
VSchuppanABiere-ETHZTr470-2005.pdf

Shortest Counterexamples for Symbolic Model
Checking of LTL with Past

Technical Report #470
Dept. Computer Science, ETH Zürich, CH-8092 Z̈urich, Switzerland

January 26, 2005

Viktor Schuppan1 and Armin Biere2

1 ETH Zürich, Computer Systems Institute
CH-8092 Z̈urich, Switzerland,Viktor.Schuppan@inf.ethz.ch

2 Johannes Kepler University, Institute for Formal Models and Verification
Altenbergerstrasse 69, A-4040 Linz, Austria,biere@jku.at

Abstract. Shorter counterexamples are typically easier to understand. The length
of a counterexample, as reported by a model checker, depends on both the algo-
rithm used for state space exploration and the way the property is encoded. We
provide necessary and sufficient criteria for a Büchi automaton to accept shortest
counterexamples. We prove that Büchi automata constructed using the approach
of Clarke, Grumberg, and Hamaguchi accept shortest counterexamples of future
time LTL formulae, while an automaton generated with the algorithm of Gerth
et al. (GPVW) may lead to unnecessary long counterexamples. Optimality is lost
in the first case as soon as past time operators are included. Adapting a recently
proposed encoding for bounded model checking of LTL with past, we construct a
Büchi automaton that accepts shortest counterexamples for full LTL. We use our
method of translating liveness into safety to find shortest counterexamples with a
BDD-based symbolic model checker without modifying the model checker itself.
Though our method involves a quadratic blowup of the state space, it outperforms
SAT-based bounded model checking on a number of examples.

1 Introduction

Counterexamples are a salient feature of model checking that help developers to under-
stand the problem in a faulty design. Most counterexamples still need to be interpreted
by humans, and shorter counterexamples will, in general, be easier to understand.

As LTL is defined over infinite paths counterexamples are, in principle, infinitely
long. In a finite state system every failing LTL property also has a lasso-shaped coun-
terexampleβγω [VW86]. Such a counterexample can be finitely represented, where its
length is defined as the sum of the lengths of the stemβ and loopγ [CGMZ95]. Coun-
terexamples to safety properties also have finite bad prefixes that are more useful for a
developer than a corresponding infinite path. In [KV99] Kupferman and Vardi showed
how to recognize the shortest bad prefix using an automaton of size doubly exponen-
tial in the size of the corresponding formula. In this paper we concentrate on shortest
lasso-shaped counterexamples for general LTL properties.

BDD-based symbolic techniques usually proceed breadth first and can find shortest
bad prefixes for many safety properties [KV99]. For more general specifications, find-
ing a shortest counterexample amounts to finding a shortest fair cycle, which is an NP-
complete problem [CGMZ95]. Most BDD-based model checkers offer only heuristics
to minimize the length of counterexamples to such properties. For a comparative study
on their performance and the length of the generated counterexamples see [RBS00]. In
explicit state model checking a double DFS [CVWY92] is typically used to search the
state space. It does not find shortest counterexamples. Gastin et al. propose an algo-
rithm [GMZ04] to minimize the length of counterexamples, which may visit a state an
exponential number of times.

The first technique in widespread use that can produce shortest counterexamples
for general LTL properties is SAT-based bounded model checking [BCCZ99]. While
[BCCZ99] was restricted to future time LTL, more recent implementations cover full
LTL [BC03], [CRS04], [LBHJ05]. Whether shortest counterexamples can be reported
depends also on the encoding of the property. Both, [BC03] and [LBHJ05] find short-
est counterexamples. [CRS04] achieves higher performance than [BC03] but sacri-
fices shortest counterexamples. A detailed experimental comparison of [CRS04] and
[LBHJ05] is not yet available. As SAT-based model checking does not perform equally
well on all examples as the BDD-based variant and vice versa [AS04], an efficient
BDD-based technique that produces shortest counterexamples is desirable.

We recently proposed a method to translate liveness into safety [SB04], which finds
shortest lassos and performs well on a number of examples in a BDD-based model
checker. The automaton-based approach to model checking [VW86] employs such loop
detection but requires translation of an LTL property into a Büchi automaton. Hence,
not only must the shortest lasso be found, but the property automaton must also accept
a shortest counterexample [GMZ04,AS04]. So far, size of Büchi automata was a more
important criterion than length of the resulting counterexamples, and little is known
about the latter.

In this paper we establish necessary and sufficient criteria for Büchi automata to
accept shortest counterexamples. We prove that the approach by Clarke et al. [CGH97]
generates B̈uchi automata that satisfy these criteria for future time LTL. This is not the
case if past time is included, and we establish a quadratic bound on the excess length.
We give an example that the algorithm by Gerth et al. [GPVW96] and many of its
descendants do not generate shortest counterexamples even for future time LTL.

Past time operators do not add expressive power to future time LTL [Kam68]. Still,
a specification that includes past time operators may be more natural than the pure fu-
ture variant, and it can be exponentially more succinct [LMS02]. We are not aware of
an efficient, easy-to-implement algorithm to translate a past time LTL formula into its
future time equivalent. We instead construct a Büchi automaton that accepts shortest
counterexamples for full LTL by adapting a recent, simple and efficient encoding for
bounded model checking with past [LBHJ05]. We then use our transformation from
liveness to safety to find shortest counterexamples with a BDD-based symbolic model
checker. The transformation itself does not require modifications to the model checker
but is purely on the model and the specification to be checked. The only requirement is a
breadth-first reachability check. Our experiments show that finding shortest counterex-

2

amples in the transformed model with the BDD-based algorithm of NuSMV [CCG+02]
can be significantly faster than SAT-based bounded model checking of the original
model.

In the following section we introduce our notation. In Sect. 3 we define shortest
counterexamples and investigate which Büchi automata can accept them. We present
our construction of a B̈uchi automaton that accepts shortest counterexamples in Sect. 4
and give some hints on our implementation in Sect. 5. Experimental results are reported
in Sect. 6. The last section concludes.

2 Preliminaries

Let Σ be a finite set, letα be a finite or infinite sequence overΣ. Thelengthof a sequence
α is defined as|α| = n+ 1 if α = σ0σ1 . . .σn is finite, ∞ otherwise.α(i) denotes the
element at indexi, αi is the suffixα(i)α(i +1) . . . of α with its first i states chopped off.
We also call sequences overΣ wordsoverΣ. The crossproduct of two sequencesα×β
is defined componentwise.

Let β, γ be finite sequences. A sequenceα is a〈β,γ〉-lassowith stemβ andloopγ iff
α = βγω. We sometimes write〈β,γ〉 instead ofβγω. The lengthof a lasso is defined as
|〈β,γ〉|= |β|+ |γ|. A lasso〈β,γ〉 is minimal for α iff α = βγω and∀β′,γ′ . α = β′γ′ω ⇒
|〈β,γ〉| ≤ |〈β′,γ′〉|. The type [LMS02] of a 〈β,γ〉-lasso is defined astype(〈β,γ〉) =
(|β|, |γ|). A sequenceα can be mapped to a set of types:type(α) = {type(〈β,γ〉) | α =
βγω}. We state the following fact about sequences (proved in the appendix).

Lemma 1. Let 〈β,γ〉 be a minimal lasso forα, 〈β′,γ′〉 a minimal lasso forα′, and
α′′ = α×α′. Then there are finite sequencesβ′′,γ′′ such that〈β′′,γ′′〉 is a minimal lasso
for α′′, |β′′|= max(|β|, |β′|), and|γ′′|= lcm(|γ|, |γ′|)3.

2.1 Kripke Structures

Following [KPR98] we define a fairKripke structureas tupleK = (V, I ,T,F). V is a
finite set ofstate variables vi , each ranging over a finite setVi . A state sis a valuation
of the variables inV, the set of all states isS. I is the initial condition that defines
the set of initial states ofK. The transition relation T is also given as a predicate,
referring to valuations of the variables in the current state,s, and in the successor state,
s′. F = {F1, . . . ,Fn} is a set of (weak) fairness constraints. The value ofv in s is denoted
by v(s). If s is clear from the context,v also denotes the value ofv in the current state,
andv′ that in the successor state. We assume a set of atomic propositionsAP that relates
variables to their potential valuations, each of the formvi = c j with c j ∈Vi . A mapping
L is implicitly given that maps a states to the set of atomic propositions true ins.

