(1c) is based on [JB06]. We would like to see whether a req (request) can
be issued (1d). This is impossible, as (1a) requires a req to be followed by 3 gnts
(grant), whereas (1b) forbids two subsequent gnts. The UC in (2) clearly shows
this.


(G(req → ((Xgnt) ∧ (XXgnt) ∧ (XXXgnt)))) (1a)
∧ (G(gnt→ X¬gnt)) (1b)
∧ (G(cancel→ X((¬gnt)Ugo))) (1c)
∧ (Freq) (1d)


(G(req → ((Xgnt) ∧ (XXgnt)))) (2a)
∧ (G(gnt→ X¬gnt)) (2b)
∧ (Freq) (2c)


The 2nd example (3) is adapted from a lift specification in [Har05] (we used
a somewhat similar example in [Sch12b]). The lift has two floors, indicated by
f0 and f1. On each floor there is a button to call the lift (b0, b1). sb is 1 if some
button is pressed. If the lift moves up, then up must be 1; if it moves down, then
up must be 0. u switches turns between actions by users of the lift (u is 1) and


10







actions by the lift (u is 0). For a more detailed explanation we refer to [Har05].


(¬u) ∧ (f0) ∧ (¬b0) ∧ (¬b1) ∧ (¬up) (3a)
∧ (G((u→ ¬Xu) ∧ ((¬Xu)→ u))) (3b)
∧ (G(f0 → ¬f1)) (3c)
∧ (G((f0 → X(f0 ∨ f1)) ∧ (f1 → X(f0 ∨ f1)))) (3d)
∧ (G(u→ ((f0 → Xf0) ∧ ((Xf0)→ f0) ∧ (f1 → Xf1) ∧ ((Xf1)→ f1)))) (3e)
∧ (G(((¬u)→ ((b0 → Xb0) ∧ ((Xb0)→ b0) ∧ (b1 → Xb1) ∧ ((Xb1)→ b1))))) (3f)
∧ (G(((b0 ∧ ¬f0)→ Xb0) ∧ ((b1 ∧ ¬f1)→ Xb1))) (3g)
∧ (G((f0 ∧Xf0)→ ((up→ Xup) ∧ ((Xup)→ up)))) (3h)
∧ (G((f1 ∧Xf1)→ ((up→ Xup) ∧ ((Xup)→ up)))) (3i)
∧ (G(((f0 ∧Xf1)→ up) ∧ ((f1 ∧Xf0)→ ¬up))) (3j)
∧ (G((sb→ (b0 ∨ b1)) ∧ ((b0 ∨ b1)→ sb))) (3k)
∧ (G(((f0 ∧ ¬sb)→ (f0U(sbR((Ff0) ∧ (¬up)))))) (3l)
∧ (G(((f1 ∧ ¬sb)→ (f1U(sbR((Ff0) ∧ (¬up)))))) (3m)
∧ (G((b0 → Ff0) ∧ (b1 → Ff1))) (3n)


We first assume that an engineer is interested in seeing whether it is possible
that b1 is continuously pressed (4). As the UC (5) shows, this is impossible as
b1 must be 0 at the beginning.


Gb1 (4) (¬b1) ∧Gb1 (5)


Now the engineer modifies her query such that b1 is pressed only from time
point 1 on (6). As shown by the UC in (7) that turns out to be impossible, too.


XGb1 (6) (¬u) ∧ ((¬b1) ∧ ((G((¬u)→ ((Xb1)→ b1))) ∧ (XGb1))) (7)


The engineer now tries to have b1 pressed only from time point 2 on and,
again, obtains a UC. She becomes suspicious and checks whether b1 can be
pressed at all (8). She now sees that b1 cannot be pressed at all and, there-
fore, this specification of a lift must contain a bug. She can now use the UC in
(9a)–(9f) to track down the problem. This example illustrates the use of UCs for
debugging, as (9a)–(9f) is significantly smaller than (3).


Fb1 (8)


(f0) ∧ (¬b1) ∧ (¬up) (9a)
∧ (G(f0 → ¬f1)) (9b)
∧ (G(f0 → X(f0 ∨ f1))) (9c)
∧ (G((f0 ∧Xf0)→ ((Xup)→ up))) (9d)


∧ (G((f0 ∧Xf1)→ up)) (9e)
∧ (G(b1 → Ff1)) (9f)
∧ (F(b1)) (9g)


TR, Resolution Graph, and UC Extraction In Fig. 1 we show an example of
an execution of the TR algorithm with the corresponding resolution graph and
UC extraction in SNF. The set of starting clauses C to be solved is G(a ∨ ¬b),
G(a ∨ b ∨X(a ∨ b)), G((¬a) ∨Xa), G((¬a) ∨ F¬a), shown in the first row from
the bottom in the rectangle shaded in light red. In Fig. 1 TR generally proceeds
from bottom to top; in the top right corner the empty clause 2 is generated, indi-
cating unsatisfiability. Clauses are connected with directed edges from premises
to conclusions according to columns 8, 9 in Tab. 1. Edges are labeled with pro-
duction rules, where “BFS-loop” is abbreviated to “loop”, “init” to “i”, and
“conclusion” to “conc”. Saturation in line 2 of Alg. 1 produces G(a ∨ b ∨Xa) in
the 2nd row from the bottom.1 The other 2 clauses in that row are generated by


1 While it may seem that some clauses are not considered for loop initialization
or saturation, this is due to either subsumption of one clause by another (e.g.,


11







augmentation (line 3). The following saturation (line 4) produces no new clauses.
The dark green shaded rectangle is the loop partition for the first loop search
iteration. Row 3 contains the clauses obtained by initialization of the BFS loop
search iteration (line 11). Row 4 then contains the clauses generated from those
in row 3 by saturation restricted to step-xx (line 12). The subsumption test fails


in this iteration, as none of the clauses in row 4 subsumes the empty clause (lines
13–15). The light green shaded rectangle is the loop partition for the next loop
search iteration. Row 5 contains the clauses obtained by initialization and row 6
those obtained from them by restricted saturation. This time the subsumption
test succeeds, and the loop search conclusions are shown in row 7 (line 18). Fi-
nally, row 8 contains the derivation of the empty clause 2 via saturation (line
19). The thick, dotted, blue clauses and edges show the part of the resolution
graph that is backward reachable from 2. As all starting clauses in C are back-
ward reachable from 2, the UC of C in SNF is C (note that this example serves
to illustrate the mechanism rather than the benefit of UC extraction).


7 Experimental Evaluation


Our implementation, examples, and log files are available from [pap].


