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Abstract. We perform a comprehensive experimental evaluation of off-
the-shelf solvers for satisfiability of propositional LTL. We consider a
wide range of solvers implementing three major classes of algorithms:
reduction to model checking, tableau-based approaches, and temporal
resolution. Our set of benchmark families is significantly more compre-
hensive than those in previous studies. It takes the benchmark families of
previous studies, which only have a limited overlap, and adds benchmark
families not used for that purpose before.
We find that no solver dominates or solves all instances. Solvers focused
on finding models and solvers using temporal resolution or fixed point
computation show complementary strengths and weaknesses. This moti-
vates and guides estimation of the potential of a portfolio solver. It turns
out that even combining two solvers in a simple fashion significantly in-
creases the share of solved instances while reducing CPU time spent.


1 Introduction


More and more, system specifications are not only used for classical verifica-
tion of the correctness of a given system, e.g., via model checking [BK08], but
they themselves become the subject of investigation (e.g., [Pil+06,Fis+08]). This
is justified by observations in industry that many specifications contain errors
(e.g., [Bee+01]) as well as by transition to property-based design (e.g., [prosyd]).
Propositional Linear Temporal Logic (LTL) [Pnu77,Eme90] is a popular choice
for system specifications and many checks on specifications reduce to determin-
ing (un)satisfiability (see, e.g., [Pil+06,Fis+08,RV10]). Hence, satisfiability of
LTL is of considerable practical relevance.


A broad range of techniques for determining satisfiability of LTL has been
developed: tableau-based methods (e.g., [Wol85,Jan99,Sch98]), temporal reso-
lution (e.g., [FDP01]), and reduction to model checking (e.g., [RV10,Wul+08,
Cim+07]). Despite the relevance of the problem and the range of techniques,
we are not aware of a recent, comprehensive experimental comparison of solvers
for satisfiability of propositional LTL on a broad set of benchmarks. In fact, the
only line of work containing a representative from each of the above mentioned
techniques that we know is the one by Hustadt et al. [HS01,HH01,HS02] (see
below), which is somewhat dated.


In this paper we make the following contributions. 1. We perform an experi-
mental evaluation of solvers for satisfiability of propositional LTL using ALASKA


[alaska,Wul+08], LWB [lwb,Heu+95], NuSMV [nusmv,Cim+02], pltl [pltl], TRP++
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[trp++,HK04], and TSPASS [tspass,LH10]. Both the range of techniques in the
solvers we use and the set of benchmarks we collected are significantly more
comprehensive than in any previous study we know. We have made our data
available for further analysis [www]. 2. We consider number of solved instances,
run time, memory usage, and model size. The analysis is greatly helped by
using contour/discrete raw data plots, which complement the traditional cac-
tus plots by preserving the relationship between benchmark instances. 3. The
analysis shows complementary behavior between some solvers. This motivates
estimating the potential of a portfolio solver. We consider portfolio solvers with-
out communication between members of the portfolio for a best case scenario
(which is unrealistic) and a reference case scenario (which any portfolio solver
should aim to beat). Finally, we show that even a trivially implementable solver
that sequentially executes one solver first for a short amount of time and, if
necessary, then invokes another solver reduces the number of unsolved instances
as well as the average run time.


Related Work Rozier and Vardi compare several explicit state and symbolic
BDD-based model checkers for LTL satisfiability checking [RV10]. They find
the symbolic tools to be superior in terms of performance and, generally, also
in terms of quality. They do not consider SAT-based bounded model checkers,
tableau-based solvers, or temporal resolution. While they perform an in-depth
comparison of solvers using very similar techniques, our focus is on compar-
ing selected representatives of a broad variety of techniques. We also use more
benchmark families and consider memory usage and model size. The same au-
thors compare symbolic constructions of Büchi automata in [RV11] using the
BDD-based engine of Cadence SMV as backend solver. They show that a portfo-
lio approach to automata construction is advantageous. De Wulf et al. compare
NuSMV and ALASKA [Wul+08]. For a detailed discussion see Sect. 6. Hustadt et
al. perform several comparisons [HS01,HH01,HS02] of TRP, a version of LWB, and
a version of SMV on the trp benchmark set (see Sect. 4). Goré and Widmann
perform an experimental comparison of solvers for CTL [GW10]. Goranko et
al. [GKS09] compare an implementation of Wolper’s tableau construction with
pltl. For references on solver competitions and on their methodology see App. A.


We are not aware of previous work on portfolio approaches to LTL satis-
fiability, except for [RV11]. We use entire solvers as members of a portfolio,
while [RV11] uses different frontends for Büchi automata construction all re-
lying on the same BDD-based backend solver. For other problem classes see,
e.g., [HLH97] (graph coloring, web browsing), [LB+03] (winner determination
problem), [GS01] (constraint satisfaction, mixed integer programming), [Xu+08]
(SAT), or [PT09,SM07] (QBF).


Organization In Sect. 2 we introduce notation. In Sect. 3, 4, and 5 we describe
solvers, benchmarks, and methodology. Section 6 contains the results of our
evaluation. An estimation of the potential of a portfolio solver follows in Sect. 7.
Section 8 concludes. Due to space constraints the following parts are in appen-
dices: general concepts and terminology (App. A), details on our benchmark set
(App. B), discussion (App. C), and some plots (App. D).
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2 Preliminaries


We consider formulas in future time propositional LTL with temporal operators
F, G, R, U, X. We assume familiarity with LTL; otherwise see [Eme90].


The terminology we use is largely standard (e.g., [SB05,Ber+09]); a reader
unfamiliar with competition terminology is referred to App. A. A somewhat
non-standard term we use is configuration, which denotes a tool (solver) with
specific option values. A tool is a state-of-the-art contributor (sota) if an instance
is solved only by configurations of that tool (see also [SS01]). Given a set of
configurations C the virtual best solver (vbs) is the hypothetical solver using
the best configuration in C on any given instance (e.g., [Ber+09]). We use bold
font for sets of benchmark instances and teletype for configurations.


3 Solvers


Choice of Solvers We consider tools to solve satisfiability of propositional LTL
from 3 major classes of approaches: 1. reduction to model checking, 2. tableau-
based algorithms, and 3. temporal resolution. Tools were chosen as detailed
below. To the best of our knowledge this set of solvers is the most diverse con-
sidered in an evaluation of solvers for satisfiability of propositional LTL to date.


Reduction to Model Checking We chose ALASKA [alaska,Wul+08] and NuSMV


[nusmv,Cim+02] using BDDs (NuSMV-BDD) and SAT (NuSMV-SBMC). We ruled
out explicit state model checkers, as they did not scale as well as BDD-based
symbolic model checkers for LTL satisfiability in [RV10]. The BDD-based engine
of Cadence SMV [csmv] performed comparable to NuSMV-BDD in [RV10]. sal-smc
[Mou+04] constructs explicit Büchi automata and was found not to scale [RV10].
The BDD-based variant of VIS [The96] uses explicit construction of Büchi au-
tomata; initial experiments confirmed that this does not scale for satisfiability
of LTL. sal-bmc [Mou+04] can only prove safety properties [Mou04]. For an al-
ternative using SAT-based symbolic model checking we contacted the VIS group
for advice on recommended configurations (the space of configurations is quite
large), but have not received an answer yet. Finally, we checked the publicly
available versions of the participants of HWMCC’10 [BC10]; as far as we could
see, the solvers that are not included in our study only handle safety properties.


Tableau-Based Algorithms We chose LWB [lwb,Heu+95] and pltl [pltl]. TWB


[AG07] is superseded by pltl [Gor10]. LTL Tableau turns out to be inferior
to pltl [GKS09].


Temporal Resolution We chose TRP++ [trp++,HK04] and TSPASS [tspass,LH10].
An alternative tool is TeMP [Hus+04]. TeMP was shown to be inferior to TRP++


on propositional problems in [Hus+04] and comparable to TSPASS on monodic
problems in [LH10]. Note, that TSPASS is fair, while TeMP is not [LH09a].


Solver Descriptions Below we briefly describe the tools we consider as well as
the set of their options that we take into account. Note that not all combinations
of options are valid. Due to space constraints the descriptions have to be kept
short, and we refer the reader to the respective tool documentation.
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ALASKA performs model checking and satisfiability checking of LTL via symbolic
computation of fixed points using antichains [alaska,Wul+08]. Relevant options
are: noc/c dis-/enables model construction, nos/s uses a semisymbolic/fully
symbolic algorithm, and nob/b switches between forward and backward image
computation. We use version 0.4 with an additional patch by N. Maquet.


LWB [lwb,Heu+95] implements tableau-based algorithms for LTL by Janssen
[Jan99] (no model construction) in the function “satisfiable” and by Schwendi-
mann [Sch98] (model construction) in the function “model”. Neither has rele-
vant options. We designate the former by sat and the latter by mod. We use
version 1.1.


