Shortest Counterexamples for Symbolic Model
Checking of LTL with Past

Technical Report #470
Dept. Computer Science, ETHiAch, CH-8092 Zirich, Switzerland

January 26, 2005

Viktor Schuppah and Armin Bieré

1 ETH Ziirich, Computer Systems Institute
CH-8092 4irich, SwitzerlandYiktor.Schuppan@inf.ethz.ch
2 Johannes Kepler University, Institute for Formal Models and Verification
Altenbergerstrasse 69, A-4040 Linz, Austiiéere @jku.at

Abstract. Shorter counterexamples are typically easier to understand. The length
of a counterexample, as reported by a model checker, depends on both the algo-
rithm used for state space exploration and the way the property is encoded. We
provide necessary and sufficient criteria forigcBi automaton to accept shortest
counterexamples. We prove thaifiéhi automata constructed using the approach

of Clarke, Grumberg, and Hamaguchi accept shortest counterexamples of future
time LTL formulae, while an automaton generated with the algorithm of Gerth
et al. (GPVW) may lead to unnecessary long counterexamples. Optimality is lost
in the first case as soon as past time operators are included. Adapting a recently
proposed encoding for bounded model checking of LTL with past, we construct a
Buchi automaton that accepts shortest counterexamples for full LTL. We use our
method of translating liveness into safety to find shortest counterexamples with a
BDD-based symbolic model checker without modifying the model checker itself.
Though our method involves a quadratic blowup of the state space, it outperforms
SAT-based bounded model checking on a number of examples.

1 Introduction

Counterexamples are a salient feature of model checking that help developers to under-
stand the problem in a faulty design. Most counterexamples still need to be interpreted
by humans, and shorter counterexamples will, in general, be easier to understand.

As LTL is defined over infinite paths counterexamples are, in principle, infinitely
long. In a finite state system every failing LTL property also has a lasso-shaped coun-
terexampleBy® [VW86]. Such a counterexample can be finitely represented, where its
length is defined as the sum of the lengths of the fieand loopy [CGMZ95]. Coun-
terexamples to safety properties also have finite bad prefixes that are more useful for a
developer than a corresponding infinite path. In [KV99] Kupferman and Vardi showed
how to recognize the shortest bad prefix using an automaton of size doubly exponen-
tial in the size of the corresponding formula. In this paper we concentrate on shortest
lasso-shaped counterexamples for general LTL properties.

BDD-based symbolic techniques usually proceed breadth first and can find shortest
bad prefixes for many safety properties [KV99]. For more general specifications, find-
ing a shortest counterexample amounts to finding a shortest fair cycle, which is an NP-
complete problem [CGMZ95]. Most BDD-based model checkers offer only heuristics
to minimize the length of counterexamples to such properties. For a comparative study
on their performance and the length of the generated counterexamples see [RBSO00]. In
explicit state model checking a double DFS [CVWY92] is typically used to search the
state space. It does not find shortest counterexamples. Gastin et al. propose an algo-
rithm [GMZ04] to minimize the length of counterexamples, which may visit a state an
exponential number of times.

The first technique in widespread use that can produce shortest counterexamples
for general LTL properties is SAT-based bounded model checking [BCCZ99]. While
[BCCZ99] was restricted to future time LTL, more recent implementations cover full
LTL [BCO3], [CRS04], [LBHJO5]. Whether shortest counterexamples can be reported
depends also on the encoding of the property. Both, [BC03] and [LBHJO05] find short-
est counterexamples. [CRS04] achieves higher performance than [BCO03] but sacri-
fices shortest counterexamples. A detailed experimental comparison of [CRS04] and
[LBHJO5] is not yet available. As SAT-based model checking does not perform equally
well on all examples as the BDD-based variant and vice versa [AS04], an efficient
BDD-based technique that produces shortest counterexamples is desirable.

We recently proposed a method to translate liveness into safety [SB04], which finds
shortest lassos and performs well on a number of examples in a BDD-based model
checker. The automaton-based approach to model checking [VW86] employs such loop
detection but requires translation of an LTL property intoiacB automaton. Hence,
not only must the shortest lasso be found, but the property automaton must also accept
a shortest counterexample [GMZ04,AS04]. So far, sizeioftB automata was a more
important criterion than length of the resulting counterexamples, and little is known
about the latter.

In this paper we establish necessary and sufficient criteria fimhBautomata to
accept shortest counterexamples. We prove that the approach by Clarke et al. [CGH97]
generates Bchi automata that satisfy these criteria for future time LTL. This is not the
case if past time is included, and we establish a quadratic bound on the excess length.
We give an example that the algorithm by Gerth et al. [GPVW96] and many of its
descendants do not generate shortest counterexamples even for future time LTL.

Past time operators do not add expressive power to future time LTL [Kam68]. Still,
a specification that includes past time operators may be more natural than the pure fu-
ture variant, and it can be exponentially more succinct [LMS02]. We are not aware of
an efficient, easy-to-implement algorithm to translate a past time LTL formula into its
future time equivalent. We instead construct écBi automaton that accepts shortest
counterexamples for full LTL by adapting a recent, simple and efficient encoding for
bounded model checking with past [LBHJO5]. We then use our transformation from
liveness to safety to find shortest counterexamples with a BDD-based symbolic model
checker. The transformation itself does not require modifications to the model checker
but is purely on the model and the specification to be checked. The only requirementis a
breadth-first reachability check. Our experiments show that finding shortest counterex-

amples in the transformed model with the BDD-based algorithm of NuSMV [0TZ2p
can be significantly faster than SAT-based bounded model checking of the original
model.

In the following section we introduce our notation. In Sect. 3 we define shortest
counterexamples and investigate whicticBi automata can accept them. We present
our construction of a Bchi automaton that accepts shortest counterexamples in Sect. 4
and give some hints on our implementation in Sect. 5. Experimental results are reported
in Sect. 6. The last section concludes.

2 Preliminaries

Let> be afinite set, latt be a finite or infinite sequence overThelengthof a sequence
a is defined ada| = n+ 1 if a = 0g01...0y is finite, o otherwise.a(i) denotes the
element atindexk a; is the suffixa(i)a(i+1) ... of a with its firsti states chopped off.
We also call sequences ovEmwordsoverX. The crossproduct of two sequences 3
is defined componentwise.

Let 3, y be finite sequences. A sequencs a (3, y)-lassowith stemp andloopyy iff
o = By®. We sometimes writéB,y) instead offy®. Thelengthof a lasso is defined as
|(B,y)| = |B| + ly|. A lasso(B,y) is minimalfor a iff a = By* andVvf',y . a = p'y* =
[B,Y)| < |(B,Y)]- The type [LMS02] of a (B,y)-lasso is defined at/pg(B,y)) =

(IBI,|y])- A sequencex can be mapped to a set of typégmega) = {type(B,y)) | a =
By*®}. We state the following fact about sequences (proved in the appendix).