Implementation In a recent experimental evaluation of solvers for satisfiability
of propositional LTL [SD11] TRP++ proved to be competitive. It is available as
source code [trp]. We therefore chose TRP++ as the basis for our implementation.
TRP++ provides a translation from LTL to SNF via an external tool. To facilitate
tracing a UC in SNF back to the input formula in LTL we implemented a
translator from LTL to SNF inside TRP++, which reimplements ideas from the
external translator. We used parts of TSPASS [LH10] for our implementation. For
data structures we used C++ STL containers, for graph operations the Boost
Graph Library [boo].


Benchmarks Our examples are based on [SD11]. In categories crafted and
random and in family forobots we considered all unsatisfiable instances from
[SD11]. The version of alaska lift used here contains a small bug fix: in [WDMR08,
SD11] the subformula Xu was erroneously written as literal Xu. Combining
2 variants of alaska lift with 3 different scenarios we obtain 6 subfamilies of
alaska lift. For anzu genbuf we invented 3 scenarios to obtain 3 subfamilies.
For all benchmark families that consist of a sequence of instances of increasing
difficulty we stopped after two instances that could not be solved due to time
or memory out. Some instances were simplified to 0 during the translation from
LTL to SNF; these instances were discarded. In Tab. 3 we give an overview of
the benchmark families. Columns 1–3 give the category, name, and the source


G(a ∨ b ∨X(a ∨ b)) by G(a ∨ b ∨Xa)) or the fact that TRP++ uses ordered reso-
lution (e.g., G(a ∨ b ∨Xa) with G(¬wa ∨X((¬a) ∨ wa)); [HK03,BG01]). Both are
issues of completeness of TR and, therefore, not discussed in this paper.


12







G(a ∨ ¬b) G(a ∨ b ∨X(a ∨ b)) G((¬a) ∨Xa) G((¬a) ∨ F¬a)


G(a ∨ b ∨Xa) G(¬wa ∨X((¬a) ∨ wa)) G((¬a) ∨ wa)


G(X(a ∨ ¬b)) G(a ∨ b ∨Xa) G(X¬a) G((¬a) ∨Xa) G(X((¬a) ∨ wa))


G(a ∨ b) G(¬a)


G(X(a ∨ ¬b)) G(X(a ∨ (¬a) ∨ b)) G(a ∨ b ∨Xa) G(X¬a) G((¬a) ∨Xa) G(X((¬a) ∨ wa))


G(a ∨ b) G(¬a)


G((¬wa) ∨X(a ∨ (¬a) ∨ b)) G((¬wa) ∨X¬a) G(a ∨ (¬a) ∨ b) G(¬a)


G(a ∨ b) G(a) 2


step-nx


s
t
e
p
-n


x


a
u
g
1


lo
o
p
-i
t
-i
-x


lo
op


-i
t-
i-
x


lo
o
p
-it


-i-n


ste
p
-x


xst
e
p
-x


x


st
e
p
-x


x


ste
p
-x


x


lo
o
p
-i
t-
i-
x


step
-x
x


s
t
e
p
-x


x


s
t
e
p
-x


x


step
-x
x


lo
o
p
-


it
-s


u
b


lo
op


-i
t-
su
b


lo
o
p
-c
o
n
c
2


lo
op


-co
nc


1
loop-conc2


lo
op


-c
on


c1


step-nn s
t
e
p
-n


n


step-nn


step-nx


s
t
e
p
-n


x


s
t
e
p
-n


n


lo
o
p
-i
t
-i
-n


lo
o
p
-i
t
-i
-n


lo
o
p
-c


o
n
c
1


lo
o
p
-c


o
n
c
1


lo
o
p
-i
t-
i-
x


lo
o
p
-it


-i-n


Fig. 1. Example of an execution of the TR algorithm with corresponding resolution
graph and UC extraction in SNF.


of the family. Columns 4, 5 list the numbers of instances that were solved by
our implementation without UC extraction and with UC extraction. Column 6
indicates the size (number of nodes in the syntax tree) of the largest instance
solved without UC extraction.


Setup The experiments were performed on a laptop with Intel Core i7 M 620
processor at 2 GHz running Ubuntu 10.04. Run time and memory usage were
measured with run [BJ]. The time and memory limits were 600 seconds and 6
GB.


Results In Fig. 2 (a) and (b) we show the overhead that is incurred by extracting
UCs. An analysis by category (plots see App. D) shows that the overhead for
instances of the application category, except for 2 that time out, is at most
100 %. In Fig. 2 (c) we compare the sizes of the input formulas with the sizes
of their UCs. Separate plots by category (see App. D) indicate that instances of
the application category are reduced comparatively well.


13







family source # solved |largest solved|
no UC UC


application


alaska lift [Har05,WDMR08] 73 71 4605


anzu genbuf [BGJ+07] 16 16 2676
forobots [BDF09] 25 25 635


crafted


schuppan O1formula [SD11] 21 21 1606
schuppan O2formula [SD11] 8 8 91
schuppan phltl [SD11] 4 4 125


random


rozier random [RV10] 66 66 157
trp [HS02] 397 397 1421


Table 3. Overview of benchmark families.


0


 0.1


 1


 10


 100


 600


to


mo


0  0.1  1  10  100  600 to mo


U
C


 e
x
tr


a
c
ti
o
n


no UC extraction


0


0.01


0.1


1


6


to


mo


0 0.01 0.1 1 6 to mo


U
C


 e
x
tr


a
c
ti
o
n


no UC extraction


 1


 10


 100


 1000


 5000


 1  10  100  1000  5000


u
n


s
a
ti
s
fi
a


b
le


 c
o


re
 [


#
 n


o
d
e
s
]


input formula [# nodes]


(a) run time [seconds] (b) memory [GB] (c) size [# nodes]


Fig. 2. (a) and (b): overhead incurred by UC extraction in terms of run time (in
seconds) and memory (in GB) with no UC extraction on the x-axis and UC extraction
on the y-axis. The off-center diagonal shows where y = 2x. (c): size reduction obtained
by UC extraction. The x-axis shows the sizes of the input formulas, the y-axis shows
the sizes of the UCs. Size is measured as the number of nodes in the syntax trees.


Discussion Our data show that extraction of UCs is possible with quite accept-
able overhead in run time and memory usage (Fig. 2 (a), (b)). In particular, out
of the 746 instances we considered with UC extraction disabled, 44 were simpli-
fied to 0 in the translation to SNF, 610 were shown to be unsatisfiable by TR,
and 92 remained unsolved. Enabling UC extraction results in 2 time or memory
outs out of 610 instances. The resulting UCs are often significantly smaller than
the input formula (Fig. 2 (c)).