NuSMV-BDD In this evaluation we treat NuSMV [nusmv,Cim+02] as two tools
NuSMV-BDD and NuSMV-SBMC. NuSMV-BDD performs symbolic model checking of
LTL using symbolic fixed point computation with BDDs [CGH97]. Experi-
ence with NuSMV-BDD allows us to restrict experiments to the following options.
nodcx/dcx en-/disables model construction, nofflt/fflt dis-/enables forward
computation of reachable states in the model and tableau for the LTL formula,
nodyn/dyn dis-/enables dynamic reordering, and elbwd/elfwd switches between
backward and forward image computation in the Emerson-Lei algorithm [EL86,
HKQ03]. We use version 2.5.0.


NuSMV-SBMC performs incremental simple bounded model checking [HJL05] of
LTL using MiniSat [minisat]. Options considered are nodcx/dcx to en-/disable
model construction and noc/c to dis-/enable checking completeness. With the
latter disabled NuSMV-SBMC cannot solve unsat instances. We use version 2.5.0.


pltl [pltl] implements tableau-based algorithms for LTL along the lines of
[GW09] via the command line argument “graph” and by Schwendimann [Sch98]
via the command line argument “tree”. Neither has model construction or rele-
vant options. We designate the former by graph and the latter by tree. We use
version r1424.


TRP++ [trp++,HK04] uses temporal resolution for LTL [FDP01]. Relevant
options: nos/s to dis-/enable simplification, nor/r to dis-/enable rewriting,
noal/al to ex-/include an order statement, dfs/bfs to choose dfs/bfs in loop
search, nop/p to dis-/enable pre-test for sometime resolution, and nofsr/fsr
to dis-/enable forward subsumption resolution. TRP++ cannot construct models.
We use v. 2.x.


TSPASS [tspass,LH10] is a temporal resolution solver for monodic first-order
temporal logic with model construction for propositional LTL [LH09b]. We
consider noext/ext to dis-/enable extended step clauses, nogrp/grp to dis-
/enable regrouping of X, nosev/sev to dis-/enable transforming multiple
eventualities into a single one, log/sub to select logical equivalence or sub-
sumption in loop tests, nosls/sls to dis-/enable sequential loop search,
norfmrr/rfmrr (resp. norbmrr/rbmrr) to dis-/enable forward (resp. backward)
matching replacement resolution, nomod/mod to dis-/enable model construction,
and mur/mor to select unordered or ordered resolution in model construction.
We use version 0.94-0.16.
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4 Benchmarks


In Tab. 1 we give an overview of the benchmark families we use.
To our knowledge this set of benchmarks is the most comprehensive
used for evaluating propositional LTL satisfiability solvers so far. [RV10]
used rozier counter, rozier pattern, and rozier formulas. [Wul+08]
used alaska lift, alaska szymanski, and subsets of rozier counter and
rozier formulas. [HS02] used trp. Note that there is little overlap. [RV10,
Wul+08] and [HS02] represent separate communities. We added the following
benchmark families that, to our knowledge, had not been used to evaluate solvers
for propositional LTL satisfiability before: acacia, anzu, and forobots.3 To
provide more challenging instances we scaled up some families. Moreover, for
the families acacia demo-v3, anzu amba, and anzu genbuf, which consist
of a set of assumptions and a set of guarantees, we not only used the form
(
∧


i ai) → (
∧


i gi) but also (
∧


i ai)∧ (
∧


i gi) (marked by “c” in the family name).
For acacia demo-v3, alaska lift, anzu amba, and anzu genbuf we added
variants with liveness conditions to trigger nontrivial behavior (marked by “l” in
the family name). For alaska lift we also use a fixed [Sch10] variant (marked by
“f” in the family name). Finally, we added the families schuppan O1formula,
schuppan O2formula, and schuppan phltl. Our set of benchmarks contains
3723 instances. All benchmarks are available from [www].


5 Methodology


Hardware and Software We used machines with Intel Xeon 3.0 GHz proces-
sors and 4 GB memory running Red Hat Linux 5.4 with 64 bit kernel 2.6.18-
164.2.1.el5. Run time and memory usage were measured with run [run].


Input Format and No Shuffling We converted all instances into NuSMV for-
mat and from there to the input formats of the other tools. We did not syntacti-
cally alter instances as there was no risk of cheating by syntactic recognition of
benchmarks (e.g., [BS03]) and we, too, think that syntactic information should
be preserved for the benefit of solvers (e.g., [SB05]).


Stages The valid option combinations of the options in Sect. 3 yield the follow-
ing number of configurations (model construction dis-/enabled): ALASKA 4/2, LWB
1/1, NuSMV-BDD 6/4, NuSMV-SBMC 2/2, pltl 2/-, TRP++ 64/-, TSPASS 128/128.


The number of configurations of TRP++ and TSPASS is too large to include
all of them in the main stage of our evaluation. We therefore performed a pre-
liminary stage with a time limit of 10 seconds and a memory limit of 2 GB on
a representative subset of instances. In that stage we used all 64 combinations
of TRP++. For TSPASS we considered the following subset of configurations: all
options at their default value (sometimes implied by other options) as well as
a single option switched to its non-default value. This resulted in 24/24 con-
figurations. We then fixed options that either had a clear benefit one way or


3 While the full version of [RV11] uses acacia and anzu, these were included based on
a previous submission of this paper that we made available to the authors of [RV11].
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family max. num. num. num. source description
size sat unsat unkn.


application


acacia demo-v22 76 10 – – [acacia,FJR09,
JB06]


window screens


acacia demo-v3 426 36 – – [acacia,FJR09,
JB06]


arbiters (scaled up, added variants)


acacia example 144 25 – – [acacia,FJR09,
JB06]


mostly arbiters and traffic light controllers


alaska lift 4450 102 34 – [alaska,Wul+08,
Har05]


lifts (scaled up, added variants, added fixes
[Sch10])


alaska szymanski 183 4 – – [alaska,Wul+08,
STV05]


mutual exclusion protocols


anzu amba 6173 43 – 8 [anzu,Blo+07a] microcontroller buses (scaled up, added variants)


anzu genbuf 5805 48 – 12 [anzu,Blo+07b] generalized buffers (scaled up, added variants)


forobots 636 14 25 – [BDF09] foraging robots


crafted


rozier counter 751 78 – – [rozier,RV10] serial counters (long models)


rozier pattern 7992 244 – – [rozier,RV10,
GH06]


patterns to test explicit state model checkers
(scaled up)


schuppan O1formula 4007 – 27 – (new) patterns that trigger exponential behavior in
schuppan O2formula 6001 – 15 12 some solvers


schuppan phltl 40501 – 10 8 (new) temporal formulation of pigeonhole principle
[Bie+09]


random


rozier formulas 185 1943 57 – [rozier,RV10] random formulas as in [DGV99] (subset of origi-
nal family)


trp 1422 573 397 – [trp,HS02] random formulas from fixed conjunctive normal
form templates (subset of original family)


Table 1. Overview of benchmark families, grouped by benchmark categories. The first
column lists the name of the family. Columns 2 – 5 show the size (see App. A) of the
largest instance and the number of sat , unsat , and unknown instances, respectively,
in that family. The 6th column provides references to the source and the 7th column
gives a brief description.


the other or clearly had little effect to the corresponding values and kept the
remaining configurations for the main stage (see Sect. 6). In the main stage all
configurations of ALASKA, LWB, NuSMV-BDD, NuSMV-SBMC, and pltl as well as the
remaining configurations of TRP++ and TSPASS were run with a time limit of 60
seconds and a memory limit of 2 GB.


In each stage, each configuration was run only once on each instance. While
performing more than one run would provide more accurate information about
run time distributions [Nik10] performing only a single run allows to use more
configurations, more instances, or higher time bounds with equal resources.


Tracks We have two tracks: one for configurations with model construction dis-
or enabled (e.g., LWB using mod constructs models but is superior to sat that
doesn’t) and one for configurations with model construction enabled. The former
considers all instances; the latter is restricted to sat instances.


Correctness of Solvers is a recurring issue in tool competitions and com-
parisons (e.g., [RV10]). Besides obvious cross checking of the sat/unsat results
reported by different configurations for the same instance we used the fact that
NuSMV-SBMC produces shortest (possibly plus one) models as an additional cor-
rectness check. We did not perform further validation of generated models.


Scoring We essentially use scoring based on a higher number of solved instances
and lower time taken on solved instances (see Sect. 2) as it preserves and clearly
shows what we consider two important performance indicators.
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However, there are fairly big differences in the number of instances in our
benchmark families. Still, we would like to consider many benchmarks rather
than only sampling the larger families. Hence, we modify the above scoring
method as follows. We consider the benchmark families as a tree. We then com-
pute the share of solved instances and the average run time on solved instances
for each leaf (here all instances have equal weight). Then, for each non-leaf node,
aggregate values are computed as averages with equal weights for all children of
that node. For the tree of families see App. B.2.


