
Evaluating LTL Satisfiability Solvers

Viktor Schuppan1 and Luthfi Darmawan2

1 Email: Viktor.Schuppan@gmx.de
2 Email: luthfi@alumni.itb.ac.id

Abstract. We perform a comprehensive experimental evaluation of off-
the-shelf solvers for satisfiability of propositional LTL. We consider a
wide range of solvers implementing three major classes of algorithms:
reduction to model checking, tableau-based approaches, and temporal
resolution. Our set of benchmark families is significantly more compre-
hensive than those in previous studies. It takes the benchmark families of
previous studies, which only have a limited overlap, and adds benchmark
families not used for that purpose before.
We find that no solver dominates or solves all instances. Solvers focused
on finding models and solvers using temporal resolution or fixed point
computation show complementary strengths and weaknesses. This moti-
vates and guides estimation of the potential of a portfolio solver. It turns
out that even combining two solvers in a simple fashion significantly in-
creases the share of solved instances while reducing CPU time spent.

1 Introduction

More and more, system specifications are not only used for classical verification
of the correctness of a given system, e.g., via model checking, but they themselves
become the subject of investigation (e.g., [56,33]). This is justified by observa-
tions in industry that many specifications contain errors (e.g., [16]) as well as by
transition to property-based design (e.g., [57]). Propositional Linear Temporal
Logic (LTL) [29] is a popular choice for system specifications and many checks
on specifications reduce to determining (un)satisfiability (see, e.g., [56,33,60]).
Hence, satisfiability of LTL is of considerable practical relevance.

A broad range of techniques for determining satisfiability of LTL has been
developed: tableau-based methods (e.g., [68,48,63]), temporal resolution (e.g.,
[32]), and reduction to model checking (e.g., [60,69,25]). Despite the relevance
of the problem and the range of techniques, we are not aware of a recent, com-
prehensive experimental comparison of solvers for satisfiability of propositional
LTL on a broad set of benchmarks. In fact, the only line of work containing a
representative from each of the above mentioned techniques that we know is the
one by Hustadt et al. [45,42,46] (see below), which is somewhat dated.

In this paper we make the following contributions. 1. We perform an experi-
mental evaluation of solvers for satisfiability of propositional LTL using ALASKA

[1,69], LWB [2,41], NuSMV [3,26], pltl [4], TRP++ [5,44], and TSPASS [6,51]. Both
the range of techniques in the solvers we use and the set of benchmarks we col-
lected are significantly more comprehensive than in any previous study we know.

mailto:Viktor.Schuppan@gmx.de
mailto:luthfi@alumni.itb.ac.id

We have made our data available for further analysis [7]. 2. We consider num-
ber of solved instances, run time, memory usage, and model size. The analysis
is greatly helped by using contour/discrete raw data plots, which complement
the traditional cactus plots by preserving the relationship between benchmark
instances. 3. The analysis shows complementary behavior between some solvers.
This motivates estimating the potential of a portfolio solver. We consider port-
folio solvers without communication between members of the portfolio for a best
case scenario (which is unrealistic) and a reference case scenario (which any
portfolio solver should aim to beat). Finally, we show that even a trivially im-
plementable solver that sequentially executes one solver first for a short amount
of time and, if necessary, then invokes another solver reduces the number of
unsolved instances as well as the average run time.

Related Work Rozier and Vardi compare several explicit state and symbolic
BDD-based model checkers for LTL satisfiability checking [60]. They find the
symbolic tools to be superior in terms of performance and, generally, also in
terms of quality. They do not consider SAT-based bounded model checkers,
tableau-based solvers, or temporal resolution. While they perform an in-depth
comparison of solvers using very similar techniques, our focus is on comparing
selected representatives of a broad variety of techniques. We also use more bench-
mark families and consider memory usage and model size. The same authors
compare symbolic constructions of Büchi automata in [59] using the BDD-based
engine of Cadence SMV as backend solver. They show that a portfolio approach
to automata construction is advantageous. De Wulf et al. compare NuSMV and
ALASKA [69]. For a detailed discussion see Sect. 6. Hustadt et al. perform several
comparisons [45,42,46] of TRP, a version of LWB, and a version of SMV on the trp
benchmark set (see Sect. 4). Goré and Widmann perform an experimental com-
parison of solvers for CTL [37]. Goranko et al. [35] compare an implementation of
Wolper’s tableau construction with pltl. For references on solver competitions
and on their methodology see App. A of [62].