8 Conclusions


In this paper we showed how to obtain UCs for LTL via temporal resolution,
and we demonstrated with an implementation in TRP++ that UC extraction can
be performed efficiently. The resulting UCs are significantly smaller than the
corresponding input formulas. The similarity of temporal resolution and BDD-
based algorithms at a high level (Sec. 3, App. A) and work on resolution with
BDDs ( [JSB06]) suggests to explore whether computation of UCs is feasible for
BDD-based algorithms. Another direction for transfer of our results is resolution-
based computation of unrealizable cores [Noë95]. An immediate possibility to
optimize the UCs we obtain is minimization by repeating extraction of UCs until
a fixed point is reached and subsequent attempts to delete remaining clauses
[ZM03b].


14







Acknowledgements I thank B. Konev and M. Ludwig for making TRP++ and TSPASS


including their LTL translators available. I also thank A. Cimatti for bringing up the


subject of temporal resolution. Initial parts of the work were performed while working


under a grant by the Provincia Autonoma di Trento (project EMTELOS).


References


AFF+03. R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer,
and M. Vardi. Enhanced vacuity detection in linear temporal logic. In
W. Hunt Jr. and F. Somenzi, editors, CAV, volume 2725 of Lecture Notes
in Computer Science, pages 368–380. Springer, 2003.


AGH+12. A. Awad, R. Goré, Z. Hou, J. Thomson, and M. Weidlich. An iterative
approach to synthesize business process templates from compliance rules.
Inf. Syst., 37(8):714–736, 2012.


BBDER01. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of
vacuity in temporal model checking. Formal Methods in System Design,
18(2):141–163, 2001.


BCM+92. J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model
checking: 1020 states and beyond. Inf. Comput., 98(2):142–170, 1992.


BDF09. A. Behdenna, C. Dixon, and M. Fisher. Deductive verification of simple
foraging robotic behaviours. International Journal of Intelligent Comput-
ing and Cybernetics, 2(4):604–643, 2009.


BDTW93. R. Bakker, F. Dikker, F. Tempelman, and P. Wognum. Diagnosing and
solving over-determined constraint satisfaction problems. In IJCAI, pages
276–281, 1993.


BG01. L. Bachmair and H. Ganzinger. Resolution theorem proving. In J. Robin-
son and A. Voronkov, editors, Handbook of Automated Reasoning, pages
19–99. Elsevier and MIT Press, 2001.


BGJ+07. R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Weigl-
hofer. Specify, compile, run: Hardware from PSL. In S. Glesner, J. Knoop,
and R. Drechsler, editors, COCV, volume 190(4) of ENTCS, pages 3–16.
Elsevier, 2007.


BJ. A. Biere and T. Jussila. Benchmark tool run. http://fmv.jku.at/run/.


boo. http://www.boost.org/doc/libs/release/libs/graph/.


CGH97. E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model
checking. Formal Methods in System Design, 10(1):47–71, 1997.


CGP01. E. Clarke, O Grumberg, and D. Peled. Model checking. MIT Press, 2001.


CMT11. A. Cimatti, S. Mover, and S. Tonetta. Proving and explaining the unfea-
sibility of message sequence charts for hybrid systems. In P. Bjesse and
A. Slobodová, editors, FMCAD, pages 54–62, 2011.


CRST07. A. Cimatti, M. Roveri, V. Schuppan, and S. Tonetta. Boolean abstraction
for temporal logic satisfiability. In W. Damm and H. Hermanns, editors,
CAV, volume 4590 of Lecture Notes in Computer Science, pages 532–546.
Springer, 2007.


CRST08. A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev. Diagnostic infor-
mation for realizability. In F. Logozzo, D. Peled, and L. Zuck, editors,
VMCAI, volume 4905 of Lecture Notes in Computer Science, pages 52–67.
Springer, 2008.


15



http://fmv.jku.at/run/

http://www.boost.org/doc/libs/release/libs/graph/





CTVW03. E. Clarke, M. Talupur, H. Veith, and D. Wang. SAT based predicate
abstraction for hardware verification. In E. Giunchiglia and A. Tacchella,
editors, SAT, volume 2919 of Lecture Notes in Computer Science, pages
78–92. Springer, 2003.


Dix95. C. Dixon. Strategies for Temporal Resolution. PhD thesis, Department of
Computer Science, University of Manchester, 1995. Available from ftp:


//ftp.cs.man.ac.uk/pub/TR/UMCS-95-12-1.ps.Z.
Dix96. C. Dixon. Search strategies for resolution in temporal logics. In M. McRob-


bie and J. Slaney, editors, CADE, volume 1104 of Lecture Notes in Com-
puter Science, pages 673–687. Springer, 1996.


Dix97. C. Dixon. Using Otter for temporal resolution. In H. Barringer, M. Fisher,
D. Gabbay, and G. Gough, editors, ICTL, Applied Logic Series, pages 149–
166. Kluwer, 1997.


Dix98. C. Dixon. Temporal resolution using a breadth-first search algorithm. Ann.
Math. Artif. Intell., 22(1-2):87–115, 1998.


EF06. C. Eisner and D. Fisman. A Practical Introduction to PSL. Springer, 2006.
EL86. E. Emerson and C. Lei. Efficient model checking in fragments of the


propositional mu-calculus (extended abstract). In LICS, pages 267–278.
IEEE Computer Society, 1986.


Eme90. E. Emerson. Temporal and modal logic. In Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics (B), pages 995–
1072. 1990.


FDP01. M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM
Trans. Comput. Log., 2(1):12–56, 2001.


FFK+01. K. Fisler, R. Fraer, G. Kamhi, M. Vardi, and Z. Yang. Is there a best
symbolic cycle-detection algorithm? In T. Margaria and W. Yi, editors,
TACAS, volume 2031 of Lecture Notes in Computer Science, pages 420–
434. Springer, 2001.


Fis91. M. Fisher. A resolution method for temporal logic. In IJCAI, pages 99–
104, 1991.


FKSFV08. D. Fisman, O. Kupferman, S. Sheinvald-Faragy, and M. Vardi. A frame-
work for inherent vacuity. In H. Chockler and A. Hu, editors, Haifa Ver-
ification Conference, volume 5394 of Lecture Notes in Computer Science,
pages 7–22. Springer, 2008.


FM09. J. Franco and J. Martin. A history of satisfiability. In A. Biere, M. Heule,
H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications, pages 3–74.
IOS Press, 2009.


FN92. M. Fisher and P. Noël. Transformation and synthesis in metatem. Part
I: Propositional metatem. Technical Report UMCS-92-2-1, University of
Manchester, Department of Computer Science, 1992. Available from http:


//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.4998.
GN03. E. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for


CNF formulas. In DATE, pages 10886–10891. IEEE Computer Society,
2003.