6 Results


For more plots and data see App. D and the website [www].


Preliminary Stage For TRP++ configurations with s nor proved inferior so that
only s r, nos r, and nos nor were kept. The effects of noal/al, dfs/bfs, and
nofsr/fsr are unclear; hence all combinations were kept. nop/p had little effect
so that we set it to its default nop. All in all this left us with 24 configurations.


For TSPASS ext, nosev, sub, and mor turned out to be advantageous. The
effects of nogrp/grp, norfmrr/rfmrr, and norbmrr/rbmrr are unclear and we
kept all. nosls/sls had little effect so that we disabled it as is default. This
resulted in 8 configurations each with model construction disabled and enabled.


We now move to the main stage.


Correctness of Solvers We found no bug in pltl but 1 or 2 bugs in each
of NuSMV, ALASKA, TRP++, and TSPASS. All of them were kindly fixed by the
respective tool authors. As of now we are not aware of wrong results or bugs
triggered in the above tools by our benchmark set. In LWB we found several bugs.
We emailed our findings to the developers but have not received a response.
There are currently 187 out of 7446 (non-negated and negated) instances known
to us that trigger bugs in LWB; 13 are wrong results. Hence, LWB is hors-concours.
Some large instances failed in ALASKA and TSPASS due to certain built-in limits.
These instances were rerun with increased limits.


Selecting Winning Configurations per Tool To focus the subsequent com-
parison we select one winning configuration per tool to be used for the compar-
isons between tools in the remainder of this section. We choose the configuration
with the highest weighted share of solved instances (see Sect. 5) for each tool. We
distinguish between model construction dis- or enabled and model construction
enabled as model construction is not available for some tools or options.


Table 2 provides a summary. For all tools except NuSMV-BDD and LWB the
weighted share of instances solved by the winning configurations is close to that
of the vbs of all configurations of that tool (Tab. 2). Below we mostly restrict
the analysis to the winning configurations. We use the tool name to identify the
respective winning configurations.


Track Model Construction Disabled In Fig. 1 we show contour/discrete raw
data plots of the run time for the winning configurations with model construction
dis- or enabled. The name is taken from [Sta]. A somewhat related way to display
results of a solver competition was used in Pseudo-Boolean Competitions [pbc10].
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model construction dis- or enabled (all instances) model construction enabled (sat instances)


tool winning configuration max min vbs winning configuration max min vbs


ALASKA noc nos nob 0.581 0.322 0.595 c nos nob 0.595 0.318 0.595


LWB mod 0.740 0.656 0.800 mod 0.795 0.795 0.795


NuSMV-BDD dcx fflt dyn elbwd 0.743 0.607 0.823 nodcx fflt dyn elbwd 0.754 0.625 0.771


NuSMV-SBMC nodcx c 0.723 0.651 0.726 nodcx noc 0.860 0.857 0.861


pltl tree 0.694 0.687 0.702 — — — —


TRP++ s r noal bfs nop fsr 0.752 0.593 0.776 — — — —


TSPASS ext nogrp nosev sub nosls rfmrr-


norbmrr nomod mor


0.667 0.479 0.670 ext grp sev sub nosls rfmrr-


rbmrr mod mor


0.531 0.495 0.538


Table 2. Selecting a winning configuration per tool (separately for tracks). The left-
most column lists the tool name. Next come 2 groups of 4 columns. The 1st group
is for configurations with model construction dis- or enabled, the 2nd with model
construction enabled. In each group the 1st column shows the winning configuration
per tool. The 2nd column shows its score, the 3rd column shows the worst score, and
the 4th column shows the score of the vbs of all configurations of that tool.


Contrary to cactus plots contour/discrete raw data plots retain the relation-
ship between instances (one x-coordinate corresponds to the same rather than
different instances) but are more legible than line plots. They allow to see the
performance of the solvers on benchmark families that are a subfamily of the
one comprising a plot. A particular advantage is that they permit identification
of similar and complementary behavior in performance. They also allow to see
how difficult a particular instance or subfamily is. However, these plots make it
harder to determine a ranking of solvers by higher number of solved instances
with ties broken by lower average time taken on solved instances. Due to space
constraints we cannot show both kinds of plots for the same data. We chose to
use the contour/discrete raw data plots here to demonstrate their utility. For
corresponding cactus plots see Fig. 10–13 in App. D.2.


Overall Picture In this paragraph we refer to all configurations used in the
main stage. No configuration solves all instances. 8–12 instances in anzu amba,
anzu genbuf, schuppan O2formula, and schuppan phltl remain unsolved.
The instances in the former two families are expected to be sat , in the latter un-
sat . The smallest unsolved instance is O2formula50 (size 301). NuSMV-BDD is a
sota on a number of (unsat) instances in alaska lift and schuppan O2formula;
NuSMV-SBMC on instances in alaska lift, anzu amba, and anzu genbuf (all
sat); TRP++ on instances in rozier counter (sat); LWB on instances in schup-
pan phltl (unsat). See also Fig. 8 in App. D.1.


Families The majority of benchmark families contain instances that are challeng-
ing for some solver. In category application the 3 families with larger instances,
alaska lift, anzu amba, and anzu genbuf, are the more difficult ones. Among
them the variants that were modified to trigger meaningful behavior are the
hardest. In category crafted the (unsat) families schuppan O2formula and
schuppan phltl are the most difficult. rozier counter is hard for most solvers,
except for TRP++ and TSPASS (and NuSMV-BDD in a configuration using only back-
ward fixed point computation). The two families in category random show very
different pictures. Family rozier random is solved well by non-resolution-based
tools but somewhat more difficult for TRP++ and TSPASS; roles are reversed in
family trp. Note that trp comes from the temporal resolution community, while
rozier random is taken from the model checking community.
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Fig. 1. Contour/discrete raw data plots of run time for winning configurations with
model construction dis- or enabled (all instances). Instances are on the x-axes (only
identified by their families), configurations on the y-axes. Each rectangle represents
the run time of one configuration on one instance. sz abbreviates alaska szymanski,
roz cnt abbreviates rozier counter, and demo stands for acacia demo. Run times
are encoded using the following colors:


≤ 0.1 sec; > 0.1 sec, ≤ 1 sec; > 1 sec, ≤ 10 sec; > 10 sec, ≤ 60 sec;
unsolved.


Solvers: Similarities and Differences Figure 1 shows that TRP++ and TSPASS,
which both use temporal resolution, have similar strengths and weaknesses.
TSPASS tends to improve over TRP++ on trp, while TRP++ tends to be faster
on most of the remaining families. Between the two tools using symbolic fixed
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point computation NuSMV-BDD mostly dominates ALASKA; the latter has a higher
start up time than the other tools. The strengths and weaknesses of NuSMV-BDD
mostly resemble those of TRP++ and TSPASS. Intuitively, symbolic fixed point
computation [EL86] is closer in spirit to temporal resolution as performed in
TRP++ [HK04] than to searching models (stating a more formal relationship is
left as future work). LWB, NuSMV-SBMC, and pltl display similar characteristics.
Note that these solvers essentially try to find models, although NuSMV-SBMC uses
a fairly different technique than pltl and LWB. It is important to note that
the strengths and weaknesses of NuSMV-BDD, TRP++, and TSPASS are somewhat
complementary to those of LWB, NuSMV-SBMC, and pltl.


Sat versus Unsat Instances NuSMV-SBMC exhibits the largest difference in its
behavior between sat and unsat instances. NuSMV-SBMC solves most sat instances
among the solvers. A notable exception is rozier counter, which has shortest
models of exponential size; few shortest models outside rozier counter have size
larger than 3 (see below). On the contrary, NuSMV-BDD and ALASKA, which are
based on symbolic fixed computation, are hardly affected. For plots see Fig. 14–
17 in App. D.3 and Fig. 18–21 in App. D.4.


Instance Size The two tools based on symbolic fixed point computation, ALASKA
and NuSMV-BDD, show a fairly clear influence of the size of an instance on their run
time. At the other end of the spectrum are LWB and pltl, trying to find models.
They solve some large instances in almost no time. For plots see Fig. 22–25 in
App. D.5.


Non-negated versus Negated Instances The relevance of negated versions of in-
stances is questionable. We have not included negated versions of instances in any
part of this paper, except where stated explicitly. However, we briefly comment
on one aspect because of the size of the observed effect. On the rozier formulas
family — where negation should not change any relevant characteristic of the
benchmark set — the variation in performance between the non-negated and
the negated version of an instance is considerably higher for TSPASS and TRP++


than for NuSMV-BDD and ALASKA. For scatter plots see Fig. 26 in App. D.6.