We are not aware of previous work on portfolio approaches to LTL satisfi-
ability, except for [59]. We use entire solvers as members of a portfolio, while
[59] uses different frontends for Büchi automata construction all relying on the
same BDD-based backend solver. For other problem classes see, e.g., [43] (graph
coloring, web browsing), [49] (winner determination problem), [34] (constraint
satisfaction, mixed integer programming), [70] (SAT), or [58] (QBF).

Organization In Sect. 2 we introduce notation. In Sect. 3, 4, and 5 we de-
scribe solvers, benchmarks, and methodology. Section 6 contains the results of
our evaluation. An estimation of the potential of a portfolio solver follows in
Sect. 7. Section 8 concludes. Due to space constraints the following parts are
in appendices [62]: general concepts and terminology (App. A), details on our
benchmark set (App. B), discussion (App. C), and some plots (App. D).

2 Preliminaries

We consider formulas in future time propositional LTL with temporal operators
F, G, R, U, X. We assume familiarity with LTL; otherwise see [29].

2

http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#section.A.1
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#section.A.1
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#section.A.2
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#section.A.3
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#section.A.4

The terminology we use is largely standard (e.g., [64,19]); a reader unfa-
miliar with competition terminology is referred to App. A of [62]. A somewhat
non-standard term we use is configuration, which denotes a tool (solver) with
specific option values. A tool is a state-of-the-art contributor (sota) if an instance
is solved only by configurations of that tool (see also [66]). Given a set of config-
urations C the virtual best solver (vbs) is the hypothetical solver using the best
configuration in C on any given instance (e.g., [19]). We use bold font for sets
of benchmark instances and teletype for configurations.

3 Solvers

Choice of Solvers We consider tools to solve satisfiability of propositional LTL
from 3 major classes of approaches: 1. reduction to model checking, 2. tableau-
based algorithms, and 3. temporal resolution. Tools were chosen as detailed
below. To the best of our knowledge this set of solvers is the most diverse con-
sidered in an evaluation of solvers for satisfiability of propositional LTL to date.

Reduction to Model Checking We chose ALASKA [1,69] and NuSMV [3,26] using
BDDs (NuSMV-BDD) and SAT (NuSMV-SBMC). We ruled out explicit state model
checkers, as they did not scale as well as BDD-based symbolic model checkers
for LTL satisfiability in [60]. The BDD-based engine of Cadence SMV [8] per-
formed comparable to NuSMV-BDD in [60]. sal-smc [54] constructs explicit Büchi
automata and was found not to scale [60]. The BDD-based variant of VIS [67]
uses explicit construction of Büchi automata; initial experiments confirmed that
this does not scale for satisfiability of LTL. sal-bmc [54] can only prove safety
properties [53]. For an alternative using SAT-based symbolic model checking we
contacted the VIS group for advice on recommended configurations (the space
of configurations is quite large), but have not received an answer yet. Finally, we
checked the publicly available versions of the participants of HWMCC’10 [20];
as far as we could see, the solvers that are not included in our study only handle
safety properties.

Tableau-Based Algorithms We chose LWB [2,41] and pltl [4]. TWB [15] is super-
seded by pltl [36]. LTL Tableau turns out to be inferior to pltl [35].

Temporal Resolution We chose TRP++ [5,44] and TSPASS [6,51]. An alternative
tool is TeMP [47]. TeMP was shown to be inferior to TRP++ on propositional prob-
lems in [47] and comparable to TSPASS on monodic problems in [51]. Note, that
TSPASS is fair, while TeMP is not [50].

Solver Descriptions Below we briefly describe the tools we consider as well as
the set of their options that we take into account. Note that not all combinations
of options are valid. Due to space constraints the descriptions have to be kept
short, and we refer the reader to the respective tool documentation.

ALASKA performs model checking and satisfiability checking of LTL via symbolic
computation of fixed points using antichains [1,69]. Relevant options are: noc/c
dis-/enables model construction, nos/s uses a semisymbolic/fully symbolic algo-
rithm, and nob/b switches between forward and backward image computation.
We use version 0.4 with an additional patch by N. Maquet.