Har05. A. Harding. Symbolic Strategy Synthesis For Games With LTL Winning
Conditions. PhD thesis, University of Birmingham, 2005.


HH11. F. Hantry and M. Hacid. Handling conflicts in depth-first search for
ltl tableau to debug compliance based languages. In E. Pimentel and
V. Valero, editors, FLACOS, volume 68 of EPTCS, pages 39–53, 2011.


16



ftp://ftp.cs.man.ac.uk/pub/TR/UMCS-95-12-1.ps.Z

ftp://ftp.cs.man.ac.uk/pub/TR/UMCS-95-12-1.ps.Z

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.4998

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.4998





HK03. U. Hustadt and B. Konev. TRP++ 2.0: A temporal resolution prover.
In F. Baader, editor, CADE, volume 2741 of Lecture Notes in Computer
Science, pages 274–278. Springer, 2003.


HK04. U. Hustadt and B. Konev. TRP++: A temporal resolution prover. In
M. Baaz, J. Makowsky, and A. Voronkov, editors, Collegium Logicum,
volume 8, pages 65–79. Kurt Gödel Society, 2004.


HKQ03. T. Henzinger, O. Kupferman, and S. Qadeer. From pre-historic to post-
modern symbolic model checking. Formal Methods in System Design,
23(3):303–327, 2003.


HKSV01. R. Hardin, R. Kurshan, S. Shukla, and M. Vardi. A new heuristic for bad
cycle detection using bdds. Formal Methods in System Design, 18(2):131–
140, 2001.


HS02. U. Hustadt and R. A. Schmidt. Scientific benchmarking with temporal
logic decision procedures. In D. Fensel, F. Giunchiglia, D. McGuinness,
and M. Williams, editors, KR, pages 533–546. Morgan Kaufmann, 2002.


HTKB92. R. Hojati, H. Touati, R. Kurshan, and R. Brayton. Efficient ω-regular lan-
guage containment. In G v. Bochmann and D. Probst, editors, CAV, vol-
ume 663 of Lecture Notes in Computer Science, pages 396–409. Springer,
1992.


JB06. B. Jobstmann and R. Bloem. Optimizations for LTL synthesis. In FM-
CAD, pages 117–124. IEEE Computer Society, 2006.


JSB06. T. Jussila, C. Sinz, and A. Biere. Extended resolution proofs for symbolic
sat solving with quantification. In A. Biere and C. Gomes, editors, SAT,
volume 4121 of Lecture Notes in Computer Science, pages 54–60. Springer,
2006.


KHB09. R. Könighofer, G. Hofferek, and R. Bloem. Debugging formal specifications
using simple counterstrategies. In FMCAD, pages 152–159. IEEE, 2009.


KHB10. R. Könighofer, G. Hofferek, and R. Bloem. Debugging unrealizable speci-
fications with model-based diagnosis. In S. Barner, I. Harris, D. Kroening,
and O. Raz, editors, HVC, volume 6504 of Lecture Notes in Computer
Science, pages 29–45. Springer, 2010.


Kup06. O. Kupferman. Sanity checks in formal verification. In C. Baier and
H. Hermanns, editors, CONCUR, volume 4137 of Lecture Notes in Com-
puter Science, pages 37–51. Springer, 2006.


KV03. O. Kupferman and M. Vardi. Vacuity detection in temporal model check-
ing. STTT, 4(2):224–233, 2003.


LH10. M. Ludwig and U. Hustadt. Implementing a fair monodic temporal logic
prover. AI Commun., 23(2-3):69–96, 2010.


Noë95. P. Noël. A transformation-based synthesis of temporal specifications. For-
mal Asp. Comput., 7(6):587–619, 1995.


pap. http://www.schuppan.de/viktor/nfm13/.
Pnu77. A. Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE,


1977.
PSC+06. I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, and A. Cimatti.


Formal analysis of hardware requirements. In E. Sentovich, editor, DAC,
pages 821–826. ACM, 2006.


RBS00. K. Ravi, R. Bloem, and F. Somenzi. A comparative study of symbolic
algorithms for the computation of fair cycles. In W. Hunt and S. John-
son, editors, FMCAD, volume 1954 of Lecture Notes in Computer Science,
pages 143–160. Springer, 2000.


17



http://www.schuppan.de/viktor/nfm13/





RKG11. V. Raman and H. Kress-Gazit. Analyzing unsynthesizable specifications
for high-level robot behavior using LTLMoP. In G. Gopalakrishnan and
S. Qadeer, editors, CAV, volume 6806 of Lecture Notes in Computer Sci-
ence, pages 663–668. Springer, 2011.


Rob65. J. Robinson. A machine-oriented logic based on the resolution principle.
J. ACM, 12(1):23–41, 1965.


RV10. K. Rozier and M. Vardi. LTL satisfiability checking. STTT, 12(2):123–137,
2010.


Sch12a. V. Schuppan. Extracting unsatisfiable cores for LTL via temporal res-
olution (full version), 2012. http://www.schuppan.de/viktor/nfm13/


VSchuppan-NFM-2013-full.pdf.
Sch12b. V. Schuppan. Towards a notion of unsatisfiable and unrealizable cores for


LTL. Sci. Comput. Program., 77(7-8):908–939, 2012.
SD11. V. Schuppan and L. Darmawan. Evaluating LTL satisfiability solvers. In


T. Bultan and P. Hsiung, editors, ATVA, volume 6996 of Lecture Notes in
Computer Science, pages 397–413. Springer, 2011.


Sil10. J. Marques Silva. Minimal unsatisfiability: Models, algorithms and appli-
cations (invited paper). In ISMVL, pages 9–14. IEEE Computer Society,
2010.


trp. http://www.csc.liv.ac.uk/~konev/software/trp++/.
WDMR08. M. De Wulf, L. Doyen, N. Maquet, and J. Raskin. Antichains: Alternative


algorithms for LTL satisfiability and model-checking. In C. Ramakrishnan
and J. Rehof, editors, TACAS, volume 4963 of Lecture Notes in Computer
Science, pages 63–77. Springer, 2008.


ZM03a. L. Zhang and S. Malik. Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applica-
tions. In DATE, pages 10880–10885. IEEE Computer Society, 2003.


ZM03b. L. Zhang and S. Malik. Extracting small unsatisfiable cores from unsatis-
fiable Boolean formula. Presented at Theory and Applications of Satisfia-
bility Testing, 6th International Conference, SAT 2003. Santa Margherita
Ligure, Italy, May 5-8, 2003.