Lemma 1. Let (B,y) be a minimal lasso fon, (f',y) a minimal lasso fora’, and
o” =a x a’. Then there are finite sequend®sy’ such that{p”,y") is a minimal lasso

for o, |B"| = max ||, |B']), and|y’| = lem(}y], [V |)°.

2.1 Kripke Structures

Following [KPR98] we define a faiKripke structureas tupleK = (V,1,T,F).V is a
finite set ofstate variablesy each ranging over a finite sét A state sis a valuation
of the variables inV, the set of all states iS. | is theinitial condition that defines
the set of initial states oK. The transition relation Tis also given as a predicate,
referring to valuations of the variables in the current stgtand in the successor state,
s.F={F,...,F} is a set of (weak) fairness constraints. The valueiafsis denoted
by v(s). If sis clear from the context; also denotes the value efin the current state,
andv that in the successor state. We assume a set of atomic proposikdhat relates
variables to their potential valuations, each of the ferm c; with ¢; € V. A mapping
L is implicitly given that maps a statto the set of atomic propositions truesn

A non-empty sequence of states ipathin K if VO <i < | . (s,S5+1) = T. If
S E |, misinitialized. An infinite pathrtis fair if VR e F.Vj . 3k> j. (k) = K. N
is the set of paths iK. Via L a path implicitly defines a sequence ovéf2

The synchronous product of two Kripke structukes= (V1,11,T1,F1) andKy =
(2,12, T2,) is a Kripke structureKy x Ko = (Vi UV, I3 Alo, Te ATo,FLUR). The
projection of a stats onto a set of variableg’ is denotedsy.

3 Jcm(a, b) denotes théeast common multiplef a andb.

nEp iff pemforpe AP mEXe iff iiiE@
- iff iEe QU j>i. (M E WAV <k<].Tk =)
NlEevYiff mEeormEY mEYe iffi>0and ;=@

=Sy iff 0L j<i. (M EYPAVY) <k<i. T =@

Fig. 1. The semantics of PLTLB

2.2 PLTL

We consider specifications given in Propositional LTL with both future and past time
operators (PLTLB) [Eme90]. The syntax of PLTLB is defined over a set of atomic
propositionsAP. If ¢ andy are PLTLB formulae, so are@, VvV @, X@, U , Y@,
@S . The semantics of PLTLB is defined recursively on infinite sequences 6Ven 2
Fig. 1.

If the past time operatoré andS are excluded, we obtain future time LTL formulae
(PLTLF). Similarly, a past time formula (PLTLP) has no occurrenceX aindU. For
this reason, when we speak about future or past we include present. We have the follow-
ing usual abbreviationst = pV-p, L =T, QAW = —(=@QV), 0 — Y = -0V U,
PoP=(0—=UWAW—=9),)RY=(-oU), Fo=T U g Go= -F-q,
ZOo=-Y-@,@T P=-(-9S—Y), Op=T S¢, andHp= -0-@.

A PLTLB property @ holds universallyin a Kripke structureK, denotedK =y @,
iff it holds for every initialized fair path. 1K [~y @, each initialized fair pathtin K
with TT|= —@is acounterexampléor @. @ holds existentiallyK =3 @, iff there exists an
initialized fair path that fulfillsp. Each such path iswitnessfor ¢. For every finiteK,
if K £y @, then there exists a fa{f, y)-lassoa in K such thatt £ @ [VW8E6]. A finite
pathTiye is abad prefixfor @ iff Vg . (|Tint | = 00 = ThreTine = @) [KVI9].

ForU andSthere exist recursive expansion formulae (e.g. [KPR98]):

=Y Uy [@iff (6 = W2) V(T8 = W) A (Th11 = @)
O=Y1SY2 : T = @iff (15 = W2) vV (I > 0) A (T5 = W) A (Th-a = @)

The expansion df) is not sufficient to guarantee proper semantics: additional measures

must be taken to select the desired fixed point, e.g., by adding fairness constraints.
Finally, thepast operator deptfBC03] of a formulap, h(g), is the maximal number

of nested past operatorsqn

0 iff e AP

h(y) iff @= oW, whereo € {-,X}
h(g) = ¢ maxh(y1),h(Y2)) iff @=Wioy2, whereo € {V,U}

1+h(y) iff o=Yy

1+maxh(y1),h(yp)) iff @= Y1 Syo

The authors of [LMS02,BC03] proved independently that a PLTLB propgdsn
distinguish at mosh(¢) loop iterations of a lasso. We restate Lemma 5.2 of [LMS02]
for PLTLB:

Lemma 2. For any lassar of type(ls,l;), for any PLTLB propertyp with at most lig)
nested past-time modalities, and any is+h(), 15 = @< T4, = @.

2.3 Blchi Automata

A Buichi automatorover a set of variablegX with a corresponding set of stat8§is a
Kripke structureB = (V,1,T,F), whereV = VK UV. A run p of a Buchi automatorB

on an infinite word over ¢, denotedp = a, is an initialized fair path iB such that
Vi.a(i) = p(i)lyx. The set of all runs oB is RungB). A word isacceptedby B iff B

has a run omt. The set of words accepted Bydefines itdanguage Lan¢B).

In the automaton-based approach to model checking [VW86jichBautomaton
that recognizes counterexamples to the specification is constructed. In other words, the
language of the automaton is precisely the set of witnesses for the negation of the spec-
ification. Then, an initialized fair path in the synchronous product of the model and that
automaton indicates failure of the specification. Formally, to check whéther, @
holds for some modek and LTL formulag, we negatep and construct a &chi au-
tomatonB™? with Lang(B™®) = {a | a = —@}. Any initialized fair path inK x B™®is a
counterexample fop.

In this scenarid/¥ corresponds to the set of atomic propositions-ig whereas/
depends on the specific algorithm used to obBi@ur definition of a Bichi automaton
is similar to a state-labeled, generalizeddRi automaton but splits states according to
the variables invK. This is more convenient in a symbolic setting, where this split
happens anyway when the synchronous product with the model automaton is formed.
It does not restrict the generality of the results in Sect. 3 and 4.