A non-empty sequence of states is apath in K if ∀0≤ i < |π| . (si ,si+1) |= T. If
s0 |= I , π is initialized. An infinite pathπ is fair if ∀Fi ∈ F . ∀ j . ∃k > j . π(k) |= Fi . Π
is the set of paths inK. Via L a path implicitly defines a sequence over 2AP.

The synchronous product of two Kripke structuresK1 = (V1, I1,T1,F1) andK2 =
(V2, I2,T2,F2) is a Kripke structureK1×K2 = (V1∪V2, I1∧ I2,T1∧ T2,F1∪ F2). The
projection of a states onto a set of variablesV ′ is denoteds|V ′ .
3 lcm(a,b) denotes theleast common multipleof a andb.

3

πi |= p iff p∈ πi for p∈ AP
πi |= ¬φ iff πi 6|= φ
πi |= φ∨ψ iff πi |= φ or πi |= ψ

πi |= Xφ iff πi+1 |= φ
πi |= φ U ψ iff ∃ j ≥ i . (π j |= ψ∧∀i ≤ k < j . πk |= φ)
πi |= Yφ iff i > 0 andπi−1 |= φ
πi |= φ Sψ iff ∃0≤ j ≤ i . (π j |= ψ∧∀ j < k≤ i . πk |= φ)

Fig. 1.The semantics of PLTLB

2.2 PLTL

We consider specifications given in Propositional LTL with both future and past time
operators (PLTLB) [Eme90]. The syntax of PLTLB is defined over a set of atomic
propositionsAP. If φ andψ are PLTLB formulae, so are¬φ, φ∨ψ, Xφ, φ U ψ, Yφ,
φ Sψ. The semantics of PLTLB is defined recursively on infinite sequences over 2AP in
Fig. 1.

If the past time operatorsY andSare excluded, we obtain future time LTL formulae
(PLTLF). Similarly, a past time formula (PLTLP) has no occurrences ofX andU. For
this reason, when we speak about future or past we include present. We have the follow-
ing usual abbreviations:>≡ p∨¬p,⊥≡ ¬>, φ∧ψ≡ ¬(¬φ∨¬ψ), φ→ ψ≡ ¬φ∨ψ,
φ ↔ ψ ≡ (φ → ψ) ∧ (ψ → φ), φ R ψ ≡ ¬(¬φ U ¬ψ), Fφ ≡ > U φ, Gφ ≡ ¬F¬φ,
Zφ≡ ¬Y¬φ, φ T ψ≡ ¬(¬φ S¬ψ), Oφ≡> Sφ, andHφ≡ ¬O¬φ.

A PLTLB propertyφ holds universallyin a Kripke structureK, denotedK |=∀ φ,
iff it holds for every initialized fair path. IfK 6|=∀ φ, each initialized fair pathπ in K
with π |= ¬φ is acounterexamplefor φ. φ holds existentially, K |=∃ φ, iff there exists an
initialized fair path that fulfillsφ. Each such path is awitnessfor φ. For every finiteK,
if K 6|=∀ φ, then there exists a fair〈β,γ〉-lassoα in K such thatα 6|= φ [VW86]. A finite
pathπpre is abad prefixfor φ iff ∀πinf . (|πinf |= ∞⇒ πpreπinf 6|= φ) [KV99].

ForU andS there exist recursive expansion formulae (e.g. [KPR98]):

φ = ψ1 U ψ2 : πi |= φ iff (πi |= ψ2)∨ (πi |= ψ1)∧ (πi+1 |= φ)
φ = ψ1 Sψ2 : πi |= φ iff (πi |= ψ2)∨ (i > 0)∧ (πi |= ψ1)∧ (πi−1 |= φ)

The expansion ofU is not sufficient to guarantee proper semantics: additional measures
must be taken to select the desired fixed point, e.g., by adding fairness constraints.

Finally, thepast operator depth[BC03] of a formulaφ, h(φ), is the maximal number
of nested past operators inφ:

h(φ) =

0 iff φ ∈ AP
h(ψ) iff φ = ◦ψ , where◦ ∈ {¬,X}
max(h(ψ1),h(ψ2)) iff φ = ψ1◦ψ2 , where◦ ∈ {∨,U}
1+h(ψ) iff φ = Yψ
1+max(h(ψ1),h(ψ2)) iff φ = ψ1 Sψ2

The authors of [LMS02,BC03] proved independently that a PLTLB propertyφ can
distinguish at mosth(φ) loop iterations of a lasso. We restate Lemma 5.2 of [LMS02]
for PLTLB:

Lemma 2. For any lassoπ of type(ls, l l), for any PLTLB propertyφ with at most h(φ)
nested past-time modalities, and any i≥ ls+ l l h(φ), πi |= φ⇔ πi+l l |= φ.

4

2.3 Büchi Automata

A Büchi automatonover a set of variablesVK with a corresponding set of statesSK is a
Kripke structureB = (V, I ,T,F), whereV = VK ∪ V̂. A run ρ of a Büchi automatonB
on an infinite wordα overSK , denotedρ |= α, is an initialized fair path inB such that
∀i . α(i) = ρ(i)|VK . The set of all runs ofB is Runs(B). A word is acceptedby B iff B
has a run onα. The set of words accepted byB defines itslanguage Lang(B).

In the automaton-based approach to model checking [VW86] a Büchi automaton
that recognizes counterexamples to the specification is constructed. In other words, the
language of the automaton is precisely the set of witnesses for the negation of the spec-
ification. Then, an initialized fair path in the synchronous product of the model and that
automaton indicates failure of the specification. Formally, to check whetherK |=∀ φ
holds for some modelK and LTL formulaφ, we negateφ and construct a B̈uchi au-
tomatonB¬φ with Lang(B¬φ) = {α | α |= ¬φ}. Any initialized fair path inK×B¬φ is a
counterexample forφ.

In this scenarioVK corresponds to the set of atomic propositions in¬φ, whereaŝV
depends on the specific algorithm used to obtainB. Our definition of a B̈uchi automaton
is similar to a state-labeled, generalized Büchi automaton but splits states according to
the variables inVK . This is more convenient in a symbolic setting, where this split
happens anyway when the synchronous product with the model automaton is formed.
It does not restrict the generality of the results in Sect. 3 and 4.

An approach to construct a Büchi automaton tailored to symbolic model checking
(used, e.g., in NuSMV [CCG+02]) is by Clarke, Grumberg, and Hamaguchi [CGH97].
The original version deals only with future time formulae, but extensions to PLTLB
are available, see. e.g., [KPR98,Sch01]. We refer to this extended version asCGH+
below. An automatonBφ

CGH+ is constructed asBφ
CGH+ = (Vφ, Iφ∧xφ,Tφ,Fφ) whereVφ,

Iφ, Tφ, andFφ are defined recursively in Tab. 1. Allxψ are Boolean. On every runρ
on a wordα the valuation of a state variablexψ of Bφ

CGH+ reflects the validity of the
corresponding subformulaψ of φ, i.e.,xψ(ρ(i))↔ αi |= ψ. By [CGH97,KPR98,Sch01]

we haveLang(Bφ
CGH+) = {α | α |= φ}. Note that, for a uniform explanation, Tab. 1

uses state variables also for Boolean connectives. In [CGH97,KPR98,Sch01] these are
replaced by macros.

definition
ψ

Vψ = Iψ = Tψ = Fψ =
p {xp} > xp ↔ p /0

¬ψ1 Vψ1 ∪{xψ} Iψ1 Tψ1 ∧ (xψ ↔¬xψ1) Fψ1

ψ1∨ψ2 Vψ1 ∪Vψ2 ∪{xψ} Iψ1 ∧ Iψ2
Tψ1 ∧Tψ2∧
(xψ ↔ xψ1 ∨xψ2)