18



http://www.schuppan.de/viktor/nfm13/VSchuppan-NFM-2013-full.pdf

http://www.schuppan.de/viktor/nfm13/VSchuppan-NFM-2013-full.pdf

http://www.csc.liv.ac.uk/~konev/software/trp++/





A TR — A High Level View


In Alg. 2 we turn the discussion in Sec. 3.3 into a high level view of TR in
TRP++. At the right hand side of Alg. 2 we show the corresponding line(s) in
Alg. 1. When we write “Restrict G to the set of vertices V ′”, we mean that V
is intersected with V ′, E with V ′ × V ′, and I with V ′.


Algorithm 2: High level view of LTL satisfiability checking via TR in TRP++.


Input: A set of SNF clauses C.
Output: Unsat if C is unsatisfiable; sat otherwise.


1 if C contains the empty clause then return unsat; // 1
2 Let G = (V,E, I) be the transition system induced by C; // -
3 Restrict G to the set of vertices that are the start of an infinite path; // 2
4 if I is empty then return unsat; // 2
5 for c ∈ C . c = (G((P) ∨ (F(l)))) is an eventuality clause in C do // 3
6 Restrict G to the set of vertices that fulfill (P ∨ l ∨ wl); // 3
7 Restrict E to the set of edges that fulfill ((¬wl) ∨X(l ∨ wl)); // 3


8 Restrict G to the set of vertices that are the start of an infinite path; // 4
9 if I is empty then return unsat; // 4


10 G′ ← (∅, ∅, ∅); // 5


11 while G′ 6= G do // 6


12 G′ ← G; // 7
13 for c ∈ C . c = (G((P) ∨ (F(l)))) is an eventuality clause in C do // 8


14 V ′′ ← {v ∈ V | a successor of v can reach a vertex v′ in which l holds}; // 9-16


15 if V ′′ 6= 2AP then // 17


16 Restrict G to the set of vertices that fulfill (P ∨ l ∨ V ′′); // 18


17 Restrict E to the set of edges that fulfill ((¬wl) ∨X(l ∨ V ′′)); // 18
18 Restrict G to the set of vertices that are the start of an infinite path; // 19
19 if I is empty then return unsat; // 19


20 return sat; // 20


In model checking a number of works investigated cycle detection algorithms
(e.g., [FFK+01, RBS00, HKSV01, HTKB92, EL86]). While the high level algo-
rithm above is not identical to any of those, it is somewhat similar to the variant
of the One-Way-Catch-Them-Young (OWCTY) algorithm mentioned in footnote
4 of [FFK+01]. In particular, it proceeds in backward direction (e.g., [HKQ03]),
it uses CTY style pruning (lines 3, 8, 18; [HKSV01]), and the pruning happens in
each iteration over the eventuality clauses (resp. fair sets). However, the initial
pruning (line 3 or 8) is not present in that algorithm in [FFK+01].


B Proofs: 4 UC Extraction


Lemma 1. Let C be a set of SNF clauses to which Alg. 1 has been applied
and shown unsatisfiability, let G be the resolution graph, and let G′ the sub-
graph according to Def. 2. Let v be a vertex in G′ labeled with a clause c =
(G((¬wl) ∨ (X(l ∨ wl)))) created by augmentation aug2 from some eventuality


clause (G((p1 ∨ . . . ∨ pn) ∨ (F(l)))) ∈ C with eventuality literal l . Then there is a


19







vertex v′ in G′ labeled with an eventuality clause c′ = (G((q1 ∨ . . . ∨ qn′) ∨ (F(l))))
∈ C with eventuality literal l .


Proof. There exists a path π of non-zero length in G′ from v to the unique vertex
v2 in the main partition M labeled with the empty clause 2. On the path π there
exist two vertices v′′, v′′′ such that v′′ is labeled with a clause c′′ that contains
¬wl or X¬wl , while v′′′ and all of its successors on π are labeled with clauses
that contain neither ¬wl nor X¬wl . Let c′′′ be the clause labeling v′′′.


Case 1. c′′′ is generated by initial or step resolution init-ii , init-in , step-nn ,


step-nx , or step-xx from c′′ and some other clause c′′′′. c′′′′ must contain wl


or Xwl . Moreover, there must be a path π′ (possibly of zero length) that
starts from a vertex v′′′′′ labeled with a clause c′′′′′ and that ends in the
vertex v′′′′ labeled with c′′′′, such that each vertex on the path π′ is labeled
with a clause that contains wl or Xwl . Finally, wl or Xwl must be present
in c′′′′′ either because c′′′′′ is contained in the set of input clauses in SNF, C,
or because c′′′′′ is generated by some production rule that introduces wl or
Xwl in the conclusion.
Case 1.1. c′′′′′ is contained in the set of input clauses in SNF, C. Impossible:


wl is a fresh proposition in aug1 and aug2 .


Case 1.2. c′′′′′ is generated by initial or step resolution init-ii , init-in ,
step-nn , step-nx , or step-xx . Impossible: initial and step resolution do


not generate literals that are not contained (modulo time-shifting) in at
least one of the premises.


Case 1.3. c′′′′′ is generated by augmentation 1 aug1 . By construction


of the resolution graph G and the subgraph G′ there is an edge in
G′ from a vertex v′ in G′ labeled with an eventuality clause c′ =
(G((q1 ∨ . . . ∨ qn′) ∨ (F(l)))) ∈ C with eventuality literal l to v′′′′′.


Case 1.4. c′′′′′ is generated by augmentation 2 aug2 , i.e., c′′′′′ = c. This
introduces another occurrence of ¬wl to be “resolved away”. Note that
in the main partition only new clauses are generated from existing ones
with edges leading from existing vertices labeled with existing clauses
to new vertices labeled with new clauses. Therefore, the main partition
of G′ is a finite directed acyclic graph, and this case cannot happen
infinitely often.


Case 1.5. c′′′′′ is generated by BFS loop search initialization
BFS-loop-it-init-x . Impossible: the production rule BFS-loop-it-init-x


copies a clause verbatim. I.e., it cannot be the case that c′′′′′ contains
wl or Xwl , while the premise does not.


Case 1.6. c′′′′′ is generated by BFS loop search initialization
BFS-loop-it-init-n . Impossible: the production rule BFS-loop-it-init-n


copies and time-shifts a clause. I.e., it cannot be the case that c′′′′′


contains Xwl , while the premise does not contain wl .
Case 1.7. c′′′′′ is generated by BFS loop search initialization


BFS-loop-it-init-c . Impossible: the production rule BFS-loop-it-init-c


copies and time-shifts a clause from a previous BFS loop search


20







iteration (or initializes with the empty clause 2) and disjoins with an
eventuality literal Xl ′. I.e., it cannot be the case that c′′′′′ contains
Xwl , while the premise does not contain wl .