Memory Memory usage turned out to be less of a problem than time taken,
therefore we do not report detailed results. In fact, very rarely a configuration
used more than 300 MB when it solved an instance. ALASKA typically used most
memory. For plots see App. D.


VBS rather than Winning Configurations While the findings above were mostly
stated for the winning configurations of each tool, the picture does not change
significantly when comparing the vbs of each tool (for plots see App. D). As
suggested by Tab. 2 notable improvements only happen for NuSMV-BDD, LWB,
and, to a lesser extent, TRP++.


Track Model Construction Enabled We focus on model size. Figure 2 shows
a cactus plot for the winning configurations with model construction enabled (sat
instances). A vbs of all configurations with model construction enabled solves all
but the largest instances of anzu amba, anzu genbuf, and rozier counter.
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sion of the Emerson-Lei algorithm in
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NuSMV-BDD is a sota based on instances in rozier counter; NuSMV-SBMC on in-
stances in alaska lift, anzu amba, anzu genbuf, and rozier pattern; LWB
on instances in rozier pattern.


95 % of the satisfiable instances have shortest models of size 3 or less. In-
stances with shortest models of size larger than 11 are either from rozier coun-
ter or from the variants in application modified to trigger meaningful behavior.


NuSMV-SBMC mostly produces shortest models, while NuSMV-BDD produces
the longest ones. On the other hand, NuSMV-BDD solves more instances of the
rozier counter family (which has very long models) than the other tools.


A Performance Advantage of ALASKA over NuSMV-BDD? In [Wul+08] De
Wulf et al. perform a comparison between ALASKA and NuSMV-BDD for satisfia-
bility and model checking of LTL. For LTL satisfiability they find that ALASKA


outperforms NuSMV-BDD on alaska lift, alaska szymanski, and a subfamily of
rozier formulas, while NuSMV-BDD performs better on rozier counter.


A comparison of the antichain-based algorithm in ALASKA [Wul+08] and the
Emerson-Lei algorithm [EL86] used in NuSMV-BDD shows that the algorithm
in [Wul+08] computes fixed points using forward image computation, while
NuSMV-BDD up to version 2.4.3 only uses (as is common) backward image com-
putations for [EL86]. This triggered us to implement a forward version (e.g.,
[HKQ03]) of the Emerson-Lei algorithm in NuSMV-BDD. Figure 3 shows that the
forward version performs considerably better than the backward version on the
rozier formulas family. Using forward image computation NuSMV-BDD outper-
forms ALASKA on rozier formulas. Note also that ALASKA can be switched to
perform backward image computation in which case its performance degrades
considerably.


Our evaluation shows that NuSMV-BDD can solve the alaska lift and
alaska szymanski families easily (and faster than ALASKA) by restricting com-
putation to reachable states (fflt) and enabling dynamic reordering (dyn).
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Fig. 4. Potential of a portfolio solver consisting of subsets of the winning configurations
with model construction dis- or enabled using a perfect oracle. Portfolios are identified
by their constituent configurations: 0: ALASKA; 1: LWB; 2: NuSMV-BDD; 3: NuSMV-SBMC;
4: pltl; 5: TRP++; 6: TSPASS. On the x-axis are the portfolios sorted in increasing
order of weighted share of solved instances; ties are broken by decreasing order of
weighted average run time on solved instances. For each portfolio the weighted share
of solved instances is marked by a red vertical/horizontal cross (scale on the left y-
axis); the corresponding weighted average run time on solved instances is marked by a
green diagonal cross (scale on the right y-axis). “all” considers all configurations with
model construction dis- or enabled rather than only the winning configurations. For an
enlarged plot see App. D.8.


7 Potential of a Portfolio Solver


In the previous section we saw that some configurations behave complementar-
ily. This motivates constructing portfolio solvers that consist of a set of con-
figurations with the goal that the resulting solver performs better than any
of its constituent configurations (e.g., [HLH97]). Different modes of execution
are considered for portfolio solvers in the literature (e.g., [HLH97,LB+03,GS01,
Xu+08]).


Perfect Oracle We assume an oracle that for each instance predicts (using
no time and memory) an optimal configuration in a portfolio and then executes
that configuration on that instance (see, e.g., [LB+03]). I.e., the performance of
a portfolio solver on an instance is determined by the performance of an optimal
configuration in a portfolio on that instance. If configurations do not collabo-
rate (e.g., by exchanging partial results) that is a bound on the performance
of a practical solver using that portfolio. An alternative view of this mode of
execution is that each member of the portfolio is run on a separate processor in
parallel until one configuration finishes while taking into account only the cost
of one processor and disregarding the cost of other processors.


We estimate the potential of such a portfolio solver by considering all portfo-
lios consisting of subsets of winning configurations with model construction dis-
or enabled from Tab. 2. Figure 4 shows the result.


While individual configurations solve at most a weighted share of 0.752, using
a portfolio helps to solve up to 0.931. All portfolios that solve a weighted share of
0.866 or more contain at least one of ALASKA, NuSMV-BDD, TRP++, and TSPASS and
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at least one of LWB, NuSMV-SBMC, and pltl. All that solve 0.9 or more contain
at least one of LWB and NuSMV-SBMC and at least one of TRP++ and TSPASS.
The 4 best portfolios with two configurations are (LWB, TRP++), (LWB, TSPASS),
(NuSMV-SBMC, TRP++), and (NuSMV-SBMC, TSPASS). Adding ALASKA to a portfolio
that contains NuSMV-BDD does not help in most cases.


Perfect Task Switcher We now assume that all configurations of a portfolio
are executed on a single processor in a time-sharing fashion with equal and
infinitely small time slices, no task switching overhead, and memory usage not
an issue (e.g., [HLH97]). I.e., rather than assuming a perfect oracle, we only
assume a perfect task switcher. Now the performance of a portfolio solver with
k configurations on an instance is determined by the performance of an optimal
configuration in a portfolio on that instance multiplied by k (that might induce
time-out even if some configuration solves the instance). If configurations do not
collaborate this can be considered a portfolio solver that any practical portfolio
solver using that portfolio should aim to beat. An alternative view is that each
portfolio member runs on a separate processor in parallel until one member
finishes and taking into account the cost for all processors.


For a plot analogous to Figure 4 see App. D.8. Here the best portfolio con-
sidered is (LWB, NuSMV-BDD, NuSMV-SBMC, TRP++), which solves a weighted share
of 0.922. Otherwise, similar remarks as for the case of a perfect oracle apply.


Fast Presolver We now show that even a simplistic portfolio solver (imple-
mentable as shell script) can yield considerable benefits. We take the 4 best
2-configuration portfolios from above and use one of the two solvers as fast pre-
solver [Xu+08] by executing it until it either solves an instance or reaches its
(short) time limit. If the instance is not yet solved, then we execute the other
solver for the remaining time (60 seconds minus the time limit of the presolver).


Results are shown in Tab. 3. In each case the portfolios using a fast presolver
significantly increase the weighted share of solved instances while decreasing the
weighted average run time over the respective portfolio members in isolation.


8 Conclusion


Benchmarks and data from our evaluation, available at [www], identify reference
solvers with their command line options at the level of benchmark instances.
This helps to improve existing solvers, provides a point of reference in the eval-
uation of new techniques, and can serve as a basis for developing heuristics for
portfolio solvers. Our evaluation shows that solvers have different, complemen-
tary strengths and weaknesses. We do not declare any solver to be the winner
(those who disagree are referred to Tab. 2). Instead, for a solver aiming to be
competitive on a broad range of benchmarks we advocate a portfolio approach.


Acknowledgements J.-F. Raskin and N. Maquet for help with ALASKA and hosting
the 1st author for 1 week. R. Goré and F. Widmann for help with pltl. B. Konev
and M. Ludwig for help with TRP++ and TSPASS. C. Dixon for the forobots family.
B. Jobstmann and G. Hofferek for help with the amba family. K. Rozier for feed-
back. A. Artale for supervising the 2nd author’s MSc thesis. The ES group at FBK,
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1st in 2nd in perfect perf. task 1st as fast presolver 2nd as fast presolver
isolation isolation oracle switcher 1 second 2 seconds 1 second 2 seconds


share time share time share time share time share time share time share time share time


(LWB, TRP++) 0.740 2.59 0.752 3.03 0.896 0.89 0.894 1.12 0.880 1.09 0.885 1.30 0.841 1.26 0.850 1.45
(LWB, TSPASS) 0.740 2.59 0.667 1.91 0.889 1.16 0.881 1.27 0.868 0.88 0.874 1.10 0.850 1.20 0.858 1.48
(NuSMV-SBMC, TRP++) 0.723 1.47 0.752 3.03 0.880 1.11 0.874 1.37 0.823 1.03 0.841 1.18 0.860 0.97 0.862 1.31
(NuSMV-SBMC, TSPASS) 0.723 1.47 0.667 1.91 0.867 1.41 0.853 1.60 0.813 1.00 0.831 1.21 0.837 1.17 0.840 1.42


Table 3. Performance of the 4 best 2-configuration portfolios in various execution
modes. After the portfolio members in the 1st column there are 8 groups of 2 columns.
In each group the 1st column shows the weighted share of solved instances, the 2nd
column shows the weighted average run time on solved instances in seconds. The 1st
and 2nd column groups are for the 1st and 2nd member of each portfolio in isolation.
The 3rd and 4th groups are for perfect oracle and perfect task switcher modes. The
5th and 6th groups are for fast presolver mode with 1 and 2 seconds time limit when
the 1st member of the portfolio is used as a fast presolver; the 7th and 8th groups are
analogous for the 2nd member as a fast presolver. The time limits of 1 and 2 seconds
were chosen among some that we tried as they represent a sweet spot that exhibits both
an increase in weighted share of solved instances and a decrease in weighted average
run time on solved instances.
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A Concepts and Terminology


Some terminology below is inspired by that in SAT competitions [SB05,Ber+09].
For a general reference on experimental comparison of algorithms see, e.g.,
[Joh02].