An approach to construct aiBhi automaton tailored to symbolic model checking
(used, e.g., in NuSMV [CC®&02]) is by Clarke, Grumberg, and Hamaguchi [CGH97].
The original version deals only with future time formulae, but extensions to PLTLB
are available, see. e.g., [KPR98,Sch01]. We refer to this extended vers©@Glas
below. An automatoB,,., is constructed aBlg,, = (V9,19 A Xy, T? F9) whereV?,

1?, T®, andF? are defined recursively in Tab. 1. All, are Boolean. On every ruym

on a worda the valuation of a state variablg of B, . reflects the validity of the
corresponding subformulpof @, i.e.,xy(p(i)) < aj = Y. By [CGH97,KPR98,Sch01]
we haveLang(B(";Gm) = {a | o = ¢}. Note that, for a uniform explanation, Tab. 1

uses state variables also for Boolean connectives. In [CGH97,KPR98,Sch01] these are
replaced by macros.

definition
volye = = [T — [F¥—
P [x) T Xp P 0
g1 VP U{xy} 2 TV A (g = —xg,) F¥:
LV s V¥ uvY2 Y |W1 A W2 THATY2A FWi1 yFY2
Xy (Xw — Xy, V Xy)
1 2
X1 VU g d TP A (xy < X,) F
THATEzA FPiuF¥u
U wp|V¥ruviay REPNE
WU b) (g = X VX AXY) | (e Vg)
Y1 VP U{xg] A (xy = L) [TPA (G < Xy,) F¥
EEUNEZYN T ATE2A
Sy, [V¥ruvY2 U R
qu qu {Xw} (Xq_, — sz) (X{IJ — X/Lpz \/X(IJ1 /\Xw)

Table 1.Property-dependent part of diéhi automaton constructed with CGH+

5

3 Bichi Automata to Detect Shortest Counterexamples

3.1 Shortest Counterexamples for PLTLB

We have defined PLTLB over infinite paths, hence we need to specify what should
be considered a shortest counterexample. Given that we are only interested in finite
representations, and a failing PLTLB property in a finite state system always has a lasso-
shaped counterexample [VW86], we adopt the following definition from [CGMZ95]: a
shortest counterexample is one that has a most compact representation as a lasso.

Definition 1. Let K= (V,I,T,F) be a Kripke structure, lep be a PLTLB property. A
patha in K is ashortest counterexampler @in K iff

lLakoe
2. By (a=PAYRY . (BY® € NABY? £ o= |(B.V)| < [(B.Y)])

This definition is not optimal. First, an early position of the violation (if that can be
clearly attributed) need not coincide with the least number of states required to close a
loop. Second, apart from length, ease of understanding is not a criterion either.

The first problem is most relevant for properties that also have finite bad prefixes,
i.e., properties that are a subset of a safety property [KV99]. Finding the shortest bad
prefix for safety formulae can be done in parallel, using the (doubly exponential) method
proposed in [KV99]. The solution to the second problem is left as future work; for ap-
proaches and more references see [GK04].

3.2 Tight Buchi Automata

In the automaton-based approach to model checking, a PLTLB property is verified by
searching for loops in the synchronous product of a Kripke struéturepresenting the
model, and a Bchi automato, accepting counterexamples for the property. Hence, if
shortest counterexamples are desired, the product of the model anigithieeBtomaton
must have an initialized fair path= (u,v) that can be represented as lasso of the same
length as the shortest counterexample (B,y). Kupferman and Vardi [KV99] call an
automaton on finite wordsght if it accepts shortest prefixes for violations of safety
formulae. We extend that notion tdiBhi automata on infinite words.

Definition 2. Let B be a Bichi automaton. B isight iff

Yo € LangB) . VB,y. ({B,y) is minimal fora =
JpeRuNgB).IA LY. (PFEa A A=axp=w® A [(LV)|=[(B,YV)])

Consider the scenarios in Fig. 2. The automaBoim the left scenario has a run
ot® of the same structure as the counterexanfgtein K, leading to an equally short
counterexamplép x 0)(y x 1)® in the producK x B. The run of the Bichi automaton
in the right scenario has an unnecessarily long stem and loop.

From Lemma 1 it can be inferred that a path of the same lend¢h«iB as the coun-
terexample irK implies that the corresponding rgn= ot® in B can be represented as

B Y y y B y y y y \
B e e sje o efseeeeoe 00000000000 ofeoooiooee .-
o T T T g T T T
KxB R | |
Bxa YXT © yXT - yXT (By(9)) x (0) DYW(0)) x (tTT)

Fig. 2. Scenarios with shortest and non-optimal counterexample

the same type a&3,y). The left scenario in Fig. 2 suggests another, alternative for-
mulation, which may be more intuitive and is easier to prove for some automata: the
subsequences of starting at indices 4, 10, ... are the same, as are those beginning at
57,11,...,and 69,12 On the other hand, the subsequences starting at the respec-
tive indices in a single iteration are all different — otherwise a part of the loop could be
cut out, contradicting minimality. Hence, & is tight, there must be a rymon a with

the following property: for each pair of indicésgj, if the subsequences of starting

ati and j have the same future{ = a;), thenp mapsi andj to the same state iB

(p(i) = p(j))- Theorem 1 establishes the equivalence of the criteria.

Theorem 1. Let B be a Bichi automaton. The following statements are equivalent:

1. Bis tight.
2. Ya € LangB) . VB,y. ({B,y) is minimal fora =
Jp € RungB) . (p = aAtype((B,y)) € type(p)))
3. Ya € LangB) . ((3B,y. o =By*) =
(Gp€RungB) . (pl=an(Vi,j.ai=aj=p(i)=p(j)))))

Proof. 1 = 2: Assume a rup = ot1® such thalh = a x p = pv® with |[(p,v)| = [(B,Y)|.
Let (d’,T') be minimal forp. Lemma 1 givedd’| < |B| and|T’| divides|y|. Now it's
easy to findo”,1” with a”1"® = o1%, andtype((a”,1")) = typg (B, V).

2 = 1: Assume a rup with type((B,y)) € type(p). By definition of type, there exist
0,1 such thap = ot®, |B| = |o|, and|y| = |t|. Hence, withu= 3 x 0 andv =y x T, we
haveA = o x p = W and|{u,v)| = |(B,y)[.

2 = 3: Leta € Lang(B), assum€B,y) minimal for a, and letp = ot® be a run oro
such thatB| = |o] and|y| = |t|. Leti, j with a; = aj. It remains to show thad(i) = p(j).
This is done by distinguishing 5 cases according to the positionsuod j w.r.t. to 3
andy in a. Note that only in the first (and in the last) cg¥g) andp(j) actually play a
role as in all other cas€§,y) cannot be minimal foa.

Case 1j = j: Obvious.

Case2j < j<|B|—1:
ai =0aj = (a(0),...,a(i—1))a; = (a(0),...,a(i—1))a;j
= a=(B(0),....B = 1)) (B(i),---, BBl = L)y

= contradiction(f,y) is minimal fora
Case 3|B| <i < j<|B|l+]y:
ai =0aj = (a(0),...,a(i—1))a; = (a(0),...,a(i—1))a;j

= o =B(Y0),...,y(i — 1= [B)Y(j — B) - Y(IY = 1)®
= contradiction(f,y) is minimal fora

model Bichi automaton

Fig. 3. Model and Richi automaton to recognize counterexamples—fao A XGq) resulting in
non-optimal counterexample

Case 4, 0<i <[B] < j < |B|+|y:
ai =0aj = (a(0),...,a(i—1))a; = (a(0),...,a(i—1))a;j
= o= (B(0),....B=1)(y(j =B, YV = DV(0),....¥(j — B[= 1))®

= contradiction(f,y) is minimal fora
Case 5/B|+|y| <iand/orj: Reduce to 1 — 4 by subtractig fromi and/orj.