Case 1.8. v′′′′′ is linked to via BFS loop search subsumption BFS-loop-it-sub .


This case can be ignored as BFS loop search subsumption BFS-loop-it-sub


does not actually generate a clause but merely links existing ones.
Case 1.9. c′′′′′ is generated by BFS loop search conclusion 1


BFS-loop-conclusion1 . Impossible: production rule BFS-loop-conclusion1


copies all literals verbatim from a clause derived in loop search, copies
all literals verbatim from an eventuality clause except for the eventuality
literal l ′ prefixed by F, and disjoins with the eventuality literal l ′. I.e.,
it cannot be the case that c′′′′′ contains wl , while the premises do not.


Case 1.10. c′′′′′ is generated by BFS loop search conclusion 2
BFS-loop-conclusion2 . Impossible: production rule BFS-loop-conclusion2


copies and time-shifts all literals from a clause c′′′′′′ derived in loop search
and disjoins with ¬wl ′ and Xl ′ for some eventuality literal l ′. I.e., it can-
not be the case that c′′′′′ contains Xwl , while the premise c′′′′′′ does not
contain wl .


Case 2. c′′′ is generated by augmentation aug1 or aug2 . Impossible: the premise


of the production rules aug1 and aug2 cannot contain either ¬wl or X¬wl


as wl is assumed to be a fresh proposition in aug1 and aug2 .


Case 3. c′′′ is generated by BFS loop search initialization BFS-loop-it-init-x . Im-


possible: the production rule BFS-loop-it-init-x copies a clause verbatim. I.e.,


it cannot be the case that c′′ contains ¬wl or X¬wl , while c′′′ does not.
Case 4. c′′′ is generated by BFS loop search initialization BFS-loop-it-init-n . Im-


possible: the production rule BFS-loop-it-init-n copies and time-shifts a clause.


I.e., it cannot be the case that c′′ contains ¬wl , while c′′′ does not contain
X¬wl .


Case 5. c′′′ is generated by BFS loop search initialization BFS-loop-it-init-c . Im-


possible: the production rule BFS-loop-it-init-c copies and time-shifts a clause


from a previous BFS loop search iteration (or initializes with the empty
clause 2) and disjoins with an eventuality literal Xl ′. I.e., it cannot be the
case that c′′ contains ¬wl , while c′′′ does not contain X¬wl .


Case 6. v′′ and v′′′ are linked via BFS loop search subsumption BFS-loop-it-sub ,


i.e., a time-shifted version of c′′ subsumes c′′′. Impossible: BFS-loop-it-sub


links from a clause with fewer literals to a clause with (modulo time-shifting)
the same and more literals. I.e., it cannot be the case that c′′ contains ¬wl ,
while c′′′ does not contain X¬wl .


Case 7. c′′′ is generated by BFS loop search conclusion 1 BFS-loop-conclusion1 .


Impossible: production rule BFS-loop-conclusion1 copies all literals verbatim
from a clause derived in loop search, copies all literals verbatim from an
eventuality clause except for the eventuality literal l ′ prefixed by F, and
disjoins with the eventuality literal l ′. I.e., it cannot be the case that c′′


contains ¬wl , while c′′′ does not.


21







Case 8. c′′′ is generated by BFS loop search conclusion 2 BFS-loop-conclusion2 .


Impossible: production rule BFS-loop-conclusion2 copies and time-shifts all lit-


erals from a clause derived in loop search and disjoins with ¬wl ′ and Xl ′ for
some eventuality literal l ′. I.e., it cannot be the case that c′′ contains ¬wl ,
while c′′′ does not contain X¬wl .


Notice that the only possible cases are case 1.3 and 1.4. Of those, case 1.4 can
only happen a finite number of times and must be followed by an occurrence of
case 1.3. This concludes the proof.


Lemma 2. Let C be a set of SNF clauses to which Alg. 1 has been applied and
shown unsatisfiability, let G be the resolution graph constructed, and let G′ be
the subgraph according to Def. 2. Let v be a vertex in G′ labeled with a clause c =
(G((¬wl) ∨ (X((q1 ∨ . . . ∨ qn′) ∨ l)))) generated by BFS loop search conclusion 2
BFS-loop-conclusion2 from some eventuality clause (G((p1 ∨ . . . ∨ pn) ∨ (F(l)))) ∈
C with eventuality literal l (and some other clause). Then there is a vertex v′′


in G′ labeled with an eventuality clause c′′ = (G((r1 ∨ . . . ∨ rn′′) ∨ (F(l)))) ∈ C
with eventuality literal l .


Proof. Analogous to the proof of Lemma 1.


Lemma 3. Let C be a set of SNF clauses to which Alg. 1 has been applied
and shown unsatisfiability, let G be the resolution graph, and let G′ be the sub-
graph according to Def. 2. Let v be a vertex in G′ labeled with a clause c =
(G((0) ∨ (X(q1 ∨ . . . ∨ qn′ ∨ l)))) generated by production rule BFS-loop-it-init-c


from some eventuality clause (G((p1 ∨ . . . ∨ pn) ∨ (F(l)))) ∈ C with eventuality
literal l (and some other clause). Then there is a vertex v′′ in G′ labeled with
an eventuality clause c′′ = (G((r1 ∨ . . . ∨ rn′′) ∨ (F(l)))) ∈ C with eventuality
literal l .


Proof. By construction of the resolution graph G (Def. 1) and its subgraph
G′ (Def. 2) v is included in G′ only if G′ also includes some vertex v′ labeled
with some clause c′ such that c′ was generated by BFS loop search conclusion
BFS-loop-conclusion1 or BFS-loop-conclusion2 from the BFS loop search iteration of


which c is part.


Case 1. c′ is generated by BFS loop search conclusion 1 BFS-loop-conclusion1 .
The claim follows from the construction of the resolution graph G and its
subgraph G′. By Def. 1 v′ has an incoming edge from a vertex v′′ labeled with
an eventuality clause c′′ = (G((r1 ∨ . . . ∨ rn′′) ∨ (F(l)))) ∈ C with eventual-
ity literal l and by Def. 2 v′′ is included in G′ if v′ is included.


Case 2. c′ is generated by BFS loop search conclusion 2 BFS-loop-conclusion2 . In
that case the claim follows directly from Lemma 2.


Theorem 1 (Unsatisfiability of UC in SNF). Let C be a set of SNF clauses
to which Alg. 1 has been applied and shown unsatisfiability, and let Cuc be the
UC of C in SNF. Then Cuc is unsat.