A.1 Benchmarks


A single formula considered for solving is an instance. An instance is either sat-
isfiable (sat) or unsatisfiable (unsat), which, due to non-termination of solvers,
may not be known (unknown). Each sat instance has a set of models satisfying
the instance. Besides sat and unsat running a solver on an instance may lead to
the solver using more than the maximum allocated time (time-out) or memory
(mem-out), or to an error due to a wrong result or a crash (error). A wrong
result can be either a sat/unsat answer when the opposite is true or a model
that does not satisfy the given instance. A sat (resp. unsat) instance is solved
by some solver if the solver answers sat (resp. unsat) on that instance. If model
construction is desired, then a sat answer must be accompanied by a model
satisfying the instance.


The size of a formula is given by the sum of the number of occurrences of
temporal and propositional operators and atomic propositions. The size of a
model is the number of states if the model is a finite prefix and the sum of the
length of the stem and the loop (without counting the first repeating state twice)
if the model is lasso-shaped.


An instance may be used in non-negated or (less often) negated versions.
Several related instances are grouped into families. Families may also be grouped
into families, leading to the notion of subfamilies. A set of instances that differ
(only) by varying some difficulty-related parameter is sometimes called a series.
It is customary to group families according to their nature into the categories
application, crafted, and random. Sometimes the specialties of only sat , only
unsat , and both sat and unsat instances are distinguished. We use bold font
for sets of instances.


Sometimes (e.g., [BS04,SS01]) instances are altered syntactically by, e.g., re-
ordering clauses in a formula, renaming variables, etc. This is done to prevent
solvers from recognizing instances (e.g., [BS03]) and/or because the performance
of a solver may change (e.g., [Nik10,BS03,BS04].) While a solver whose perfor-
mance is independent of the specific syntax of an instance is certainly nice [SS01],
in an application-oriented setting names and structure can give clues to improve
performance [BS04].


A.2 Solvers


A tool is a program that takes an instance as input and answers sat , unsat , or
unknown. For sat instances it may construct a model. Often the behavior of a
tool can be tuned via program options. We call a tool with specific option values
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a configuration. We denote configurations in teletype. We sometimes use solver
as a generic term that may either mean tool or configuration.


A configuration is complete if it solves every instance when provided with
sufficient time and memory; it is incomplete otherwise.


A configuration is buggy if it results in error on at least one instance. A tool
is buggy if one of its configurations is buggy.


A tool is a state-of-the-art contributor (sota) if an instance is solved only by
configurations of that tool (see also [SS01]). Given a set of configurations C the
virtual best solver (vbs) is the hypothetical solver using the best configuration
in C on any given instance (e.g., [Ber+09]).


A.3 Competitions and Evaluations


The term competition is typically used for events where participants can submit
both solvers and benchmarks, where participating solvers are run on participat-
ing benchmarks, and where one or more winners are announced. Evaluations
typically do not formally declare winners. Evaluations are often initial or early
stage events before (possibly) “upgrading” to a competition. Some examples
are the CADE ATP System Competition (CASC) [casc,Sut10], the Hardware
Model Checking Competition (HWMCC) [hwmcc10,BC10], the QBF competi-
tive evaluation (QBFEVAL) [qbveval,Pes+10], the Pseudo-Boolean Competition
[pbc10,MR10,MR06], the SAT Competition [satcomp,Ber+09,BS06], the SAT-
Race [satrace10,Sin+10], and the Satisfiability Modulo Theories Competition
(SMT-COMP) [smtcomp,Bar+08].


Some competitions and evaluations have different tracks with competi-
tion/evaluation for each track, e.g., parallel [Ber+09], proof generating [BRS07],
or special input format [BRS07] solvers.


Competitions and evaluations often proceed in a number of stages (e.g.,
[BS04]). In early stages all solvers participate. Then buggy or badly performing
solvers are ruled out and remaining solvers are run again, often with increased
resources.


Solvers that do not meet some participation criteria or are discovered to
be buggy, are often declared hors-concours, i.e., they are run along with other
participating solvers (though not always in all stages), but only for informational
purposes. In particular, they are not eligible for awards. See, e.g., [SB05].


A.4 Scoring and Ranking


Ranking is the process of ordering the solvers in a comparison based on their
(and possibly other solvers’) performance. Scoring is the process of assigning
numerical value(s) to a solver in a comparison based on their (and possibly
other solvers’) performance. In competitions this is an important and sometimes
contentious issue (e.g., [Ber+09]).


A frequent scoring and ranking scheme (e.g., [Sut10,Ber+09]) ranks by higher
number of solved instances and breaks ties using lower average (or, equivalently,
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sum) of time taken on solved instances. Several more elaborate schemes have
been proposed; see, e.g., [Gel11,Nik10,NPT07,Pul06,Ber+09,SS01].


A.5 Cactus Plots


Cactus plots are frequently used in comparisons to display performance of solvers
(e.g., [SS01,SB05]). For a given set of solvers and benchmark instances a cactus
plot provides a good impression of the share of solved instances and the distribu-
tion of resources required for a solver on that set of instances. However, it loses
the correlation between individual instances in the set of instances, i.e., it does
not allow to compare the performance of solvers on specific instances or subsets
of instances.


A cactus plot shows one curve for each solver. The x- and y-coordinates of
the points of a curve are obtained as follows. Instances are on the x-axis and are
sorted in increasing order of run time.4 Note that the order of instances on the
x-axis may differ between solvers. Therefore, the x-axis is typically labeled by
number of instances. Instances not solved by a particular solver are not plotted
for that solver; in that case the curve for that solver does not reach the right
border of the plot.


The y-axis shows the run time required. The y-axis either shows the run
times required for individual instances (non-accumulated, e.g., [Ber+09]) or, less
frequently, the sum of the run times up to that instance (accumulated, e.g.,
[Bar+08]). Cactus plots with accumulated run times make it easy to identify
winners when scoring and ranking by higher number of solved instances and ties
broken by lower sum of time taken on solved instances. The further to the right
a certain solver’s curve reaches, the more instances it solves (right-most is best).
The lower the right end point of a solver’s curve lies, the fewer time it takes
(lowest is best). However, accumulated run times make it harder to see the time
required on individual benchmarks than non-accumulated run times. Obtaining
the sums of run times in a non-accumulated cactus plot requires measuring the
areas below the curves (integration); correspondingly, determining run times on
individual benchmark instances in an accumulated cactus plot can be done by
taking the gradients of the curves (differentiation).


A.6 Peter Principle Point


Frequently solvers show the following characteristic [SS01]. While a large part
of the benchmarks is solved even within a fairly small time limit, increasing the
time limit will lead to more solved benchmarks only up to a certain point. Beyond
that even a substantially larger time limit will not help (much). Sometimes this
point is called Peter Principle Point [SS01] (after [PH69]). It is significant for
comparisons as it is one indication of whether the chosen time limit is appropriate
for the participating solvers and benchmarks. Cactus plots help to identify that
point as, when a solver reaches that point on some benchmark set, then its curve
in the corresponding cactus plot will start to rise steeply.


4 Or other measure of interest such as memory. W.l.o.g. we use run time as an example.
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A.7 Contour/Discrete Raw Data Plots: Historical References


For early appearances of similar plots (under different names) see, e.g., [Bri39]
and [Lou73] (also via [FD,WF09,Fal08]). Spectra in physics and staining of chro-
mosomes to obtain karyograms in biology come to mind as being somewhat
related in other fields.