3= 2:Leta =Py* € Lang(B) andp a run ona with Vi, j . o = aj = p(i) = p(j). Let
(B,Y) be minimal fora.
o =Py = Vi <|y|,Vk. a1 = (V)i = Qjgj+it ik
= Vi < |yl,Vk. p(IB[+1) = p(|B +1+¥k)
Leto =p(0),...,p(|B| — 1) andt = p(|B]),. .., P(|B| +|y| — 1). Hence p = o1 such
that|o| = |B| and|t| = |y|. O

3.3 (Non-) Optimality of Specific Approaches

The approach by Gerth et al. (GPVW) [GPVW96] for future time LTL forms the basis
of many algorithms to construct smalliBhi automata, which benefits explicit state
model checking but is also used, e.g., for symbolic model checking in VIS [Gro96].
Figure 3 shows an example that GPVW does not, in general, lead to tight automata.
Subsequences starting from the initial state of tlirelB automaton fulfillp A XGq,
those starting from the other state sati€g. The model has a single, infinite path
satisfyingG(p A q) — a counterexample of length 1 to the specificatigqip A XGq).
Note that adding transitions or designating more initial states is not enough to make the
automaton in Fig. 3 tight: an additional state is required. Non-optimality of GPVW is
shared by many of its descendants, e.g., [SB0O].

In a Biichi automatorBZ,,, each state variable corresponds to a subfornpuid

¢ (see Tab. 1). This directly proves tightnessB&EHJr for a PLTLF formulag.

Proposition 1. Let ¢ be a future time LTL formula, let®,,, be defined as above.
Then Bgy,, is tight.

Proof. Every two states iBZg,,, differ in the valuation of at least one state variable,
and therefore specify a different, non-overlapping future. According to Thm. tichiB
automatorB is tight iff for each accepted word there exists a rup on a in B with
Vi,j. (o =aj=p(i) =p(j)). Clearly,a; = a; have the same future, hence, on each
run inB we havea; = a; = p(i) = p(j). O

What is useful for future time hurts tightness as soon as past operators are included:
Bésy, may also distinguish states of an accepted word that have different past but

((c=1)
% G)9 %@% O(c=n-1)
).4.

Fig. 4. Simple modulor counter with property

same future. Lemma 2 states that a past time formula can distinguish only finitely many
iterations of a loop. This can be used to establish an upper bound on the excess length
of a counterexample produced by CGH+ for a PLTLB formula:

Proposition 2. Let K be a Kripke structurep a PLTLB property with K-y ¢, and
Bcgy,. @ Buchi automaton constructed with CGH+. Leet= (B,y) be a shortest coun-

terexample in K. Then, there is an initialized fair lasse= (1, v) in K x BZ&,,. with
M < [Bl+ (h(=@) + 1)yl and|v| = |¥].

Proof. The states oBg‘(‘;H+ each correspond to a subset{df | P € sub(—@)} U {oy |
o€ {X,Y} A € sub—@) } wheresul(—¢) is the set of subformulae ofg. By Lemma
2, a PLTLB formula cannot distinguish iterations of the loop that occur aften(the)-
th iteration. More formally, for any lasso = By®, any PLTLB formulay, and any
i > [B]+h(W)|yl, ai = Yiff aiyy = W. Hence, by the correctness of the construction,
one can derive a fair pathfrom a. By Lemma 2, a loop of lengtiastarts inA after at
mosth(—@) + 1 iterations of the loop it have passed (note that the past time operator
depth of the formulae labelling the statesﬁ@‘g,4+ may beh(—q) + 1). O

For an example that exhibits excess length, which is quadratic in the length of the
shortest counterexample, consider the simple modwotinter and property in Fig. 4
(adapted from [BCO3]). The innermost formuyc = n— 1) remains true from the
end of the first loop iteration in the count&((c=n—2) A (O(c=n-1))) becomes
and remains true — 1 steps later, etc. Hence, a loopBgg,,, is only reached after
O(n?) steps of the counter have been performed. Clearly, the shortest counterexample
is a single iteration of the loop wit®(n) steps.

Every PLTLB formula can be transformed into a future time LTL formula equivalent
at the beginning of a sequence [Gab89]. Due to [LMS02] we can expect an at least
exponential worst-case increase in the size of the formula. Rather than translating an
LTL formula with past into a pure future version, we follow a different path in the next
section.

4 ATight Look at LTL Model Checking

Proposition 2 states that diBhi automaton constructed with CGH+ accepts a shortest

counterexample with a run that may have an overly long stem but a loop of the same
length as that of the counterexample. Bounded model checking [BCCZ99] has been
extended recently to include past time operators [BC03,CRS04,LBHJ05]. Of these,

[BC03,LBHJO05] usevirtual unrolling of the transition relation to find shortest coun-
terexamples if past time operators are present. Inspired by [LBHJ05], we adapt this
approach to construct a tightiBhi automaton for PLTLB based on CGH+.

4.1 Virtual Unrolling for Bounded Model Checking of PLTLB

In bounded model checking, the model checking problem, which asks whetherg
holds, is translated into a sequence of propositional formulae of the|fttng, K]| in

the following way:|[M, @,K]| is satisfiable iff a finite informative bad prefix [KV99] or
lasso-shaped counterexampi®f lengthk exists. In the case of a lasso-shaped coun-
terexample, a loop is assumed to be closed between the lastitatend some suc-
cessorm(l + 1) of a previous occurrence of that last staié) = (k). The resulting
formulae are then handed to a SAT solver for increasing bolnotdil either a coun-
terexample is found, absence of a counterexample is proved, or a user defined resource
threshold is reached. Typically, one fresh Boolean variapjgeis introduced for each
pair of relative position in the path @ j < k) and subformulap of ¢, such thak; y is
true iff Y holds at position.

On a lasso-shaped path, the truth of a future time formpalgpositionk may depend
on the truth of some of its subformulgeat positions> k. While those are not available
directly, the truth of a future time formula at a given position within the loop does not
change between different iterations of the loop. Hence, the truth valyieabposition
0<m< k—Iinany iteration > 0 of the loop can be substituted with the truth value of
 at positionmin the first iterationTg__+m = Y < T m = Y. A single unrolling
of the loop is therefore sufficient, resulting in a shortest counterexample.