22







Proof. Assume for a moment that in columns 8 (p.1 – c) and 9 (p.2 – c) of Tab. 1
all 6 are replaced with 4, i.e., that each conclusion in the resolution graph is
connected by an edge to each of its premises rather than only to a subset of
them. In that case the UC in SNF according to Def. 2 would contain all clauses
of the set of starting clauses C that contributed to deriving the empty clause
and, hence, to establishing unsatisfiability of C. In that case it would follow
directly from the correctness of TR that Cuc is unsatisfiable.


It remains to show that 1. not including an edge from premise 1 to the con-
clusion for rule aug2 , 2. not including an edge from premise 2 to the conclusion


for rule BFS-loop-conclusion2 , 3. not including an edge from premise 2 to the con-


clusion for rule BFS-loop-it-init-c , and 4. not including an edge from premise 1


to the conclusion for rule BFS-loop-it-init-c in the resolution graph G maintains
the fact that the resulting Cuc is unsatisfiable. Items 1. – 3. are addressed by
Lemmas 1, 2, and 3.


We now address item 4. Notice that this case essentially corresponds to con-
sidering only the last iteration of a successful loop search to obtain the UC Cuc.
After initialization of a loop search iteration in line 11 of Alg. 1 L contains three
sets of clauses according to the three production rules for initializing a loop
search iteration. Clauses generated by BFS-loop-it-init-x and BFS-loop-it-init-n are


(partly time-shifted) duplicates of clauses derived so far in the main partition.
BFS-loop-it-init-c generates a set of clauses (G((0) ∨ (X(pi,1 ∨ . . . ∨ pi,ni ∨ l)))).


From these three sets saturation restricted to rule step-xx in line 12 derives an-


other set of clauses (G(qi′,1 ∨ . . . ∨ qi′,n′i′ )). Taking the restriction of saturation
to rule step-xx into account, that loop search iteration has established that,


assuming C, the following fact is provable:


G((
∧


1≤i≤n


(X(pi,1 ∨ . . . ∨ pi,ni ∨ l)))→ (
∧


1≤i′≤n′


(qi′,1 ∨ . . . ∨ qi′,n′i′ ))) (10)


Moreover, if subsumption in line 15 succeeds, the following fact is also provable:∧
1≤i≤n


(
∨


1≤i′≤n′


(G((qi′,1 ∨ . . . ∨ qi′,n′i′ )→ (pi,1 ∨ . . . ∨ pi,ni)))) (11)


We rewrite (10) and (11) as follows:


G((
∧


1≤i≤n


(X(pi,1 ∨ . . . ∨ pi,ni ∨ l)))→ (
∧


1≤i′≤n′
(qi′,1 ∨ . . . ∨ qi′,n′


i′
)))


⇔ G(
∧


1≤i′≤n′
((


∧
1≤i≤n


(X(pi,1 ∨ . . . ∨ pi,ni ∨ l)))→ (qi′,1 ∨ . . . ∨ qi′,n′
i′


)))


⇔
∧


1≤i′≤n′
(G((


∧
1≤i≤n


(X(pi,1 ∨ . . . ∨ pi,ni ∨ l)))→ (qi′,1 ∨ . . . ∨ qi′,n′
i′


)))


⇔
∧


1≤i′≤n′
(G((¬(qi′,1 ∨ . . . ∨ qi′,n′


i′
))→ (¬(


∧
1≤i≤n


(X(pi,1 ∨ . . . ∨ pi,ni ∨ l))))))


⇔
∧


1≤i′≤n′
(G((¬(qi′,1 ∨ . . . ∨ qi′,n′


i′
))→ (


∨
1≤i≤n


(X(¬(pi,1 ∨ . . . ∨ pi,ni ∨ l))))))


⇔
∧


1≤i′≤n′
(G((¬(qi′,1 ∨ . . . ∨ qi′,n′


i′
))→ (


∨
1≤i≤n


(X((¬(pi,1 ∨ . . . ∨ pi,ni )) ∧ (¬l))))))


⇔
∧


1≤i′≤n′
(G((¬(qi′,1 ∨ . . . ∨ qi′,n′


i′
))→ ((X¬l) ∧ (


∨
1≤i≤n


(X(¬(pi,1 ∨ . . . ∨ pi,ni ))))))) (12)


23







∧
1≤i≤n


(
∨


1≤i′≤n′


(G((qi′,1 ∨ . . . ∨ qi′,n′i′ )→ (pi,1 ∨ . . . ∨ pi,ni))))


⇔
∧


1≤i≤n


(
∨


1≤i′≤n′


(G((¬(pi,1 ∨ . . . ∨ pi,ni))→ (¬(qi′,1 ∨ . . . ∨ qi′,n′i′ ))))) (13)


Putting (12) and (13) together, we obtain (14), which is exactly the premise
required to perform eventuality resolution with an eventuality clause with even-
tuality literal l [FDP01]:


(G((q1,1 ∨ . . . ∨ q1,n′1) ∨ (XG¬l)))
· · ·


(G((qn′,1 ∨ . . . ∨ qn′,n′n′ ) ∨ (XG¬l)))
(14)


This concludes the proof.


Proposition 1 (Complexity of UC Extraction). Let C be a set of SNF
clauses to which Alg. 1 is applied and shows unsatisfiability. Construction and
backward traversal of the resolution graph and, hence, construction of Cuc ac-
cording to Def. 2 can be performed in time O(|V |) in addition to the time required
to run Alg. 1. |V | is at most exponential in |AP |+ log(|C|).


Proof. Notice that each vertex in G has at most 2 incoming edges. Hence, con-
struction of G and backward traversal of G from the unique vertex in the main
partition labeled with the empty clause, v2, can be performed in time O(|V |).


For a proof of |AP |+ log(|C|) see the following reasoning:


1. In an initial clause a proposition can be not present, present, or present
negated. Hence, the number of different initial clauses is O(3|AP|).


2. In a global clause a proposition can be one of not present, present, or present
negated; and prefixed by X not present, present, or present negated. Hence,
the number of different global clauses is O(9|AP|).


3. The number of clauses in the main partition is bounded by |C|+O(3|AP|) +
O(9|AP|) = O(|C|+ 9|AP|).


4. The number of clauses in a partition for a BFS loop search iteration is
bounded by O(9|AP|).


5. The number of partitions is bounded by 1 plus the number of BFS loop
search iterations.


6. The number of iterations in a BFS loop search is bounded by the length of
the longest monotonically increasing sequence of Boolean formulas over AP ,
which is O(2|AP|). See also [Dix98].