B Benchmarks — More Details


B.1 Detailed Overview of Benchmark Families


In Tab. 4 and 5 we provide a more detailed description of the benchmark families
than in Tab. 1. Benchmark families are described at a lower level of subfamilies.
In addition to what is shown in Tab. 1 scaling parameter and values are given
in col. 2 and 3, size of the smallest instance in col. 4, and overall number of
instances in col. 5.


B.2 Tree Structure of Benchmark Families


In Fig. 5 and 6 we show the tree structure of the benchmark families used for
computing the weighted share of solved instances and the weighted average run
time on solved instances (see Sect. 5). The leafs in the tree contain the instances.


In category random each leaf represents several leaf subfamilies that differ
in a size-related parameter, shown in set notation. For example, family trp N5y
has 14 subfamilies 1, 5, 10, . . . , 40. Each of the leaf subfamilies in category ran-
dom contains 10 instances.


Each instance of a leaf subfamily is assigned equal weight. Similarly, each
subfamily of a family is assigned equal weight. Note that not in all computa-
tions all instances participate. Hence, the overall weight assigned to an instance
may differ. As an example, for the computation of the average run time on
solved instances of some configuration only the instances actually solved by that
configuration participate in the computation. All unsolved instances and, con-
sequentially, all subfamilies without solved instances are removed from the tree
for the computation of the weights.


C Discussion


C.1 Isn’t this just an exercise in data collection? Shouldn’t you put
your data to some actual use before publishing a paper?


A broad solver comparison such as this yields valuable results in itself, the most
important of which we list below. For some references on the motivation of solver
competitions and evaluations see, e.g., [SS01,LRD10,SBH05].
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Fig. 5. Tree structure of benchmark families in categories application and crafted.
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Fig. 6. Tree structure of benchmark families in category random.
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Comparison of Solvers and Identification of Reference Solvers The
most important result of a solver comparison is an indication of the performance
of the solvers, both in absolute terms and relative to each other. Specifically,
this includes the identification of reference solvers that can, e.g., be used to
compare new ideas with. For example, [RV07,RV10] is used in [Mon+08] and
[Wul+08] to justify using NuSMV [Cim+02] for comparison, in [TV10] and [EF10]
to justify using SPOT [DLP04] as reference, and in this paper to rule out some
model checkers. An important point in identifying reference solvers is to include
the corresponding command line options or commands; we have seen more than
one instance in which NuSMV was used as a reference solver for comparison, and
superiority of a new technique was claimed, but it turned out that NuSMV was
in fact used in a suboptimal fashion (see [Wul+08] as discussed in Sect. 6 as
an example). Our data help to identify reference solvers at both aggregate and
instance levels, including relevant options or commands.


Improvement of Solvers Often, solver comparisons trigger bugs that can then
be fixed by solver authors, leading to more robust solvers (e.g., [SBH05,MR06,
BJ07,SB05] and this paper). If the number of configurations that can be entered
into a competition or evaluation per participant is limited, then solver authors
may be encouraged to develop heuristics to choose a good configuration rather
than leaving this task to the user [LRD10]. Similarly, solver competitions and
evaluations may help to develop common file formats for benchmarks and get
developers to incorporate them in their solvers (e.g., [BMS05,MR06,BJ07]). Note
that the latter two points are not the case for this paper.


Collection of Benchmarks Another widely acknowledged purpose of a solver
competition or evaluation is to collect a set of benchmarks and make them
available in a uniform format as well as identify the easy and difficult ones
(e.g., [BMS05,MR06,BJ07]). We make our benchmarks available at [www] in the
formats of all solvers we used.


Dissemination A solver comparison may also help to make solver developers
aware of trends they may have overlooked. Moreover, it can raise visibility (e.g.,
[BJ07]) and serve as an entry point to understand the state of the art for people
outside the field.


Resource for Deeper Analyses The data obtained in solver comparisons
provide a valuable resource for deeper analyses. Some examples are


– Development of algorithm portfolios: [Bou+09,NT09] use data from SatEx
[SC01] to investigate algorithm portfolios.


– Development of scoring and ranking methods: Van Gelder [Gel11] evaluates a
proposed ranking method on data from the SAT 2009 competition [Ber+09].
Pulina et al. [NPT07,Pul06] use the results of QBFEVAL’05 [NPT06] to com-
pare and develop scoring and ranking methods. Kullmann [Kul06] discusses
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the method used in the SAT 2005 competition [BS06] on the data for the
random instances. Zarpas [Zar05] contrasts his own experience of picking a
“best” SAT solver with results obtained in the SAT 2003 competition [BS03].


– Development of data visualization methods: Purdom et al. [PBS05] apply a
parsimony algorithm to the results of the SAT 2002 competition [SBH05]
in order to obtain a classification of solvers similar to phylogenetic trees
used by biologists. The method has been used to illustrate the outcome of
subsequent SAT competitions [BS04,BS05,BRS07].


– Investigation of specific aspects: Reports from solver comparisons are con-
strained in terms of their authors’ effort as well as page limits. Hence, more
specific analyses (e.g., on subsets of the benchmarks) are often deferred to
separate publications. Examples are [Zar06] and [Kul06].


Limitations Clearly, solver comparisons have their limitations, too (see, e.g.,
[SS01]). Most notably they only provide a snapshot 1. of the solvers involved
2. on the set of benchmarks used 3. subject to the rules of the comparison 4. at
a certain point in time. The solvers involved will likely differ in maturity and
sophistication of implementation as well as be written by authors with different
programming skills and in different programming languages. Finally, the data
itself does not provide a direct explanation of why the solvers behave the way
they do.


C.2 Why didn’t you perform a public competition or evaluation?


Many solver comparisons are performed as public competitions or evaluations
where submissions of both solvers and benchmarks are solicited. This clearly
has the advantage of giving all interested parties a chance to submit their work,
possibly improving selection of solvers and benchmarks. Our reason for not do-
ing so is simply that this work developed over time in a gradual fashion. I.e.,
we did not start with the idea of performing a comprehensive comparison of
solvers for propositional LTL. Rather, originally, we were just intrigued by the
results in [Wul+08] that reported superiority of ALASKA over NuSMV on some
benchmarks and performed a small comparison between ALASKA, NuSMV-BDD, and
NuSMV-SBMC. On a separate thread we are interested in unsatisfiable cores for
propositional LTL [Sch10]. Hence, we added TRP++ and TSPASS to the comparison
to gauge their potential for extracting unsatisfiable cores (extracting unsatisfi-
able cores from resolution proofs is well established in propositional SAT [GN03,
ZM03b,ZM03a]). Finally, when we decided to perform a comprehensive compar-
ison, we included LWB and pltl as representatives of tableau-based approaches.
See Sect. 3 why we think that our selection of solvers is still representative of
the field.


This paper shows that capable solvers for propositional LTL are available.
What is somewhat lacking are benchmarks that are strongly inspired by realistic
applications and drive current solvers to or beyond the limit of their capabilities
even when using significantly larger time out values. Once such benchmarks are
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available we think that the idea of holding a public competition or evaluation
should be given serious consideration.


C.3 Relevance of Available CPU Time


In a comparison such as this the available overall CPU time is a major limiting
factor. Our main stage took more than 90 CPU days. Hence, when making
choices (such as time out values and numbers of benchmark instances), their
consequences in terms of required CPU time need to be kept in mind.


C.4 Are 60 seconds time out enough for the main stage?


Factors that influence the time out value include the difficulty and number of
benchmarks to be considered, the number of configurations to run, and the
available overall CPU time (e.g., [SB05]). Many comparisons use time out values
larger than 60 seconds (see, e.g., CASC-J5 [Sut10] with a couple of minutes to
SAT’09 [Ber+09] with almost 3 hours for some tracks). Moreover, the cactus
plots in Fig. 10–13 in App. D.2 suggest that the Peter Principle Point [SS01]
(see also Sect. A.6) may not have been reached for all solvers.


However, we think that the available, relevant benchmarks should have a
strong influence on the choice of time out value, too. Note that we collected
most available benchmarks for satisfiability of propositional LTL known to us.
Before scaling up some of these benchmark families all instances were solved by
some configuration in less than 1.5 seconds (though no configuration solved all
instances). We then scaled up some benchmarks families and added variants and
new ones. We focused most of our effort on the application category, which we
regard as the most important one. In this category we scaled up by a factor of 2.5


It currently contains 361 instances; out of those, 20 remained unsolved overall
and each individual configuration left at least 66 unsolved. Hence, it seems that
60 seconds is a reasonable time out value for the currently available solvers and
benchmarks in category application. We hope to see more application inspired
benchmarks in the future that will require larger time out values.


C.5 Are 10 seconds time out enough for the preliminary stage?


While a larger time out value might be nice, the share of runs resulting in
time-out is larger here than in the main stage. We compensated for that by
including rather excluding configurations in the main stage in case of doubt,
and by confirming our decisions with solver authors. Remember also that only
TRP++ and TSPASS required a preliminary stage.