Fψ1 ∪Fψ2

Xψ1 Vψ1 ∪{xψ} Iψ1 Tψ1 ∧ (xψ ↔ x′ψ1
) Fψ1

ψ1 U ψ2 Vψ1 ∪Vψ2 ∪{xψ} Iψ1 ∧ Iψ2
Tψ1 ∧Tψ2∧
(xψ ↔ xψ2 ∨xψ1 ∧x′ψ)

Fψ1 ∪Fψ2∪
{{¬xψ∨xψ2}}

Yψ1 Vψ1 ∪{xψ} Iψ1 ∧ (xψ ↔⊥) Tψ1 ∧ (x′ψ ↔ xψ1) Fψ1

ψ1 Sψ2 Vψ1 ∪Vψ2 ∪{xψ}
Iψ1 ∧ Iψ2∧
(xψ ↔ xψ2)

Tψ1 ∧Tψ2∧
(x′ψ ↔ x′ψ2

∨x′ψ1
∧xψ) Fψ1 ∪Fψ2

Table 1.Property-dependent part of a Büchi automaton constructed with CGH+

5

3 Büchi Automata to Detect Shortest Counterexamples

3.1 Shortest Counterexamples for PLTLB

We have defined PLTLB over infinite paths, hence we need to specify what should
be considered a shortest counterexample. Given that we are only interested in finite
representations, and a failing PLTLB property in a finite state system always has a lasso-
shaped counterexample [VW86], we adopt the following definition from [CGMZ95]: a
shortest counterexample is one that has a most compact representation as a lasso.

Definition 1. Let K = (V, I ,T,F) be a Kripke structure, letφ be a PLTLB property. A
pathα in K is ashortest counterexamplefor φ in K iff

1. α 6|= φ
2. ∃β,γ . (α = βγω∧∀β′,γ′ . (β′γ′ω ∈Π∧β′γ′ω 6|= φ⇒ |〈β,γ〉| ≤ |〈β′,γ′〉|))

This definition is not optimal. First, an early position of the violation (if that can be
clearly attributed) need not coincide with the least number of states required to close a
loop. Second, apart from length, ease of understanding is not a criterion either.

The first problem is most relevant for properties that also have finite bad prefixes,
i.e., properties that are a subset of a safety property [KV99]. Finding the shortest bad
prefix for safety formulae can be done in parallel, using the (doubly exponential) method
proposed in [KV99]. The solution to the second problem is left as future work; for ap-
proaches and more references see [GK04].

3.2 Tight Büchi Automata

In the automaton-based approach to model checking, a PLTLB property is verified by
searching for loops in the synchronous product of a Kripke structureK, representing the
model, and a B̈uchi automatonB, accepting counterexamples for the property. Hence, if
shortest counterexamples are desired, the product of the model and the Büchi automaton
must have an initialized fair pathλ = 〈µ,ν〉 that can be represented as lasso of the same
length as the shortest counterexampleα = 〈β,γ〉. Kupferman and Vardi [KV99] call an
automaton on finite wordstight if it accepts shortest prefixes for violations of safety
formulae. We extend that notion to Büchi automata on infinite words.

Definition 2. Let B be a B̈uchi automaton. B istight iff

∀α ∈ Lang(B) . ∀β,γ . (〈β,γ〉 is minimal forα⇒
∃ρ ∈ Runs(B) . ∃λ,µ,ν . (ρ |= α ∧ λ = α×ρ = µνω ∧ |〈µ,ν〉|= |〈β,γ〉|))

Consider the scenarios in Fig. 2. The automatonB in the left scenario has a run
στω of the same structure as the counterexampleβγω in K, leading to an equally short
counterexample(β×σ)(γ× τ)ω in the productK×B. The run of the B̈uchi automaton
in the right scenario has an unnecessarily long stem and loop.

From Lemma 1 it can be inferred that a path of the same length inK×B as the coun-
terexample inK implies that the corresponding runρ = στω in B can be represented as

6

� �� �� �� � �� ��� �	

� �

� ��� �� �

�� ��� �� �

���
�

���
�

���
�

���
�

 !
!

""#
#

$$%
%

&&'
'

(()
)

**+
+

,,-
-

. .. .//

001
1

223
3

445
5

667
7

889
9

::;
;

<<=
=

>>?
?

@@A
A

BBC
C

DDE
E

F FF FGG

HHI
I

JJK
K

LLM
M

NNO
O

PPQ
Q

RRS
S

TTU
U

VVW
W

XXY
Y

ZZ[
[

\\]
]

^ ^^ ^__ ``a
a

bbc
c

dde
e

ffg
g

h hh hi ii i j jj j
kk l ll l

m mm m n nn n
oo p pp p

q qq q r rr r
ss t tt t

u uu u vvww xxyy zz{{ ||}} ~~
�����

�
���
�

���
�

���
�

� �� �� �� �

� �� �� �� �

� �� �� �� �

� �� �
��
��

��
��

��
��

��
��

� �� �
��
��

��
�� �� �

��
��

��
��

��
��

��
��

��
��

��
��

¡¡
¡¡

¢¢
¢¢

££
££

¤¤
¤¤

¥¥
¥¥

β γ γ γ

B

K

K x B

β γ γ γ γ γ

σ τ τ τ σ τ τ τ

x x(γ(1)γ(2)γγγγ(0)) (τττ)β σ γ τ γ τ γ τ (βγγ(0)) (σ)xxxx

Fig. 2.Scenarios with shortest and non-optimal counterexample

the same type as〈β,γ〉. The left scenario in Fig. 2 suggests another, alternative for-
mulation, which may be more intuitive and is easier to prove for some automata: the
subsequences ofα starting at indices 4,7,10, . . . are the same, as are those beginning at
5,7,11, . . ., and 6,9,12, On the other hand, the subsequences starting at the respec-
tive indices in a single iteration are all different — otherwise a part of the loop could be
cut out, contradicting minimality. Hence, ifB is tight, there must be a runρ on α with
the following property: for each pair of indicesi, j, if the subsequences ofα starting
at i and j have the same future (αi = α j), thenρ mapsi and j to the same state inB
(ρ(i) = ρ(j)). Theorem 1 establishes the equivalence of the criteria.

Theorem 1. Let B be a B̈uchi automaton. The following statements are equivalent:

1. B is tight.
2. ∀α ∈ Lang(B) . ∀β,γ . (〈β,γ〉 is minimal forα⇒

∃ρ ∈ Runs(B) . (ρ |= α∧ type(〈β,γ〉) ∈ type(ρ)))
3. ∀α ∈ Lang(B) . ((∃β,γ . α = βγω)⇒

(∃ρ ∈ Runs(B) . (ρ |= α∧ (∀i, j . αi = α j ⇒ ρ(i) = ρ(j)))))

Proof. 1⇒ 2: Assume a runρ = στω such thatλ = α×ρ = µνω with |〈µ,ν〉|= |〈β,γ〉|.
Let 〈σ′,τ′〉 be minimal forρ. Lemma 1 gives|σ′| ≤ |β| and |τ′| divides |γ|. Now it’s
easy to findσ′′,τ′′ with σ′′τ′′ω = στω, andtype(〈σ′′,τ′′〉) = type(〈β,γ〉).

2 ⇒ 1: Assume a runρ with type(〈β,γ〉) ∈ type(ρ). By definition of type, there exist
σ,τ such thatρ = στω, |β|= |σ|, and|γ|= |τ|. Hence, withµ= β×σ andν = γ×τ, we
haveλ = α×ρ = µνω and|〈µ,ν〉|= |〈β,γ〉|.

2⇒ 3: Let α ∈ Lang(B), assume〈β,γ〉 minimal for α, and letρ = στω be a run onα
such that|β|= |σ| and|γ|= |τ|. Let i, j with αi = α j . It remains to show thatρ(i) = ρ(j).
This is done by distinguishing 5 cases according to the positions ofi and j w.r.t. to β
andγ in α. Note that only in the first (and in the last) caseρ(i) andρ(j) actually play a
role as in all other cases〈β,γ〉 cannot be minimal forα.