When past time operators are admitted, this is no longer true. By Lemma 2, the
truth of a subformulap may change between the fitgty) + 1 iterations of the loop
before it stabilizes. Hence, only afth(W) + 1 iterations can the truth value df in
some iteration > h(y) + 1 of the loop be replaced by the truth valueyoin iteration
h(W) + L T4 (k1) +m = W & Th o (hy)+1)k-1)+m = Y- A naive approach for checking a
past time formulapwould still have one Boolean variable per pair of relative position in
the path and subformula. However, the approach would have to ensure that the path ends
with h(@) + 1 copies of the loop. This would lead to a more complicated formulation of
loop detection and would not allow to find shortest counterexamples. A less naive, but
still suboptimal solution might not guarantee a high enough number of loop unrollings
directly but could include the variables representing the truth of properties in the loop
detection. That approach could not ensure shortest counterexamples either.

Benedetti and Cimatti [BC03] showed how to do better: note, that some subformulae
U of @ have lower past operator depth, and, therefore, require fewer loop iterations to
stabilize. In particular, atomic propositions remain stable from the first iteration onward.
It is sufficient to perform a single unrolling of the loop. Rather than having only one
Boolean variable; y per pair of relative position in the path and subformulg, there
are now as many variables per pgiry) as iterations of the loop are required for that
subformula to stabilize. Each variable corresponds to the truth valgeabthe same
relative positionj but in a different iteration of the loop:x;j yi < T1jk-1) = ¥ with
0<j<kAO<i<h(y) (the value ofx; y; may not be well-defined if > 0A j < 1).

This virtual unrolling of the loop leads to shortest counterexamples.

10

4.2 A Tight Buchi Automaton for PLTLB

A Biichi automaton constructed with CGH+ suffers from similar problems as the naive
approaches to bounded model checking of PLTLB. The automaton has a single variable
representing the truth of a subformula in a given state. For a loop in the product of the
model and the automaton to occur, the truth of all subformulae must have stabilized.
Hence, we can adopt the same idea as outlined above to obtain ailigiteBitomaton.

We construct a Behi automatoB; = (Vg |25 Tog Fop) for a PLTLB formulagas
follows: Vg = VU {lb,le} with LB=LE = { L, T}, 1&,=19A X0, Tdg=T®A (Ib —

Ib"), andFdy = FU {{Ib Ale}}, whereV®, 2, T® andF® are defined recursively in
Tab. 2.

Each subformula of @is represented blg(ys) + 1 state variablesy ;. We refer to
thei in xy; asgenerationbelow. Two more state variablés (for loopbody) andle (for
loopend) are added. As long dtsis false (on the stem), only variables in generation 0
are constrained according to the recursive definition of PLTLB. Whdxecomes true
(on the loop), the definitions apply to all generations. Whilis false (the end of a loop
iteration is not yet reachedyy ; is defined in terms of current and next-state values of
variables in the same generation. Wieis true (at the end of a loop iteration), the next-
state values are obtained from the next generation of variables if the present generation
is not already the last. The fairness constraints, which guarantee the correct fixed point
for U formulae, are only applied to the last generation of the corresponding variables.

The intuition is as follows. Starting with generation 0 on the stem and the first
iteration of the loop, each generatiomf xy; represents the truth a in one loop
iteration, the end of which is signaled iy A le being true. Formally, fof < h(y),

Xy,i(j) holds the truth ofp at positionj of a word iff Ib A le has been true on that péth
times prior to the current state. From th@b)-th occurrence ob A le, Xy) continues
to represent the truth af.

Note thatlb andle are oracles. The valuation of these variables on an arbitrary
run may not correspond to the situations they are named after. HoweV(B‘SpE(ao
correctly recogniz€a | o = @}, it is not relevant which generation holds the truth at a
given position. It is only required that at each position some generation represents truth
correctly, each generation passes on to the next at some point, and ultimately, depending
ony, the last generatioh(y) continues to hold the proper values.

For tightness, the variables of a given generation need to be able to take on the
same values in every iteration of the loop, regardless of whether they currently hold
the truth or not. This requires breaking the links to previous iterations for variables of
generation O representinng and S formulae at each start of a loop iteration after the
first. In addition,Y - andS-variables of generations 0 may not be constrained by past
values at the beginning of the loop body. On a shortest run on some lasso-shaped word
a, Ib andle will correctly signal loop body and loop end.

Theorem 2. Let@be a PLTLB formula, let & be defined as above. Then, L&B§g) =
{o| a = @} and B s tight.

Proof By Lemma 3 and 4.

|

11

U] definition
V¥ = {xpo}, whereXpo={L,T}
p TY = Xp,0 < P
v =T FY=0
V¥ — v UU| {xqJ }, whereXyj={L,T}
P [TV = TN /\/\|:0) (Xy,i = ~Xy,,i)
v — 0 FY=F%
VY = vy uU {xqJ i}, whereXy; ={L,T}
WiV | TV = TW ATY2 A /\Iio) (Xy,i < Xy min(i,h(Wy)) \/XllJz-,mln(i-,h(Lllz)))
IV = W p W2 =Ly Y =1
V¥ = v g UMW, i1, whereXyi = {L, T}
TV = TV A (=lb — (g0 < X/LIJLO))
h(w)—
Xty A(IbAe) = A O i = X))
-1
Al(bAle) — AN (i < X 111)
Al — (X) = Xy, hg)))
v = FY=F%
V¥ = vdigvizy Urﬂé>{x¢,i}, whereXyi = {J_,T}
TY = TWATY2 A (-lb h—> (Xy,0 < Xyp,0 V (Xyy, 0/\Xw o))
A((Ib A—le) — /\i (Xqu < Xy, min(i.h(w2)) Y Xy min(i h(wn)) A X))
YU h(p)—
Al(Io A1) — A ™ (ki o Xy mintin)) V g minti.) A Xi1)))
A(Ib = Xy h(w) < Xuo.h(wz) ¥ Ky hiws) A X))
1V = W p W2 FY =FY1yFY2 U{{ﬁxw,h(w) \/lez,h(qu)}}
V¥ = v UMW (xy i}, whereXyi = {1, T}
TV =T A(-b— (xLIJ 0 - xlpl 0))
A(Ib A-le) — Ky e X))
Y'-IJ:]_ h(w),z /XL|J Rl 1,0
A(IbAle) = ALy “(Kyiv1 < X))
|b—> Xll,lh <_>XLIJ1hlIJ1)))
v —Iq’lA(x¢0<—>J_) FY=FW%
V¥ = v oy UMW (1}, whereXy; = {1, T}
TV = T ATY2 A (~Ib — (% quHszoV(leoAXw)))
h(p)-1
015U Ao A=le) — AL (i = X, minti-nwa)) ¥ Kowmingi.nun)) A X))

h(p)—1
/\((Ib A Ie) Ay :<q(;> (X(p i+1 XL|,|2,m|n (i+1.h(y2)) (X/Lplﬁmm(l-t,-lﬁh (V1)) /\qu,i)))