5 While higher factors are clearly possible, we think that scaling up a benchmark
coming from an application too far incurs the risk of leaving the space of realistic
application benchmarks. For example, we scaled up alaska lift from 9 to 18 floors
and anzu amba from 9 to 18 masters.
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C.6 Why is only a subset of the instances in the random category
used?


In category random we only used 10 instances per parameter combination out of
the 500 (rozier formulas) or 100 (trp) available in the original benchmark fam-
ilies. In addition, for rozier formulas we only used a subset of families. With our
current set of configurations we saw 38444 time-out results for rozier formulas
and 49056 time-out results for trp. Simple extrapolation assuming a constant
share of time-out results suggests a lower bound of more than 9 CPU years of
computation time for considering the complete benchmark families. We do not
think that in a solver comparison focused on breadth in terms of solvers and
benchmarks such as ours the additional knowledge gain would justify that cost.
A specific investigation — such as locating phase transitions (e.g., [HS02]) —
might necessitate using that many instances; however, in that case the number
of solvers (configurations) involved would likely be much smaller.


C.7 Why didn’t you perform analysis x?


We did not perform deeper analyses of specific aspects such as phase transition
phenomena [HS02] as our comparison is focused on breadth rather than depth
and, hence, choosing any particular aspect will be largely arbitrary.


Several alternative scoring and ranking methods have been proposed (e.g.,
[Gel11,Nik10,NPT07,Pul06,Ber+09,SS01]) and one might think that applying
one or more of these could provide valuable additional insight. However, most
of these schemes naturally aim at capturing the behavior of a solver in one or a
few numbers and tend to imply a corresponding linear order on the solvers. We
think that a major result of this investigation is that there are complementary
behaviors between groups of solvers. In our opinion the contour/discrete raw
data plot suggested by us in Fig. 1 is better suited to capture this. In the future
we might want to refine the idea of contour/discrete raw data plots by, e.g.,
combining them with the solver classification via parsimony algorithms from
[SBH05].


Finally, remember that in either case our data are available at [www] for
further analyses by third parties.
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D Additional Graphs


D.1 Contour/Discrete Raw Data Plots


Memory


Figure 7 is analogous to Fig. 1 but for memory usage.
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Fig. 7. Contour/discrete raw data plots of memory usage for the winning configu-
rations with model construction dis- or enabled (all instances). Instances are on the
x-axes (only identified by their families), configurations on the y-axes. Each rectan-
gle represents the memory usage of one configuration on one instance. sz abbreviates
alaska szymanski, roz cnt abbreviates rozier counter, and demo stands for aca-
cia demo. Memory usage is encoded using the following colors:


≤ 1 MB; > 1 MB, ≤ 10 MB; > 10 MB, ≤ 100 MB; > 100 MB, ≤ 2048
MB; unsolved.
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Run Time VBS


Figure 8 is analogous to Fig. 1 but using the vbs of each tool.
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Fig. 8. Contour/discrete raw data plots of run time for the vbs of each tool (all in-
stances). Instances are on the x-axes (only identified by their families), configurations
on the y-axes. Each rectangle represents the run time of one configuration on one in-
stance. sz abbreviates alaska szymanski, roz cnt abbreviates rozier counter, and
demo stands for acacia demo. Run times are encoded using the following colors:


≤ 0.1 sec; > 0.1 sec, ≤ 1 sec; > 1 sec, ≤ 10 sec; > 10 sec, ≤ 60 sec;
unsolved.
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Memory VBS


Figure 9 is analogous to Fig. 7 but using the vbs of each tool.
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Fig. 9. Contour/discrete raw data plots of memory usage for the vbs of each tool
(all instances). Instances are on the x-axes (only identified by their families), con-
figurations on the y-axes. Each rectangle represents the memory usage of one con-
figuration on one instance. sz abbreviates alaska szymanski, roz cnt abbreviates
rozier counter, and demo stands for acacia demo. Memory usage is encoded using
the following colors:


≤ 1 MB; > 1 MB, ≤ 10 MB; > 10 MB, ≤ 100 MB; > 100 MB, ≤ 2048
MB; unsolved.
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D.2 Cactus Plots


Run Time


In Fig. 10 we show cactus plots of the run time for the winning configurations
with model construction dis- or enabled for all instances.
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Fig. 10. Cactus plots of run time for the winning configurations with model construc-
tion dis- or enabled (all instances). The x-axes show the number of solved instances
(sorted by increasing run time for each configuration). The y-axes show the run time
in seconds. The upper left plot is category application; the upper right plot and both
plots in the middle row are category crafted with families rozier counter, pattern,
and schuppan phltl; the last row is category random with families rozier formulas
and trp.
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Memory


Figure 11 is analogous to Fig. 10 but for memory usage.
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Fig. 11. Cactus plots of memory usage for the winning configurations with model
construction dis- or enabled (all instances). The x-axes show the number of solved
instances (sorted by increasing memory usage for each configuration). The y-axes
show the memory usage in MB. The upper left plot is category application; the
upper right plot and both plots in the middle row are category crafted with families
rozier counter, pattern, and schuppan phltl; the last row is category random
with families rozier formulas and trp.
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Run Time VBS


Figure 12 is analogous to Fig. 10 but using the vbs of each tool.
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Fig. 12. Cactus plots of run time for the vbs of each tool (all instances). The x-
axes show the number of solved instances (sorted by increasing run time for each
configuration). The y-axes show the run time in seconds. The upper left plot is category
application; the upper right plot and both plots in the middle row are category
crafted with families rozier counter, pattern, and schuppan phltl; the last row
is category random with families rozier formulas and trp.
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Memory VBS


Figure 13 is analogous to Fig. 11 but using the vbs of each tool.
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Fig. 13. Cactus plots of memory usage for the vbs of each tool (all instances). The
x-axes show the number of solved instances (sorted by increasing memory usage for
each configuration). The y-axes show the memory usage in MB. The upper left plot
is category application; the upper right plot and both plots in the middle row are
category crafted with families rozier counter, pattern, and schuppan phltl; the
last row is category random with families rozier formulas and trp.
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D.3 Cactus Plots Sat versus Unsat Instances 1


Run Time


In Fig. 14 we show cactus plots of the run time for the winning configurations
with model construction dis- or enabled split into sat and unsat instances. Here
we show the more familiar cactus plots. See Fig. 18–21 in App. D.4 for alternative
plots that use an equal distribution between sat and unsat instances and show
the run time for sat and unsat instances for one configuration in one plot.


Memory


Figure 15 is analogous to Fig. 14 but for memory usage.


Run Time VBS


Figure 16 is analogous to Fig. 14 but using the vbs of each tool.


Memory VBS


Figure 17 is analogous to Fig. 15 but using the vbs of each tool.
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Fig. 14. Cactus plots of run time for the winning configurations with model construc-
tion dis- or enabled split into sat and unsat instances. The x-axes show the number
of solved instances (sorted by increasing run time for each configuration). The y-axes
show the run time in seconds. The left column shows sat , the right column unsat in-
stances. Only families that contain both sat and unsat instances are shown (see Tab. 1
for numbers of unsat instances). We do not show crafted as there seems to be too
little commonality between the sat and the unsat subfamilies to be useful.
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Fig. 15. Cactus plots of memory usage for the winning configurations with model
construction dis- or enabled split into sat and unsat instances. The x-axes show the
number of solved instances (sorted by increasing memory usage for each configuration).
The y-axes show the memory usage in MB. The left column shows sat , the right column
unsat instances. Only families that contain both sat and unsat instances are shown
(see Tab. 1 for numbers of unsat instances). We do not show crafted as there seems
to be too little commonality between the sat and the unsat subfamilies to be useful.
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Fig. 16. Cactus plots of run time for the vbs of each tool split into sat and unsat
instances. The x-axes show the number of solved instances (sorted by increasing run
time for each configuration). The y-axes show the run time in seconds. The left column
shows sat , the right column unsat instances. Only families that contain both sat and
unsat instances are shown (see Tab. 1 for numbers of unsat instances). We do not show
crafted as there seems to be too little commonality between the sat and the unsat
subfamilies to be useful.
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Fig. 17. Cactus plots of memory usage for the vbs of each tool split into sat and
unsat instances. The x-axes show the number of solved instances (sorted by increasing
memory usage for each configuration). The y-axes show the memory usage in MB. The
left column shows sat , the right column unsat instances. Only families that contain
both sat and unsat instances are shown (see Tab. 1 for numbers of unsat instances).
We do not show crafted as there seems to be too little commonality between the sat
and the unsat subfamilies to be useful.
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D.4 Cactus Plots Sat versus Unsat Instances 2


Run Time


Figure 18 shows cactus plots comparing the run time for the winning configu-
rations with model construction dis- or enabled for sat and unsat instances. In
alaska lift the unsat instances are found in lift l and lift b l. For correspond-
ing sat instances we took the families that are most similar, namely, lift f l and
lift b f l. The families rozier formulas and trp are not homogenuous but con-
sist of subfamilies with different parameters such as size or number of distinct
atomic propositions. The distribution between sat and unsat instances is not
uniform across parameters. To avoid bias in Fig. 18 only a subset of instances is
used there such that the number of sat and unsat instances per combination of
parameters is the same. This is achieved by dropping “superfluous” instances.
This inherently assumes that within one combination of parameters instances ex-
hibit similar characteristics; we visually checked two such samples (one of which
is shown) and found little difference in the relevant general trends.