Case 1,i = j: Obvious.

Case 2,i < j ≤ |β|−1:

αi = α j ⇒ (α(0), . . . ,α(i−1))αi = (α(0), . . . ,α(i−1))α j

⇒ α = (β(0), . . . ,β(i−1))(β(j), . . . ,β(|β|−1))γω

⇒ contradiction,〈β,γ〉 is minimal forα
Case 3,|β| ≤ i < j < |β|+ |γ|:
αi = α j ⇒ (α(0), . . . ,α(i−1))αi = (α(0), . . . ,α(i−1))α j

⇒ α = β(γ(0), . . . ,γ(i−1−|β|)γ(j−|β|), . . . ,γ(|γ|−1))ω

⇒ contradiction,〈β,γ〉 is minimal forα

7

p & q {p, X G q, p & X G q} {q, G q, X G q}

Büchi automatonmodel

Fig. 3. Model and B̈uchi automaton to recognize counterexamples for¬(p∧XGq) resulting in
non-optimal counterexample

Case 4, 0≤ i < |β| ≤ j < |β|+ |γ|:
αi = α j ⇒ (α(0), . . . ,α(i−1))αi = (α(0), . . . ,α(i−1))α j

⇒ α = (β(0), . . . ,β(i−1))(γ(j−|β|), . . . ,γ(|γ|−1)γ(0), . . . ,γ(j−|β|−1))ω

⇒ contradiction,〈β,γ〉 is minimal forα
Case 5,|β|+ |γ| ≤ i and/or j: Reduce to 1 – 4 by subtracting|γ| from i and/or j.

3⇒ 2: Letα = βγω ∈ Lang(B) andρ a run onα with ∀i, j . αi = α j ⇒ ρ(i) = ρ(j). Let
〈β,γ〉 be minimal forα.

α = βγω ⇒ ∀i < |γ|,∀k . α|β|+i = (γω)i = α|β|+i+|γ|k
⇒ ∀i < |γ|,∀k . ρ(|β|+ i) = ρ(|β|+ i + |γ|k)

Let σ = ρ(0), . . . ,ρ(|β|−1) andτ = ρ(|β|), . . . ,ρ(|β|+ |γ|−1). Hence,ρ = στω such
that|σ|= |β| and|τ|= |γ|. 2

3.3 (Non-) Optimality of Specific Approaches

The approach by Gerth et al. (GPVW) [GPVW96] for future time LTL forms the basis
of many algorithms to construct small Büchi automata, which benefits explicit state
model checking but is also used, e.g., for symbolic model checking in VIS [Gro96].
Figure 3 shows an example that GPVW does not, in general, lead to tight automata.
Subsequences starting from the initial state of the Büchi automaton fulfillp∧XGq,
those starting from the other state satisfyGq. The model has a single, infinite path
satisfyingG(p∧q) — a counterexample of length 1 to the specification¬(p∧XGq).
Note that adding transitions or designating more initial states is not enough to make the
automaton in Fig. 3 tight: an additional state is required. Non-optimality of GPVW is
shared by many of its descendants, e.g., [SB00].

In a Büchi automatonBφ
CGH+ each state variable corresponds to a subformulaψ of

φ (see Tab. 1). This directly proves tightness ofBφ
CGH+ for a PLTLF formulaφ.

Proposition 1. Let φ be a future time LTL formula, let BφCGH+ be defined as above.

Then Bφ
CGH+ is tight.

Proof. Every two states inBφ
CGH+ differ in the valuation of at least one state variable,

and therefore specify a different, non-overlapping future. According to Thm. 1, a Büchi
automatonB is tight iff for each accepted wordα there exists a runρ on α in B with
∀i, j . (αi = α j ⇒ ρ(i) = ρ(j)). Clearly,αi = α j have the same future, hence, on each
run inB we haveαi = α j ⇒ ρ(i) = ρ(j). 2

What is useful for future time hurts tightness as soon as past operators are included:
Bφ

CGH+ may also distinguish states of an accepted word that have different past but

8

... n−1n−210

¬(F(G(O((c = 0)∧
O((c = 1)∧

. . .
O(c = n−1)

. . .
)

))))

Fig. 4.Simple modulo-n counter with property

same future. Lemma 2 states that a past time formula can distinguish only finitely many
iterations of a loop. This can be used to establish an upper bound on the excess length
of a counterexample produced by CGH+ for a PLTLB formula:

Proposition 2. Let K be a Kripke structure,φ a PLTLB property with K6|=∀ φ, and
B¬φ

CGH+ a Büchi automaton constructed with CGH+. Letα = 〈β,γ〉 be a shortest coun-

terexample in K. Then, there is an initialized fair lassoλ = 〈µ,ν〉 in K×B¬φ
CGH+ with

|µ| ≤ |β|+(h(¬φ)+1)|γ| and|ν|= |γ|.

Proof. The states ofB¬φ
CGH+ each correspond to a subset of{ψ | ψ ∈ sub(¬φ)}∪{◦ψ |

◦ ∈ {X,Y}∧ψ ∈ sub(¬φ)} wheresub(¬φ) is the set of subformulae of¬φ. By Lemma
2, a PLTLB formula cannot distinguish iterations of the loop that occur after theh(¬φ)-
th iteration. More formally, for any lassoα = βγω, any PLTLB formulaψ, and any
i ≥ |β|+h(ψ)|γ|, αi |= ψ iff αi+|γ| |= ψ. Hence, by the correctness of the construction,
one can derive a fair pathλ from α. By Lemma 2, a loop of lengthγ starts inλ after at
mosth(¬φ)+1 iterations of the loop inα have passed (note that the past time operator
depth of the formulae labelling the states ofB¬φ

CGH+ may beh(¬φ)+1). 2

For an example that exhibits excess length, which is quadratic in the length of the
shortest counterexample, consider the simple modulo-n counter and property in Fig. 4
(adapted from [BC03]). The innermost formulaO(c = n− 1) remains true from the
end of the first loop iteration in the counter,O((c = n−2)∧ (O(c = n−1))) becomes
and remains truen− 1 steps later, etc. Hence, a loop inB¬φ

CGH+ is only reached after
O(n2) steps of the counter have been performed. Clearly, the shortest counterexample
is a single iteration of the loop withO(n) steps.

Every PLTLB formula can be transformed into a future time LTL formula equivalent
at the beginning of a sequence [Gab89]. Due to [LMS02] we can expect an at least
exponential worst-case increase in the size of the formula. Rather than translating an
LTL formula with past into a pure future version, we follow a different path in the next
section.

4 A Tight Look at LTL Model Checking

Proposition 2 states that a Büchi automaton constructed with CGH+ accepts a shortest
counterexample with a run that may have an overly long stem but a loop of the same
length as that of the counterexample. Bounded model checking [BCCZ99] has been
extended recently to include past time operators [BC03,CRS04,LBHJ05]. Of these,

9

[BC03,LBHJ05] usevirtual unrolling of the transition relation to find shortest coun-
terexamples if past time operators are present. Inspired by [LBHJ05], we adapt this
approach to construct a tight Büchi automaton for PLTLB based on CGH+.

4.1 Virtual Unrolling for Bounded Model Checking of PLTLB

In bounded model checking, the model checking problem, which asks whetherK |=∀ φ
holds, is translated into a sequence of propositional formulae of the form|[M,φ,k]| in
the following way:|[M,φ,k]| is satisfiable iff a finite informative bad prefix [KV99] or
lasso-shaped counterexampleπ of lengthk exists. In the case of a lasso-shaped coun-
terexample, a loop is assumed to be closed between the last stateπ(k) and some suc-
cessorπ(l + 1) of a previous occurrence of that last stateπ(l) = π(k). The resulting
formulae are then handed to a SAT solver for increasing boundsk until either a coun-
terexample is found, absence of a counterexample is proved, or a user defined resource
threshold is reached. Typically, one fresh Boolean variablex j,ψ is introduced for each
pair of relative position in the path (0≤ j ≤ k) and subformulaψ of φ, such thatx j,ψ is
true iff ψ holds at positionj.