7. The number of BFS loop searches is bounded by the number of different
clauses that can be the result of a BFS loop search. The number of dif-
ferent clauses that can be the consequence of BFS loop search conclusion 1
BFS-loop-conclusion1 is bounded by the number of different global clauses with


empty next part, which is O(3|AP|). The number of different clauses that can
be the consequence of BFS loop search conclusion 2 BFS-loop-conclusion2 is


24







bounded by the number of different eventuality literals times the number of
different global clauses with empty next part, which is O(|C| · 3|AP|). Hence,
the number of BFS loop searches is bounded by O(|C| · 3|AP|).


8. Taking all of the above into account, the number of clauses is bounded by
O(|C|+ 9|AP| + |C| · 3|AP| · 2|AP| · 9|AP|) = O(|C| · 54|AP|).


This concludes the proof.


C Proofs: 5 From LTL to SNF and Back


Theorem 2 (Unsatisfiability of UC in LTL). Let φ be an unsatisfiable LTL
formula, and let φuc be the UC of φ in LTL. Then φuc is unsat.


Proof. Let SNF (φ) be the SNF of φ, and let Cuc be the UC of SNF (φ) in SNF.
First, consider the trivial case that φ is 0. Here, Def. 4 results in the UC of


φ in LTL being φuc ≡ 0 as desired.
Now assume that φ is not 0, i.e., the size of the syntax tree of φ is greater


than 1. Let SNF (φuc) be the SNF of φuc . In order to prove that φuc is unsat we
show that the clauses of Cuc (which is unsat) are a subset of the SNF of φuc :
Cuc ⊆ SNF (φuc).


By comparing the clauses of SNF (φ) with those of SNF (φuc) we can par-
tition the clauses of SNF (φ) into 3 sets:2 1. Some clauses are present in both
SNF (φ) and SNF (φuc): C ′1 ≡ SNF (φ)∩SNF (φuc). 2. Some clauses are present
in SNF (φ) and are present in SNF (φuc) with one or more occurrences of some
propositions x, x′, . . . that are marked blue boxed in Tab. 2 replaced with 1 or 0.
Call that set C ′2. 3. Some clauses are present in SNF (φ) but not in SNF (φuc):
C ′3 ≡ SNF (φ) \ (SNF (φuc) ∪ C ′2).


By Def. 2 Cuc is a subset of SNF (φ): Cuc ⊆ SNF (φ). By Def. 4 Cuc contains
no member of C ′2; otherwise, there could not be one or more occurrences of
some propositions x, x′, . . . that are marked blue boxed in Tab. 2 replaced with
1 or 0 in the clauses of C ′2: Cuc ∩C ′2 = ∅. Now we argue that Cuc also contains
no member of C ′3. First, let c ∈ C ′3 be an initial or a global clause. c cannot be
a member of Cuc as, in order to be part of a proof that derives the empty clause,
all literals of c need to be “resolved away”. However, this is not possible for c
as for the literal (¬)xψ on the left side of the implication in Tab. 2 there is no
clause with an opposite literal in Cuc. This follows by induction on the nesting
depth of the subformula ψ to which (¬)xψ belongs from the occurrence of the
superformula of ψ that has been replaced with 1 or 0 in φuc . Now let c ∈ C ′3
be an eventuality clause. By Def. 1, 2 for such c to be part of Cuc there would
have to be a clause c′ in the resolution graph G according to Def. 1 that was
generated by production rules aug1 or BFS-loop-conclusion1 and that is backward
reachable in G from the vertex labeled with the empty clause 2 in the main
partition M , v2. Again, for the latter to happen, all literals of c′ would have
to be “resolved away”, which is impossible by a similar inductive argument as


2 We disregard the issue of the indices of the variables x, x′, . . ..


25







before. Hence, we have shown that all clauses in Cuc come from C ′1, which is a
subset of SNF (φuc). This concludes the proof.


26







D Additional Plots


Figures 3 and 4 show the overhead that is incurred and the size reduction that
is obtained by extracting UCs split by category.


ru
n


ti
m


e
[s


ec
o
n
d
s]


0


 0.1


 1


 10


 100


 600


to


mo


0  0.1  1  10  100  600 to mo


U
C


 e
x
tr


a
c
ti
o
n


no UC extraction


0


 0.1


 1


 10


 100


 600


to


mo


0  0.1  1  10  100  600 to mo


U
C


 e
x
tr


a
c
ti
o
n


no UC extraction


0


 0.1


 1


 10


 100


 600


to


mo


0  0.1  1  10  100  600 to mo


U
C


 e
x
tr


a
c
ti
o
n


no UC extraction


m
em


o
ry


[G
B


]


0


0.01


0.1


1


6


to


mo


0 0.01 0.1 1 6 to mo


U
C


 e
x
tr


a
c
ti
o
n


no UC extraction


0


0.01


0.1


1


6


to


mo


0 0.01 0.1 1 6 to mo


U
C


 e
x
tr


a
c
ti
o
n


no UC extraction


0


0.01


0.1


1


6


to


mo


0 0.01 0.1 1 6 to mo


U
C


 e
x
tr


a
c
ti
o
n


no UC extraction


application crafted random


Fig. 3. Overhead incurred by UC extraction in terms of run time (in seconds) and
memory (in GB) separated by categories application, crafted, and random. In each
graph extraction of UCs is on the y-axis and no UC extraction on the x-axis. The
off-center diagonal shows where y = 2x.


si
ze


[#
n
o
d
es


]


 1


 10


 100


 1000


 5000


 1  10  100  1000  5000


u
n
s
a
ti
s
fi
a
b
le


 c
o


re
 [


#
 n


o
d


e
s
]


input formula [# nodes]


 1


 10


 100


 1000


 5000


 1  10  100  1000  5000


u
n
s
a
ti
s
fi
a
b
le


 c
o


re
 [


#
 n


o
d


e
s
]


input formula [# nodes]


 1


 10


 100


 1000


 5000


 1  10  100  1000  5000


u
n
s
a
ti
s
fi
a
b
le


 c
o


re
 [


#
 n


o
d


e
s
]


input formula [# nodes]


application crafted random


Fig. 4. Size reduction obtained by UC extraction separated by categories application,
crafted, and random. The y-axes show the sizes of the UCs, the x-axes show the sizes
of the input formulas. Size is measured as the number of nodes in the syntax trees.


27





		Extracting Unsatisfiable Cores for LTL via Temporal Resolution

		1 Introduction

		2 Preliminaries

		3 Temporal Resolution (TR)

		3.1 Separated Normal Form (SNF)

		3.2 TR in TRP++

		3.3 TR — Some Intuition



		4 UC Extraction

		5 From LTL to SNF and Back

		6 Examples

		7 Experimental Evaluation

		8 Conclusions

		Acknowledgements

		A TR — A High Level View

		B Proofs: 4 UC Extraction

		C Proofs: 5 From LTL to SNF and Back

		D Additional Plots