AIB = (K) = Xpoe) Y i) M Xwhw)))
W = WA T2 A (X0 < Xypo) F¥ = FUURY:

Table 2. Property-dependent part of a tighti€hi automaton

12

Lemma 3. LangBZp) = {a | a = ¢}

Proof. (Correctness) We show that on every fair patf\if, 19, Tds, Fdp) the values
of xyj;(j) represent the validity of the subformulaat positionj, wherei; is either
the number of(Ib Ale)'s seen so far oh(W), whichever is smaller. Formally, gt
be a run ont in (Vg 19, Tds, Fdp). For each positiorj in a, leti; = min(|{k | (k <
i —1) Alb(p(k)) Ale(p(K))}H,h()). Inspection of Tab. 2 shows that the constraints on
thexy,i; (J) are the same as the constraints on the correspomgirjgin Tab. 1. Hence,
oj =W xpi; (P(D))-

(Completeness) We show that there is a rufg;, 1%, TS5, F&p) for each worda.
Choose a set of indicés$ = { o, j1,...} such thale(j) < j € U. Further, choosés <
jo and setlb(j) < j > Is. We inductively construct a valuation fog;(j) for each
subformulay of @, i < h(y), andj > 0. If Y is an atomic propositiop, setxyo(j) <«
(aj = p). If the top level operator af) is Boolean, the valuation follows directly from
the semantics of the operator. Py eachxy;(j) is defined at most once in Tab. 2.
W = Y is similar. Note thah(y) = h(y;) + 1. Thereforej runs only up toh(y) —
2 if IbAle; i = h(p) — 1 is covered by the case fdip in the line below.xy;(j) is
unconstrained if =0andj—1cU as well asifi > 1 andj <Is. For { = 3 U Yy,
start with generatiom(). If Xy, n«y,) remains false from somgy on, assignvj >
jm - Xy h(y) (J) < L. Now work towards decreasirigfrom eachj, with Xy, n(y,) (in) <
T, using line 4 in the definition of for U. Continue with generatioh(y) — 1. Start
at eachj € U by obtainingxy ny)—1(j) from the previously assignexi, ny(j + 1)
via line 3. Then work towards decreasipggain, using lines 1 or 2 in the definition
of T until Xy ny)-1 is assigned for alf. This is repeated in decreasing order for each
generation G6< i < h() — 1. ForS, start withxy o(0) and proceed towards increasing
j, also increasingwhenj € U (lines 1 — 3 in the definition of for S). Wheni = h({)
is reached, assigy ny, (J) for all j using the fourth line in the definition af. Then,
similar toU, work towards decreasirigand j from eachj € U. Fairness follows from
the definition ofJ, Is, and the valuation chosen fo.

The claim is now immediate by the definition i O

Lemma 4. B is tight.

Proof. We show inductively that the valuations of the variablgg(j) can be chosen
such that the valuation at a given relative position in a loop iteration is the same for each
iteration in a generation Formally, leta = By® with a = @. There exists a rup such

that for all subformula&) of ¢

Vi<h().Vjy,j2= Bl . (Fk=0. j2— ja=KIV) = (Xpi(P(j1)) < Xpi(P(j2))))

Atomic propositions, Boolean connectives, atdre clearY is also easy, we only have

to assign the appropriate value from other iterations wigij) is unconstrained. For

Y = Y1 U Yz, by the induction hypothesisy, n,) is either always false (in which

case we assignexd, n (J) to false according to the proof of Lemma 3) or becomes
true at the same time in each loop iteration. Hence, the claim holds for gendvagpipn

From there we can proceed to previous generations in the same manner as in the proof

13

of Lemma 3. ForS we follow the order of assignments from the proof of Lemma 3.
By induction, the claim holds for generatidriy). From there, we proceed towards
decreasing andi. We use, by induction, the same valuations of subformulae and the
same equations (though in reverse direction) as we used to gekj;e(@) to genera-
tion h(y). O

Big hasO(2“P|2) states. A symbolic representation can be constructed(jp?)
time and space. Note, that the size of é&cBi automaton that is tight in the original
sense of [KV99] (i.e., it recognizes shortest violating prefixes of safety properties) is
doubly exponential irg| [KV99].

The same optimization as used in Sect. 2 for CGH+ can be applied. It replaces state
variables for Boolean connectives with macros in order to reduce the number of BDD
variables in the context of symbolic model checking with BDDs.

5 Finding Shortest Counterexamples with Symbolic Model
Checking

We implemented the Bhi automaton described in the previous section for NuUSMV
[CCGT02]. We use our reduction of finite state model checking to reachability analysis
[SBO04] to find a shortest counterexample. For efficiency reasons, the encoding of the
automaton is tightly integrated with the symbolic loop detection, which is at the heart
of [SB04]. As an example, the signals for loop body and loop end are provided directly
by the reduction rather than being separate input variables.

In fact, our implementation started as an adaptation of the very elegant encoding of
PLTLB in [LBHJO5] to our reduction. Only then we extracted a tiglitcBi automaton
from the construction. We kept our original implementation for its superior performance
but chose to provide the more abstract view in the previous section, as, in our opinion,
it provides better understanding and is also more widely applicable.

6 Experimental Results

In this section we compare our implementation to find shortest counterexamples us-
ing symbolic model checking from Sect. 5 with bounded model checking using the
encoding of [LBHJO05] and the standard LTL model checking algorithm of NuSMV
[CCGT02]. For our translation, we performed invariant checking with NuSMV 2.2.2.
For standard LTL, also in NuSMV 2.2.2, forward search on the reachable state space
was applied. Bounded model checking was performed with the implementation of Timo
Latvala in a modified NuSMV 2.1.2. If cone of influence reduction is to be used with
our translation, the reduction must be applied before the translation. However, NuSMV
2.2.2 doesn’'t seem to provide a direct way to output the reduced model. Therefore,
cone of influence reduction was disabled in all experiments. Otherwise, NUSMV 2.2.2
would find shorter loops, involving only the variables in the cone of the property, in
the reduced model. Platform was an Intel Pentium IV at 2.8 GHz with 2 GByte RAM
running Linux 2.4.18. Timeout for each experiment was set to 1 hour, memory usage
was limited to 1.5 GByte.