On a lasso-shaped path, the truth of a future time formulaφ at positionk may depend
on the truth of some of its subformulaeψ at positions> k. While those are not available
directly, the truth of a future time formula at a given position within the loop does not
change between different iterations of the loop. Hence, the truth value ofψ at position
0≤m< k− l in any iterationi ≥ 0 of the loop can be substituted with the truth value of
ψ at positionm in the first iteration:πl+i(k−l)+m |= ψ ⇔ πl+m |= ψ. A single unrolling
of the loop is therefore sufficient, resulting in a shortest counterexample.

When past time operators are admitted, this is no longer true. By Lemma 2, the
truth of a subformulaψ may change between the firsth(ψ)+ 1 iterations of the loop
before it stabilizes. Hence, only afterh(ψ) + 1 iterations can the truth value ofψ in
some iterationi ≥ h(ψ)+1 of the loop be replaced by the truth value ofψ in iteration
h(ψ)+1: πl+i(k−l)+m |= ψ⇔ πl+(h(ψ)+1)(k−l)+m |= ψ. A naive approach for checking a
past time formulaφ would still have one Boolean variable per pair of relative position in
the path and subformula. However, the approach would have to ensure that the path ends
with h(φ)+1 copies of the loop. This would lead to a more complicated formulation of
loop detection and would not allow to find shortest counterexamples. A less naive, but
still suboptimal solution might not guarantee a high enough number of loop unrollings
directly but could include the variables representing the truth of properties in the loop
detection. That approach could not ensure shortest counterexamples either.

Benedetti and Cimatti [BC03] showed how to do better: note, that some subformulae
ψ of φ have lower past operator depth, and, therefore, require fewer loop iterations to
stabilize. In particular, atomic propositions remain stable from the first iteration onward.
It is sufficient to perform a single unrolling of the loop. Rather than having only one
Boolean variablex j,ψ per pair of relative positionj in the path and subformulaψ, there
are now as many variables per pair(j,ψ) as iterations of the loop are required for that
subformula to stabilize. Each variable corresponds to the truth value ofψ at the same
relative positionj but in a different iterationi of the loop:x j,ψ,i ⇔ π j+i(k−l) |= ψ with
0≤ j ≤ k∧0≤ i ≤ h(ψ) (the value ofx j,ψ,i may not be well-defined ifi > 0∧ j < l).
Thisvirtual unrolling of the loop leads to shortest counterexamples.

10

4.2 A Tight Büchi Automaton for PLTLB

A Büchi automaton constructed with CGH+ suffers from similar problems as the naive
approaches to bounded model checking of PLTLB. The automaton has a single variable
representing the truth of a subformula in a given state. For a loop in the product of the
model and the automaton to occur, the truth of all subformulae must have stabilized.
Hence, we can adopt the same idea as outlined above to obtain a tight Büchi automaton.

We construct a B̈uchi automatonBφ
SB= (Vφ

SB, I
φ
SB,T

φ
SB,F

φ
SB) for a PLTLB formulaφ as

follows: Vφ
SB= Vφ∪{lb, le} with LB = LE = {⊥,>}, Iφ

SB= Iφ∧xφ,0, Tφ
SB= Tφ∧ (lb→

lb′), andFφ
SB = Fφ ∪{{lb∧ le}}, whereVφ, Iφ, Tφ, andFφ are defined recursively in

Tab. 2.
Each subformulaψ of φ is represented byh(ψ)+1 state variablesxψ,i . We refer to

the i in xψ,i asgenerationbelow. Two more state variableslb (for loopbody) andle (for
loopend) are added. As long aslb is false (on the stem), only variables in generation 0
are constrained according to the recursive definition of PLTLB. Whenlb becomes true
(on the loop), the definitions apply to all generations. Whilele is false (the end of a loop
iteration is not yet reached),xψ,i is defined in terms of current and next-state values of
variables in the same generation. Whenle is true (at the end of a loop iteration), the next-
state values are obtained from the next generation of variables if the present generation
is not already the last. The fairness constraints, which guarantee the correct fixed point
for U formulae, are only applied to the last generation of the corresponding variables.

The intuition is as follows. Starting with generation 0 on the stem and the first
iteration of the loop, each generationi of xψ,i represents the truth ofψ in one loop
iteration, the end of which is signaled bylb∧ le being true. Formally, fori < h(ψ),
xψ,i(j) holds the truth ofψ at positionj of a word iff lb∧ le has been true on that pathi
times prior to the current state. From theh(ψ)-th occurrence oflb∧ le, xψ,h(ψ) continues
to represent the truth ofψ.

Note thatlb and le are oracles. The valuation of these variables on an arbitrary
run may not correspond to the situations they are named after. However, forBφ

SB to
correctly recognize{α | α |= φ}, it is not relevant which generation holds the truth at a
given position. It is only required that at each position some generation represents truth
correctly, each generation passes on to the next at some point, and ultimately, depending
on ψ, the last generationh(ψ) continues to hold the proper values.

For tightness, the variables of a given generation need to be able to take on the
same values in every iteration of the loop, regardless of whether they currently hold
the truth or not. This requires breaking the links to previous iterations for variables of
generation 0 representingY andS formulae at each start of a loop iteration after the
first. In addition,Y- andS-variables of generations> 0 may not be constrained by past
values at the beginning of the loop body. On a shortest run on some lasso-shaped word
α, lb andle will correctly signal loop body and loop end.

Theorem 2. Letφ be a PLTLB formula, let BφSBbe defined as above. Then, Lang(Bφ
SB)=

{α | α |= φ} and Bφ
SB is tight.

Proof. By Lemma 3 and 4. 2

11

ψ definition

p
Vψ = {xp,0}, whereXp,0 = {⊥,>}
Tψ = xp,0 ↔ p
Iψ = > Fψ = /0

¬ψ1

Vψ = Vψ1 ∪
⋃h(ψ)

i=0 {xψ,i}, whereXψ,i = {⊥,>}
Tψ = Tψ1 ∧

∧h(ψ)
i=0 (xψ,i ↔¬xψ1,i)

Iψ = Iψ1 Fψ = Fψ1

ψ1∨ψ2

Vψ = Vψ1 ∪Vψ2 ∪
⋃h(ψ)

i=0 {xψ,i}, whereXψ,i = {⊥,>}
Tψ = Tψ1 ∧Tψ2 ∧

∧h(ψ)
i=0 (xψ,i ↔ xψ1,min(i,h(ψ1))∨xψ2,min(i,h(ψ2)))

Iψ = Iψ1 ∧ Iψ2 Fψ = Fψ1 ∪Fψ2

Xψ1

Vψ = Vψ1 ∪
⋃h(ψ)

i=0 {xψ,i}, whereXψ,i = {⊥,>}
Tψ = Tψ1 ∧ (¬lb→ (xψ,0 ↔ x′ψ1,0))

∧((lb∧¬le)→
∧h(ψ)−1

i=0 (xψ,i ↔ x′ψ1,i))

∧((lb∧ le)→
∧h(ψ)−1

i=0 (xψ,i ↔ x′ψ1,i+1))
∧(lb→ (xψ,h(ψ) ↔ x′ψ1,h(ψ1)

))
Iψ = Iψ1 Fψ = Fψ1

ψ1 U ψ2

Vψ = Vψ1 ∪Vψ2 ∪
⋃h(ψ)

i=0 {xψ,i}, whereXψ,i = {⊥,>}
Tψ = Tψ1 ∧Tψ2 ∧ (¬lb→ (xψ,0 ↔ xψ2,0∨ (xψ1,0∧x′ψ,0)))

∧((lb∧¬le)→
∧h(ψ)−1

i=0 (xψ,i ↔ xψ2,min(i,h(ψ2))∨ (xψ1,min(i,h(ψ1))∧x′ψ,i)))

∧((lb∧ le)→
∧h(ψ)−1

i=0 (xψ,i ↔ xψ2,min(i,h(ψ2))∨ (xψ1,min(i,h(ψ1))∧x′ψ,i+1)))
∧(lb→ (xψ,h(ψ) ↔ xψ2,h(ψ2)∨ (xψ1,h(ψ1)∧x′ψ,h(ψ))))