Memory


Figure 19 is analogous to Fig. 18 but for memory usage.


Run Time VBS


Figure 20 is analogous to Fig. 18 but using the vbs of each tool.


Memory VBS


Figure 21 is analogous to Fig. 19 but using the vbs of each tool.
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Fig. 18. Cactus plots of run time for the winning configurations with model con-
struction dis- or enabled comparing sat (green, thick line) and unsat (red, thin line)
instances. The x-axes show the number of solved instances (sorted by increasing run
time for each configuration). The y-axes show the run time in seconds. Each line rep-
resents a configuration, each column a family of instances. For rozier random and
trp not all instances are considered (see text). Note that there are only 14 sat but 25
unsat instances in forobots so that different scales on the x-axis are used.
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Fig. 19. Cactus plots of memory usage for the winning configurations with model
construction dis- or enabled comparing sat (green, thick line) and unsat (red, thin
line) instances. The x-axes show the number of solved instances (sorted by increasing
memory usage for each configuration). The y-axes show the memory usage in MB. Each
line represents a configuration, each column a family of instances. For rozier random
and trp not all instances are considered (see text). Note that there are only 14 sat but
25 unsat instances in forobots so that different scales on the x-axis are used.
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Fig. 20. Cactus plots of run time for the vbs of each tool comparing sat (green,
thick line) and unsat (red, thin line) instances. The x-axes show the number of solved
instances (sorted by increasing run time for each configuration). The y-axes show the
run time in seconds. Each line represents a configuration, each column a family of
instances. For rozier random and trp not all instances are considered (see text).
Note that there are only 14 sat but 25 unsat instances in forobots so that different
scales on the x-axis are used.
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Fig. 21. Cactus plots of memory usage for the vbs of each tool comparing sat (green,
thick line) and unsat (red, thin line) instances. The x-axes show the number of solved
instances (sorted by increasing memory usage for each configuration). The y-axes show
the memory usage in MB. Each line represents a configuration, each column a family
of instances. For rozier random and trp not all instances are considered (see text).
Note that there are only 14 sat but 25 unsat instances in forobots so that different
scales on the x-axis are used.
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D.5 Plots Run Time and Memory versus Size


Run Time


Figure 22 shows plots of the run time versus instance size for the winning con-
figurations with model construction dis- or enabled (all instances).


Memory


Figure 23 is analogous to Fig. 22 but for memory usage.


Run Time VBS


Figure 24 is analogous to Fig. 22 but using the vbs of each tool.


Memory VBS


Figure 25 is analogous to Fig. 23 but using the vbs of each tool.
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Fig. 22. Plots of run time for the winning configurations with model construction dis-
or enabled versus instance size. The x-axes show the instance size given by the number
of nodes in the syntax tree. The y-axes show the run time in seconds. Notice that the
x-axes are logarithmic for application and crafted and linear for rozier formulas
and trp. Each line represents a configuration, each column a family.
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Fig. 23. Plots of memory usage for the winning configurations with model construc-
tion dis- or enabled versus instance size. The x-axes show the instance size given by
the number of nodes in the syntax tree. The y-axes show the memory usage in MB.
Notice that the x-axes are logarithmic for application and crafted and linear for
rozier formulas and trp. Each line represents a configuration, each column a family.
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Fig. 24. Plots of run time for the vbs of each tool with model construction dis- or
enabled versus instance size. The x-axes show the instance size given by the number
of nodes in the syntax tree. The y-axes show the run time in seconds. Notice that the
x-axes are logarithmic for application and crafted and linear for rozier formulas
and trp. Each line represents a configuration, each column a family.


59







A
L
A
S
K
A
v
b
s


0


 1


 10


 100


 1000
 2048


to
mo


 10  100  1000


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 10  100  1000  10000


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 50  100  150


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 250  500  750  1000  1250


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


L
W
B
v
b
s


0


 1


 10


 100


 1000
 2048


to
mo


 10  100  1000


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 10  100  1000  10000
  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 50  100  150


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 250  500  750  1000  1250


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


N
u
S
M
V
-
B
D
D
v
b
s


0


 1


 10


 100


 1000
 2048


to
mo


 10  100  1000


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 10  100  1000  10000


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 50  100  150


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 250  500  750  1000  1250


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


N
u
S
M
V
-
S
B
M
C
v
b
s


0


 1


 10


 100


 1000
 2048


to
mo


 10  100  1000


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 10  100  1000  10000


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 50  100  150


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 250  500  750  1000  1250


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


p
l
t
l
v
b
s


0


 1


 10


 100


 1000
 2048


to
mo


 10  100  1000


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 10  100  1000  10000


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 50  100  150


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 250  500  750  1000  1250


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


T
R
P
+
+
v
b
s


0


 1


 10


 100


 1000
 2048


to
mo


 10  100  1000


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 10  100  1000  10000


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 50  100  150


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 250  500  750  1000  1250


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


T
S
P
A
S
S
v
b
s


0


 1


 10


 100


 1000
 2048


to
mo


 10  100  1000


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 10  100  1000  10000


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 50  100  150


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


0


 1


 10


 100


 1000
 2048


to
mo


 250  500  750  1000  1250


  
m


e
m


o
ry


 [
M


B
]


size [# nodes in syntax tree]


application crafted rozier formulas trp


Fig. 25. Plots of memory usage for the vbs of each tool with model construction dis-
or enabled versus instance size. The x-axes show the instance size given by the number
of nodes in the syntax tree. The y-axes show the memory usage in MB. Notice that the
x-axes are logarithmic for application and crafted and linear for rozier formulas
and trp. Each line represents a configuration, each column a family.
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D.6 Scatter Plots Run Time Non-negated Versus Negated Instances
of rozier formulas


Figure 26 shows the variation in run time on non-negated versus negated ver-
sions of instances of rozier formulas for the winning configurations with model
construction disabled.
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Fig. 26. Scatter plots of run time in seconds for the winning configurations on non-
negated (x-axis) versus negated versions (y-axis) of instances of rozier formulas.
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D.7 Scatter Plots Run Time Model Construction Enabled Versus
Disabled


Figure 27 shows the variation in run time between model construction enabled
and disabled on all sat instances for the winning configurations with model
construction enabled.
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Fig. 27. Scatter plots of run time in seconds between model construction enabled
(x-axis) and disabled (y-axis) on all sat instances for the winning configurations with
model construction enabled.
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D.8 Portfolio Plots


Perfect Oracle


Figure 28 is an enlarged version of Fig. 4.
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Fig. 28. Potential of a portfolio solver consisting of subsets of the winning configurations with model construction dis- or enabled using
a perfect oracle. Portfolios are identified by their constituent configurations: 0: ALASKA; 1: LWB; 2: NuSMV-BDD; 3: NuSMV-SBMC; 4: pltl; 5:
TRP++; 6: TSPASS. On the x-axis are the portfolios sorted in increasing order of weighted share of solved instances; ties are broken by
decreasing order of weighted average run time on solved instances. For each portfolio the weighted share of solved instances is marked by
a red vertical/horizontal cross (scale on the left y-axis); the corresponding weighted average run time on solved instances is marked by
a green diagonal cross (scale on the right y-axis, in seconds). “all” considers all configurations with model construction dis- or enabled
rather than only the winning configurations.
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Perfect Task Switcher


Figure 29 is analogous to Fig. 28 but using perfect task switcher mode.
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Fig. 29. Potential of a portfolio solver consisting of subsets of the winning configurations with model construction dis- or enabled using
a perfect task switcher. Portfolios are identified by their constituent configurations: 0: ALASKA; 1: LWB; 2: NuSMV-BDD; 3: NuSMV-SBMC; 4:
pltl; 5: TRP++; 6: TSPASS. On the x-axis are the portfolios sorted in increasing order of weighted share of solved instances; ties are broken
by decreasing order of weighted average run time on solved instances. For each portfolio the weighted share of solved instances is marked
by a red vertical/horizontal cross (scale on the left y-axis); the corresponding weighted average run time on solved instances is marked
by a green diagonal cross (scale on the right y-axis, in seconds). “all” considers all configurations with model construction dis- or enabled
rather than only the winning configurations.
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