14

LTL [L2S BMC
’model ‘properlJ[" time[memony] || time[memony[timel —I[timelJtime 1...T|

1394-3-2 0 16| 72.8 119| 11]| 7.9 1267 9.3 3.1 54.3
1 12| 17.0 157|| 11|| 6.8 1556 9.4| 3.7 60.0
1394-4-2 0 to| to. t.o.|| 16[[462.1] 34695 219.7 13.6) 1233.4
1 20| 812.6 2356 16((429.0 44177 314.6 14.9 14999
abp4 L 37 <1 234]| 16| 16.3 844 78.8 8.4 340.2
brp -L 6 4.8 46| 1| <1 192 <1 <1 <1
-L,nv |l 68 15.0 122|| 24{|]104.9 1560/ 1005.0260.§ 3171.
dme2 -L 1 <1 123 1f| <1 128 <1 <1 <1
-L,nv |l 40] 23 408| 39|| 1.2 52 97.4 7.9 502.9
dme5 - L 1| 11.3 112 1f| 1.1 186 <1 <1 <1
- L, nv ||344{1533.] 330|| 99(|384.8 1396 to.| to. t.o.
dme6 -L 1| 29.1 183[| 1f| 1.6 362 <1 <1 <1
=L, nv || to. t.o. t.0./(119(|1926.4 2093 to.| t.o. t.o0.
pci FL 22| 231.4 341]| 18| t.o. t.0. 771.2965.4 1879.69
prod-cons 0 69 3.1 311]] 26[] 16.5 722 442.4 417 551.8
1 33 2.0 250|| 21|| 1.8 162 25.0 11.1 126.2
2 58/ 71.0 216|| 24|| 3.1 221 7.6 10.9 178.9
3 42| 7.9 241| 24|| 2.6 224 28.0 8.93 361.6
production-cell0 85 <1 300|| 81|| 9.8 220 59.1107.8 t.o.
1 146 1.4 241|| 81| t.o. t.0. 23.4 30.0 t.o.
bc57-sensors [0 112) 141.3 213|103({194.1 4382 1143.1201.9 t.0.
srg5 -L 6] <1 120/ 1f| <1 74 <1l <1 <1
-Lnv| 15 <1 31| 6 1.5 217, <1l <1 <1

Table 3.Real-world examples

As the focus of this paper is on producing lasso-shaped counterexamples, only prop-
erties were chosen that proved false with such a counterexample. Results are shown in
Table 3. The experiments include all real-world models used in [LBHJO5]: abp4, brp,
dme?, pci, and srg5. If the property checked in [LBHJO05] has a lasso-shaped coun-
terexample, it was used unmodified in our experiments (“L"). We also used the negated
version of that property if that yields such a counterexamptel{). Some of the prop-
erties were made a liveness property by prefixing them Riftequiring a loop to prove
false) or were enhanced to make part of the property non-volatile (yielding a more inter-
esting counterexample), marked “nv”. In addition, we chose some of the models from
our previous work [SB04], with some properties already verified there and with new,
more complicated properties. Templates of the properties are shown in appendix B.

Columns 3 — 5 give the results for standard LTL model checking (“LTLix the
length of the counterexample, time is in seconds, and memory usage in thousand BDD
nodes allocated. The 6th column gives the length of a shortest counterexample as re-
ported by our translation and bounded model checking. Columns 7 and 8 give run time
and memory usage for our algorithm (“L2S"). The last three columns indicate run time
for bounded model checking (“BMC”). The first of these is the time for the last unsuc-
cessful iteration of the bounded model checker alone (not yet producing a counterex-
ample), the second is the time for the first successful iteration alone (giving the shortest
counterexample), and the last column is the time for all bounds from 1 until a coun-
terexample is found. The implementation of [LBHJO5] is not incremental [Sht01], i.e.,
the SAT solver cannot benefit from results of previous iterations. We use the time re-
quired for the last unsuccessful iteration (“Time 1”) to estimate the amount of work
that an incremental implementation would at least have to do. If our algorithm needs
less time than that, we conclude that our algorithm is faster. “t.0.” or “m.o.” indicate
time- or memory-out.

15

Both, L2S and BMC, find significantly shorter counterexamples than LTL. Our al-
gorithm often outperforms BMC with respect to time. On the other hand, L2S needs
more memory than standard LTL in most cases. L2S may even give a speed up when
compared to the standard algorithm on some examples.

7 Conclusions

We have presented a method to find shortest lasso-shaped counterexamples for full LTL.
Experimental results show competitive performance with bounded model checking. We
have established general criteria foadi automata to accept shortest lasso-shaped
counterexamples, extending the notion of a tight automaton from [KV99]. We have
presented a construction of diéhi automaton that is tight for full LTL.

Our construction generatesiBhi automata with a high number of states. In ongoing
work we apply virtual unrolling to obtain tight iBhi automata from the subclass of
automata that, like automata constructed with CGH+, accepts counterexamples with an
overly long stem but shortest loop. This should result in tight automata with fewer states
and may help to facilitate application also in explicit state model checking employing,
e.g., the algorithm of [GMZ04]. Further options include using transition-labeled instead
of state-labeled automata [AS04] as well as more deterministic automata [ST03].

AcknowledgementdiVe thank Timo Latvala for providing us with his modified variant
of NuSMV 2.1.2 including a very timely bug fix and Roderick Bloem for pointing us to
the problem of a shortest informative vs. any shortest counterexample.

References

[AS04] M. Awedh and F. Somenzi. Proving more properties with bounded model checking.
In CAV'04, volume 3114 o£.NCS pages 96—108. Springer, 2004.

[BCO3] M. Benedetti and A. Cimatti. Bounded model checking for past LTLTACAS'03
volume 2619 oLNCS pages 18-33. Springer, 2003.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. INTACAS’99 volume 1579 oLNCS pages 193-207. Springer, 1999.

[CCGT02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV 2: An opensource tool for symbolic model check-
ing. In CAV’02 volume 2404 oLNCS pages 359-364. Springer, 2002.

[CGH97] E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking.
FMSD, 10(1):47-71, 1997.

[CGMZ95] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient generation of coun-
terexamples and witnesses in symbolic model checkin@AG’95, pages 427-432.
ACM, 1995.

[CRS04] A. Cimatti, M. Roveri, and D. Sheridan. Bounded verification of past LTLENR
CAD’04, volume 3312 oL.NCS pages 245-259. Springer, 2004.

[CVWY92] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algo-
rithms for the verification of temporal propertigaMSD, 1(2/3):275-288, 1992.

[Eme90] A. Emerson. Temporal and modal logic. In J. van Leeuwen, e#itordbook of
Theoretical Computer Science: Volume B, Formal Methods and Semapdiges
995-1072. North-Holland Pub. Co., 1990.

16

[Gab89]
[GKO4]

[GMZ04]

D. Gabbay. The declarative past and imperative futur&etmporal Logic in Speci-
fication volume 398 olLNCS pages 409-448. Springer, 1989.

A. Groce and D. Koning. Making the most of BMC counterexamples. In A. Biere
and O. Strichman, editorBMC’04, pages 71-84, 2004.

P. Gastin, P. Moro, and M. Zeitoun. Minimization of counterexamples in SPIN. In
SPIN’04 volume 2989 oL NCS pages 92—-108. Springer, 2004.

[GPVWO96] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verification

of linear temporal logic. IPPSTV’95 volume 38 oflFIP Conference Proceedings
pages 3-18. Chapman & Hall, 1996.