Iψ = Iψ1 ∧ Iψ2 Fψ = Fψ1 ∪Fψ2 ∪{{¬xψ,h(ψ)∨xψ2,h(ψ2)}}

Yψ1

Vψ = Vψ1 ∪
⋃h(ψ)

i=0 {xψ,i}, whereXψ,i = {⊥,>}
Tψ = Tψ1 ∧ (¬lb→ (x′ψ,0 ↔ xψ1,0))

∧((lb∧¬le)→
∧h(ψ)−1

i=0 (x′ψ,i ↔ xψ1,i))

∧((lb∧ le)→
∧h(ψ)−2

i=0 (x′ψ,i+1 ↔ xψ1,i))
∧(lb→ (x′ψ,h(ψ) ↔ xψ1,h(ψ1)))

Iψ = Iψ1 ∧ (xψ,0 ↔⊥) Fψ = Fψ1

ψ1 Sψ2

Vψ = Vψ1 ∪Vψ2 ∪
⋃h(ψ)

i=0 {xψ,i}, whereXψ,i = {⊥,>}
Tψ = Tψ1 ∧Tψ2 ∧ (¬lb→ (x′ψ,0 ↔ x′ψ2,0∨ (x′ψ1,0∧xψ,0)))

∧((lb∧¬le)→
∧h(ψ)−1

i=0 (x′ψ,i ↔ x′ψ2,min(i,h(ψ2))
∨ (x′ψ1,min(i,h(ψ1))

∧xψ,i)))

∧((lb∧ le)→
∧h(ψ)−1

i=0 (x′ψ,i+1 ↔ x′ψ2,min(i+1,h(ψ2))
∨ (x′ψ1,min(i+1,h(ψ1))

∧xψ,i)))
∧(lb→ (x′ψ,h(ψ) ↔ x′ψ2,h(ψ2)

∨ (x′ψ1,h(ψ1)
∧xψ,h(ψ))))

Iψ = Iψ1 ∧ Iψ2 ∧ (xψ,0 ↔ xψ2,0) Fψ = Fψ1 ∪Fψ2

Table 2.Property-dependent part of a tight Büchi automaton

12

Lemma 3. Lang(Bφ
SB) = {α | α |= φ}

Proof. (Correctness) We show that on every fair path in(Vφ
SB, I

φ,Tφ
SB,F

φ
SB) the values

of xψ,i j (j) represent the validity of the subformulaψ at position j, wherei j is either
the number of(lb∧ le)’s seen so far orh(ψ), whichever is smaller. Formally, letρ
be a run onα in (Vφ

SB, I
φ,Tφ

SB,F
φ
SB). For each positionj in α, let i j = min(|{k | (k ≤

j−1)∧ lb(ρ(k))∧ le(ρ(k))}|,h(ψ)). Inspection of Tab. 2 shows that the constraints on
thexψ,i j (j) are the same as the constraints on the correspondingxψ(j) in Tab. 1. Hence,
α j |= ψ⇔ xψ,i j (ρ(j)).

(Completeness) We show that there is a run in(Vφ
SB, I

φ,Tφ
SB,F

φ
SB) for each wordα.

Choose a set of indicesU = { j0, j1, . . .} such thatle(j)↔ j ∈U . Further, choosels≤
j0 and setlb(j) ↔ j ≥ ls. We inductively construct a valuation forxψ,i(j) for each
subformulaψ of φ, i ≤ h(ψ), and j ≥ 0. If ψ is an atomic propositionp, setxp,0(j)↔
(α j |= p). If the top level operator ofψ is Boolean, the valuation follows directly from
the semantics of the operator. ForX, eachxψ,i(j) is defined at most once in Tab. 2.
ψ = Yψ1 is similar. Note thath(ψ) = h(ψ1)+ 1. Therefore,i runs only up toh(ψ)−
2 if lb∧ le; i = h(ψ)− 1 is covered by the case forlb in the line below.xψ,i(j) is
unconstrained ifi = 0 and j −1∈U as well as ifi ≥ 1 and j ≤ ls. For ψ = ψ1 U ψ2,
start with generationh(ψ). If xψ2,h(ψ2) remains false from somejm on, assign∀ j ≥
jm . xψ,h(ψ)(j)↔⊥. Now work towards decreasingj from eachjn with xψ2,h(ψ2)(jn)↔
>, using line 4 in the definition ofT for U. Continue with generationh(ψ)−1. Start
at each j ∈ U by obtainingxψ,h(ψ)−1(j) from the previously assignedxψ,h(ψ)(j + 1)
via line 3. Then work towards decreasingj again, using lines 1 or 2 in the definition
of T until xψ,h(ψ)−1 is assigned for allj. This is repeated in decreasing order for each
generation 0≤ i < h(ψ)−1. ForS, start withxψ,0(0) and proceed towards increasing
j, also increasingi when j ∈U (lines 1 – 3 in the definition ofT for S). Wheni = h(ψ)
is reached, assignxψ,h(ψ)(j) for all j using the fourth line in the definition ofT. Then,
similar toU, work towards decreasingi and j from eachj ∈U . Fairness follows from
the definition ofU , ls, and the valuation chosen forU.

The claim is now immediate by the definition ofIφ
SB. 2

Lemma 4. Bφ
SB is tight.

Proof. We show inductively that the valuations of the variablesxψ,i(j) can be chosen
such that the valuation at a given relative position in a loop iteration is the same for each
iteration in a generationi. Formally, letα = βγω with α |= φ. There exists a runρ such
that for all subformulaeψ of φ

∀i ≤ h(ψ) . ∀ j1, j2 ≥ |β| . ((∃k≥ 0 . j2− j1 = k|γ|)⇒ (xψ,i(ρ(j1))↔ xψ,i(ρ(j2))))

Atomic propositions, Boolean connectives, andX are clear.Y is also easy, we only have
to assign the appropriate value from other iterations whenxψ,i(j) is unconstrained. For
ψ = ψ1 U ψ2, by the induction hypothesis,xψ2,h(ψ2) is either always false (in which
case we assignedxψ,h(ψ)(j) to false according to the proof of Lemma 3) or becomes
true at the same time in each loop iteration. Hence, the claim holds for generationh(ψ).
From there we can proceed to previous generations in the same manner as in the proof

13

of Lemma 3. ForS we follow the order of assignments from the proof of Lemma 3.
By induction, the claim holds for generationh(ψ). From there, we proceed towards
decreasingj and i. We use, by induction, the same valuations of subformulae and the
same equations (though in reverse direction) as we used to get fromxψ,0(0) to genera-
tion h(ψ). 2

Bφ
SB hasO(2|φ|

2
) states. A symbolic representation can be constructed inO(|φ|2)

time and space. Note, that the size of a Büchi automaton that is tight in the original
sense of [KV99] (i.e., it recognizes shortest violating prefixes of safety properties) is
doubly exponential in|φ| [KV99].

The same optimization as used in Sect. 2 for CGH+ can be applied. It replaces state
variables for Boolean connectives with macros in order to reduce the number of BDD
variables in the context of symbolic model checking with BDDs.

5 Finding Shortest Counterexamples with Symbolic Model
Checking

We implemented the B̈uchi automaton described in the previous section for NuSMV
[CCG+02]. We use our reduction of finite state model checking to reachability analysis
[SB04] to find a shortest counterexample. For efficiency reasons, the encoding of the
automaton is tightly integrated with the symbolic loop detection, which is at the heart
of [SB04]. As an example, the signals for loop body and loop end are provided directly
by the reduction rather than being separate input variables.

In fact, our implementation started as an adaptation of the very elegant encoding of
PLTLB in [LBHJ05] to our reduction. Only then we extracted a tight Büchi automaton
from the construction. We kept our original implementation for its superior performance
but chose to provide the more abstract view in the previous section, as, in our opinion,
it provides better understanding and is also more widely applicable.

6 Experimental Results

In this section we compare our implementation to find shortest counterexamples us-
ing symbolic model checking from Sect. 5 with bounded model checking using the
encoding of [LBHJ05] and the standard LTL model checking algorithm of NuSMV
[CCG+02]. For our translation, we performed invariant checking with NuSMV 2.2.2.
For standard LTL, also in NuSMV 2.2.2, forward search on the reachable state space
was applied. Bounded model checking was performed with the implementation of Timo
Latvala in a modified NuSMV 2.1.2. If cone of influence reduction is to be used with
our translation, the reduction must be applied before the translation. However, NuSMV
2.2.2 doesn’t seem to provide a direct way to output the reduced model. Therefore,
cone of influence reduction was disabled in all experiments. Otherwise, NuSMV 2.2.2
would find shorter loops, involving only the variables in the cone of the property, in
the reduced model. Platform was an Intel Pentium IV at 2.8 GHz with 2 GByte RAM
running Linux 2.4.18. Timeout for each experiment was set to 1 hour, memory usage
was limited to 1.5 GByte.

14

LTL L2S BMC
model property l ′ time memory l time memory time l −1 time l time 1. . . l

1394-3-2 0 16 72.8 119 11 7.9 1267 9.3 3.1 54.3
1 12 17.0 157 11 6.8 1556 9.4 3.7 60.0

1394-4-2 0 t.o. t.o. t.o. 16 462.1 34695 219.7 13.6 1233.6
1 20 812.6 2356 16 429.0 44177 314.6 14.9 1499.9

abp4 L 37 < 1 234 16 16.3 844 78.8 8.4 340.2
brp ¬ L 6 4.8 46 1 < 1 192 < 1 < 1 < 1

¬ L, nv 68 15.0 122 24 104.9 1560 1005.0 260.8 3171.0
dme2 ¬ L 1 < 1 123 1 < 1 128 < 1 < 1 < 1

¬ L, nv 40 2.3 408 39 1.2 52 97.4 7.9 502.9
dme5 ¬ L 1 11.3 112 1 1.1 186 < 1 < 1 < 1

¬ L, nv 344 1533.1 330 99 384.8 1396 t.o. t.o. t.o.
dme6 ¬ L 1 29.1 183 1 1.6 362 < 1 < 1 < 1

¬ L, nv t.o. t.o. t.o. 119 926.4 2093 t.o. t.o. t.o.
pci F L 22 231.4 341 18 t.o. t.o. 771.2 965.4 1879.6
prod-cons 0 69 3.1 311 26 16.5 722 442.4 41.7 551.8

1 33 2.0 250 21 1.8 162 25.0 11.1 126.2
2 58 71.0 216 24 3.1 221 7.6 10.9 178.8
3 42 7.9 241 24 2.6 224 28.0 8.93 361.6

production-cell0 85 < 1 300 81 9.8 220 59.1 107.8 t.o.
1 146 1.4 241 81 t.o. t.o. 23.4 30.0 t.o.

bc57-sensors 0 112 141.3 213 103 194.1 4382 1143.1 201.9 t.o.
srg5 ¬ L 16 < 1 120 1 < 1 74 < 1 < 1 < 1

¬ L, nv 15 < 1 31 6 1.5 217 < 1 < 1 < 1

Table 3.Real-world examples

As the focus of this paper is on producing lasso-shaped counterexamples, only prop-
erties were chosen that proved false with such a counterexample. Results are shown in
Table 3. The experiments include all real-world models used in [LBHJ05]: abp4, brp,
dme?, pci, and srg5. If the property checked in [LBHJ05] has a lasso-shaped coun-
terexample, it was used unmodified in our experiments (“L”). We also used the negated
version of that property if that yields such a counterexample (“¬ L”). Some of the prop-
erties were made a liveness property by prefixing them withF (requiring a loop to prove
false) or were enhanced to make part of the property non-volatile (yielding a more inter-
esting counterexample), marked “nv”. In addition, we chose some of the models from
our previous work [SB04], with some properties already verified there and with new,
more complicated properties. Templates of the properties are shown in appendix B.

Columns 3 – 5 give the results for standard LTL model checking (“LTL”):l is the
length of the counterexample, time is in seconds, and memory usage in thousand BDD
nodes allocated. The 6th column gives the length of a shortest counterexample as re-
ported by our translation and bounded model checking. Columns 7 and 8 give run time
and memory usage for our algorithm (“L2S”). The last three columns indicate run time
for bounded model checking (“BMC”). The first of these is the time for the last unsuc-
cessful iteration of the bounded model checker alone (not yet producing a counterex-
ample), the second is the time for the first successful iteration alone (giving the shortest
counterexample), and the last column is the time for all bounds from 1 until a coun-
terexample is found. The implementation of [LBHJ05] is not incremental [Sht01], i.e.,
the SAT solver cannot benefit from results of previous iterations. We use the time re-
quired for the last unsuccessful iteration (“Timel −1”) to estimate the amount of work
that an incremental implementation would at least have to do. If our algorithm needs
less time than that, we conclude that our algorithm is faster. “t.o.” or “m.o.” indicate
time- or memory-out.

15

Both, L2S and BMC, find significantly shorter counterexamples than LTL. Our al-
gorithm often outperforms BMC with respect to time. On the other hand, L2S needs
more memory than standard LTL in most cases. L2S may even give a speed up when
compared to the standard algorithm on some examples.

7 Conclusions

We have presented a method to find shortest lasso-shaped counterexamples for full LTL.
Experimental results show competitive performance with bounded model checking. We
have established general criteria for Büchi automata to accept shortest lasso-shaped
counterexamples, extending the notion of a tight automaton from [KV99]. We have
presented a construction of a Büchi automaton that is tight for full LTL.

Our construction generates Büchi automata with a high number of states. In ongoing
work we apply virtual unrolling to obtain tight B̈uchi automata from the subclass of
automata that, like automata constructed with CGH+, accepts counterexamples with an
overly long stem but shortest loop. This should result in tight automata with fewer states
and may help to facilitate application also in explicit state model checking employing,
e.g., the algorithm of [GMZ04]. Further options include using transition-labeled instead
of state-labeled automata [AS04] as well as more deterministic automata [ST03].

Acknowledgements.We thank Timo Latvala for providing us with his modified variant
of NuSMV 2.1.2 including a very timely bug fix and Roderick Bloem for pointing us to
the problem of a shortest informative vs. any shortest counterexample.

References

[AS04] M. Awedh and F. Somenzi. Proving more properties with bounded model checking.
In CAV’04, volume 3114 ofLNCS, pages 96–108. Springer, 2004.

[BC03] M. Benedetti and A. Cimatti. Bounded model checking for past LTL. InTACAS’03,
volume 2619 ofLNCS, pages 18–33. Springer, 2003.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. InTACAS’99, volume 1579 ofLNCS, pages 193–207. Springer, 1999.

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV 2: An opensource tool for symbolic model check-
ing. In CAV’02, volume 2404 ofLNCS, pages 359–364. Springer, 2002.

[CGH97] E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking.
FMSD, 10(1):47–71, 1997.

[CGMZ95] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient generation of coun-
terexamples and witnesses in symbolic model checking. InDAC’95, pages 427–432.
ACM, 1995.

[CRS04] A. Cimatti, M. Roveri, and D. Sheridan. Bounded verification of past LTL. InFM-
CAD’04, volume 3312 ofLNCS, pages 245–259. Springer, 2004.

[CVWY92] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algo-
rithms for the verification of temporal properties.FMSD, 1(2/3):275–288, 1992.

[Eme90] A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,Handbook of
Theoretical Computer Science: Volume B, Formal Methods and Semantics, pages
995–1072. North-Holland Pub. Co., 1990.

16

[Gab89] D. Gabbay. The declarative past and imperative future. InTemporal Logic in Speci-
fication, volume 398 ofLNCS, pages 409–448. Springer, 1989.

[GK04] A. Groce and D. Kr̈oning. Making the most of BMC counterexamples. In A. Biere
and O. Strichman, editors,BMC’04, pages 71–84, 2004.