[Gro96] The VIS Group. VIS: A system for verification and synthesis CHV’'96, volume
1102 ofLNCS pages 428-432. Springer, 1996.

[Kam68] J. Kamp. Tense Logic and the Theory of Linear OrddPhD thesis, University of
California at Los Angeles, 1968.

[KPR98] V. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal logic
specifications. INCALP’98, volume 1443 oL NCS pages 1-16. Springer, 1998.

[KV99] O. Kupferman and M. Vardi. Model checking of safety propertiesCHV’99, vol-
ume 1633 oL.NCS pages 172-183. Springer, 1999.

[LBHJO5] T. Latvala, A. Biere, K. Heljanko, and T. Junttila. Simple is better: Efficient bounded
model checking for past LTL. IFRMCAI'05, volume 3385 of NCS Springer, 2005.

[LMS02] F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal logic with forgettable past.
In LICS'02 pages 383—-392. IEEE Computer Society, 2002.

[RBS00] K. Ravi, R. Bloem, and F. Somenzi. A comparative study of symbolic algorithms
for the computation of fair cycles. IRMCAD’00, volume 1954 ofLNCS pages
143-160. Springer, 2000.

[SB0O] F. Somenzi and R. Bloem. EfficientiBhi automata from LTL formulae. 16AV'00,
volume 1855 oL NCS pages 248-263. Springer, 2000.

[SBO4] V. Schuppan and A. Biere. Efficient reduction of finite state model checking to reach-
ability analysis. International Journal on Software Tools for Technology Transfer
(STTT) 5(2—3):185-204, 2004.

[Sch01] K. Schneider. Improving automata generation for linear temporal logic by consid-
ering the automaton hierarchy. LPAR’0], volume 2250 ofLNCS pages 39-54.
Springer, 2001.

[Sht01] O. Shtrichman. Pruning techniques for the SAT-based bounded model checking
problem. INCHARME'01, volume 2144 oL NCS pages 58-70. Springer, 2001.

[STO3] R. Sebastiani and S. Tonetta. "More deterministic” vs. "smallditiB automata
for efficient LTL model checking. ICHARME'03 volume 2860 ofLNCS pages
126-140. Springer, 2003.

[VW86] M. Vardi and P. Wolper. An automata-theoretic approach to automatic program veri-
fication. InLICS’86, pages 332—344. IEEE Computer Society, 1986.

A Proofs

Lemma 1. Let (B,y) be a minimal lasso fon, (f',y) a minimal lasso fora’, and
o” =a x a’. Then there are finite sequend®sy’ such that{B”,y") is a minimal lasso

for o, |B"| = max([B|, |B']), and|y’| = lem(|yi, [Y']).
Proof: Letls = max(B|,|B']), I = lcm(ly,|Y]). Definep” = a”(0)...a"(Is—1),y’ =

a”’(lg)...a

"(Is+1; — 1). Clearly,a” = B"y"®. Now assume, there exigt,y’, such that

o = (B",y") and|(B",y")| < |(B".y")]:

17

Assume first that[g”| < |B"]. W.l.o.g. |B'| < |B|. By projecting”,y’ onto their
first components we can extraf&,tv with a = BV*’ and|f&\ < |B|. Further, there exists
0<i < |y suchthayior =y(i)...y(|y| = DY(0) ... (i — 1) with |yrot| = [y| andyrot® = ¥*.
Hence,(B, Yrot) = (B,Y) with [{B, Vrot)| < |(B,Y)|, @ contradiction. A

Now assumey’| < |y’|. W.l.o.g.|y| does not dividey’|. By projectingy” onto its

first component we can extragtith y° = {* and|y| does not dividey].
Case 1)y < |y|: a = (B, ¥) with (B,)| < |{B,Y)|, contradiction.

Case 2(ly| < |V)) A (Il — [<[¥]): Letd=y(0)...y([yl — [v| — 1). Hence, by Lemma
5,a = (B,d) with |[{B,d)| < |(B,Y)|, contradiction.

Case 3)y| < [Y| A IVl — |yl > |y|: Can be reduced to 2. O

Lemma 5. Leta, B,y be sequences such thatz €, |a] > |B], af =y, anda® = y*.
Then als3® = Y.

Proof: We prove inductively thati'8' = y. The claim follows, as = |y| implies ' =
pM = yiPl. Base casd,= 1: by definition ofa,p,y. Inductive case: assunep' = y.
Thereforea' is a prefix, ang' a suffix ofy *1. The remaining “gap” has length From
a® =y, we have that'** and(a'+2)(0)... (a'*2)(min(ja'*2|, |y*+1|) — 1) are prefixes
of y*+1. Further, witha =y, B is a prefix ofa. Hence, we can fill the “gap” withi.0

B Templates of Properties

model propertytemplate
1394-3/4-2 |0 ~((F(G(p))) — (=((a) S(1))))
1 ~(F((P)I((@l(r))))
abp4 L G((p) — (Y(H(9))))
brp -L ~(F(G((p) — (O((a) — (O(r)))))))
—~Lonv [=((F(G((p) — (O((a) — (O(r))))))) AUG(F(p))) A(G(F(a)))))
dme2/5/6 -L =G((p) = (AT (=(P) T (=(1))))
] —Lov [-((G((p) = ((P) T (=(p) T (=(a))))) A (G(F(P)))
pci FL F(G((p) — (G(((a) A (Y((r) A(O((s) A (O((t) A (O(w)))))))) —
(O((W) A (O((W) A (~(O(x))))))))))
prod-cons [0 =(((G(=(P)) A (G(F((a) A((a) S(r)))))) A (G(F(((a) A ((a) S(r))) — ((s) S(1))))))
1 ~((G((p) = ((P) S((a) S((r) S((s) S(1)))))) A (G(F(R))))
2 G((p) = (F(((@A) A(r))))
3 G((p) — (F(1)))
production-cell0 (G(F(((P) V() A (O((r) A(O(((s) V (1)) A (O((u)A
(OU(v) V(W) AO((() V (1)) A (O(2))NN)N))))))
1 (G(F(((p) v (@) A (Y (O((r) A(Y(O(((s) V(1)) A (Y (O((u)A
(Y(O(((v) v (W) A Y (O(((X) V-(¥) A (Y(O(2))))))))))N))IN))))
bc-57-sensors 0 ~(G(F((p) A (O((@) A (F((r) A (O(s)))))))))
srg5 -L ~((((FIG(=(p)) A(G(F(@)))) A(G(F(r))) — (F((s) S((1) S((u) S((v) S(W)))))))
= Lonv | =(((((FG(=(p))) A G(F(@))) A (G(F(r)))) — (F((s) S((t) S((U) S((v) S(W)))))))A
(FG(=(p))) A (G(F(@) A (G(F(r))))

18