[GMZ04] P. Gastin, P. Moro, and M. Zeitoun. Minimization of counterexamples in SPIN. In
SPIN’04, volume 2989 ofLNCS, pages 92–108. Springer, 2004.

[GPVW96] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verification
of linear temporal logic. InPSTV’95, volume 38 ofIFIP Conference Proceedings,
pages 3–18. Chapman & Hall, 1996.

[Gro96] The VIS Group. VIS: A system for verification and synthesis. InCAV’96, volume
1102 ofLNCS, pages 428–432. Springer, 1996.

[Kam68] J. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of
California at Los Angeles, 1968.

[KPR98] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal logic
specifications. InICALP’98, volume 1443 ofLNCS, pages 1–16. Springer, 1998.

[KV99] O. Kupferman and M. Vardi. Model checking of safety properties. InCAV’99, vol-
ume 1633 ofLNCS, pages 172–183. Springer, 1999.

[LBHJ05] T. Latvala, A. Biere, K. Heljanko, and T. Junttila. Simple is better: Efficient bounded
model checking for past LTL. InVMCAI’05, volume 3385 ofLNCS. Springer, 2005.

[LMS02] F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal logic with forgettable past.
In LICS’02, pages 383–392. IEEE Computer Society, 2002.

[RBS00] K. Ravi, R. Bloem, and F. Somenzi. A comparative study of symbolic algorithms
for the computation of fair cycles. InFMCAD’00, volume 1954 ofLNCS, pages
143–160. Springer, 2000.

[SB00] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. InCAV’00,
volume 1855 ofLNCS, pages 248–263. Springer, 2000.

[SB04] V. Schuppan and A. Biere. Efficient reduction of finite state model checking to reach-
ability analysis. International Journal on Software Tools for Technology Transfer
(STTT), 5(2–3):185–204, 2004.

[Sch01] K. Schneider. Improving automata generation for linear temporal logic by consid-
ering the automaton hierarchy. InLPAR’01, volume 2250 ofLNCS, pages 39–54.
Springer, 2001.

[Sht01] O. Shtrichman. Pruning techniques for the SAT-based bounded model checking
problem. InCHARME’01, volume 2144 ofLNCS, pages 58–70. Springer, 2001.

[ST03] R. Sebastiani and S. Tonetta. ”More deterministic” vs. ”smaller” Büchi automata
for efficient LTL model checking. InCHARME’03, volume 2860 ofLNCS, pages
126–140. Springer, 2003.

[VW86] M. Vardi and P. Wolper. An automata-theoretic approach to automatic program veri-
fication. InLICS’86, pages 332–344. IEEE Computer Society, 1986.

A Proofs

Lemma 1. Let 〈β,γ〉 be a minimal lasso forα, 〈β′,γ′〉 a minimal lasso forα′, and
α′′ = α×α′. Then there are finite sequencesβ′′,γ′′ such that〈β′′,γ′′〉 is a minimal lasso
for α′′, |β′′|= max(|β|, |β′|), and|γ′′|= lcm(|γ|, |γ′|).

Proof: Let ls = max(|β|, |β′|), l l = lcm(|γ|, |γ′|). Defineβ′′ = α′′(0) . . .α′′(ls−1), γ′′ =
α′′(ls) . . .α′′(ls+ l l −1). Clearly,α′′ = β′′γ′′ω. Now assume, there exist̂β′′, γ̂′′, such that
α′′ = 〈β̂′′, γ̂′′〉 and|〈β̂′′, γ̂′′〉|< |〈β′′,γ′′〉|.

17

Assume first that|β̂′′| < |β′′|. W.l.o.g. |β′| ≤ |β|. By projectingβ̂′′, γ̂′′ onto their
first components we can extractβ̂, γ̂ with α = β̂γ̂ω and |β̂| < |β|. Further, there exists
0≤ i < |γ| such thatγrot = γ(i) . . .γ(|γ|−1)γ(0) . . .γ(i−1) with |γrot |= |γ| andγrot

ω = γ̂ω.
Hence,〈β̂,γrot〉= 〈β,γ〉 with |〈β̂,γrot〉|< |〈β,γ〉|, a contradiction.

Now assume|γ̂′′| < |γ′′|. W.l.o.g. |γ| does not divide|γ̂′′|. By projectingγ̂′′ onto its
first component we can extractγ̂ with γω = γ̂ω and|γ| does not divide|γ̂|.

Case 1,|γ̂|< |γ|: α = 〈β, γ̂〉 with |〈β, γ̂〉|< |〈β,γ〉|, contradiction.

Case 2,(|γ|< |γ̂|) ∧ (|γ̂|− |γ|< |γ|): Let δ = γ(0) . . .γ(|γ̂|− |γ|−1). Hence, by Lemma
5, α = 〈β,δ〉 with |〈β,δ〉|< |〈β,γ〉|, contradiction.

Case 3,|γ|< |γ̂|∧ |γ̂|− |γ|> |γ|: Can be reduced to 2. 2

Lemma 5. Let α,β,γ be sequences such thatβ 6= ε, |α| ≥ |β|, αβ = γ, andαω = γω.
Then alsoβω = γω.

Proof: We prove inductively thatαiβi = γi . The claim follows, asi = |γ| impliesβi =
β|γ| = γ|β|. Base case,i = 1: by definition ofα,β,γ. Inductive case: assumeαiβi = γi .
Therefore,αi is a prefix, andβi a suffix ofγi+1. The remaining “gap” has lengthγ. From
αω = γω, we have thatαi+1 and(αi+2)(0) . . .(αi+2)(min(|αi+2|, |γi+1|)−1) are prefixes
of γi+1. Further, withαβ = γ, β is a prefix ofα. Hence, we can fill the “gap” withαβ.2

B Templates of Properties

model property template
1394-3/4-2 0 ¬((F(G(p)))→ (¬((q) S(r))))

1 ¬(F((p)|((q|(r))))
abp4 L G((p)→ (Y(H(q))))
brp ¬ L ¬(F(G((p)→ (O((q)→ (O(r)))))))

¬ L, nv ¬((F(G((p)→ (O((q)→ (O(r)))))))∧ ((G(F(p)))∧ (G(F(q)))))
dme2/5/6 ¬ L ¬G((p)→ ((p) T ((¬(p)) T (¬(q)))))

¬ L, nv ¬((G((p)→ ((p) T ((¬(p)) T (¬(q))))))∧ (G(F(p))))
pci F L F(G((p)→ (G(((q)∧ (Y((r)∧ (O((s)∧ (O((t)∧ (O(u)))))))))→

(O((v)∧ (O((w)∧ (¬(O(x)))))))))))
prod-cons 0 ¬(((G(¬(p)))∧ (G(F((q)∧ ((q) S(r))))))∧ (G(F(((q)∧ ((q) S(r)))→ ((s) S(t))))))

1 ¬((G((p)→ ((p) S((q) S((r) S((s) S(t)))))))∧ (G(F(p))))
2 G((p)→ (F(((q)∧ (r))∧ (r))))
3 G((p)→ (F(q)))

production-cell0 (G(F(((p)∨ (q))∧ (O((r)∧ (O(((s)∨ (t))∧ (O((u)∧
(O(((v)∨ (w))∧ (O(((x)∨ (y))∧ (O(z)))))))))))))))

1 (G(F(((p)∨ (q))∧ (Y(O((r)∧ (Y(O(((s)∨ (t))∧ (Y(O((u)∧
(Y(O(((v)∨ (w))∧ (Y(O(((x)∨ (y))∧ (Y(O(z)))))))))))))))))))))

bc-57-sensors 0 ¬(G(F((p)∧ (O((q)∧ (F((r)∧ (O(s)))))))))
srg5 ¬ L ¬((((F(G(¬(p))))∧ (G(F(q))))∧ (G(F(r))))→ (F((s) S((t) S((u) S((v) S(w)))))))

¬ L, nv ¬(((((F(G(¬(p))))∧ (G(F(q))))∧ (G(F(r))))→ (F((s) S((t) S((u) S((v) S(w)))))))∧
(((F(G(¬(p))))∧ (G(F(q))))∧ (G(F(r)))))

18