3

http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#section.A.1

LWB [2,41] implements tableau-based algorithms for LTL by Janssen [48] (no
model construction) in the function “satisfiable” and by Schwendimann [63]
(model construction) in the function “model”. Neither has relevant options. We
designate the former by sat and the latter by mod. We use version 1.1.

NuSMV-BDD In this evaluation we treat NuSMV [3,26] as two tools NuSMV-BDD

and NuSMV-SBMC. NuSMV-BDD performs symbolic model checking of LTL using
symbolic fixed point computation with BDDs [27]. Experience with NuSMV-BDD

allows us to restrict experiments to the following options. nodcx/dcx en-/disables
model construction, nofflt/fflt dis-/enables forward computation of reachable
states in the model and tableau for the LTL formula, nodyn/dyn dis-/enables
dynamic reordering, and elbwd/elfwd switches between backward and forward
image computation in the Emerson-Lei algorithm [30,40]. We use version 2.5.0.

NuSMV-SBMC performs incremental simple bounded model checking [39] of LTL
using MiniSat [9]. Options considered are nodcx/dcx to en-/disable model con-
struction and noc/c to dis-/enable checking completeness. With the latter dis-
abled NuSMV-SBMC cannot solve unsat instances. We use version 2.5.0.

pltl [4] implements tableau-based algorithms for LTL along the lines of [38] via
the command line argument “graph” and by Schwendimann [63] via the com-
mand line argument “tree”. Neither has model construction or relevant options.
We designate the former by graph and the latter by tree. We use version r1424.

TRP++ [5,44] uses temporal resolution for LTL [32]. Relevant options: nos/s
to dis-/enable simplification, nor/r to dis-/enable rewriting, noal/al to ex-
/include an order statement, dfs/bfs to choose dfs/bfs in loop search, nop/p
to dis-/enable pre-test for sometime resolution, and nofsr/fsr to dis-/enable
forward subsumption resolution. TRP++ cannot construct models. We use v. 2.x.

TSPASS [6,51] is a temporal resolution solver for monodic first-order temporal
logic with model construction for propositional LTL [52]. We consider noext/ext
to dis-/enable extended step clauses, nogrp/grp to dis-/enable regrouping of X,
nosev/sev to dis-/enable transforming multiple eventualities into a single one,
log/sub to select logical equivalence or subsumption in loop tests, nosls/sls to
dis-/enable sequential loop search, norfmrr/rfmrr (resp. norbmrr/rbmrr) to dis-
/enable forward (resp. backward) matching replacement resolution, nomod/mod
to dis-/enable model construction, and mur/mor to select unordered or ordered
resolution in model construction. We use version 0.94-0.16.

4 Benchmarks

In Tab. 1 we give an overview of the benchmark families we use. To
our knowledge this set of benchmarks is the most comprehensive used
for evaluating propositional LTL satisfiability solvers so far. [60] used
rozier counter, rozier pattern, and rozier formulas. [69] used alaska lift,
alaska szymanski, and subsets of rozier counter and rozier formulas. [46]
used trp. Note that there is little overlap. [60,69] and [46] represent separate com-
munities. We added the following benchmark families that, to our knowledge,

4

family max. num. num. num. source description
size sat unsat unkn.

application

acacia demo-v22 76 10 – – [10,31] window screens

acacia demo-v3 426 36 – – [10,31] arbiters (scaled up, added variants)

acacia example 144 25 – – [10,31] mostly arbiters and traffic light controllers

alaska lift 4450 102 34 – [1,69] lifts (scaled up, added variants, added fixes [61])

alaska szymanski 183 4 – – [1,69] mutual exclusion protocols

anzu amba 6173 43 – 8 [11,23] microcontroller buses (scaled up, added variants)

anzu genbuf 5805 48 – 12 [11,24] generalized buffers (scaled up, added variants)

forobots 636 14 25 – [17] foraging robots

crafted

rozier counter 751 78 – – [12,60] serial counters (long models)

rozier pattern 7992 244 – – [12,60] patterns to test explicit state model checkers (scaled up)

schuppan O1formula 4007 – 27 – (new) patterns that trigger exponential behavior in some
schuppan O2formula 6001 – 15 12 solvers

schuppan phltl 40501 – 10 8 (new) temporal formulation of pigeonhole principle [22]

random

rozier formulas 185 1943 57 – [12,60] random formulas as in [28] (subset of original family)

trp 1422 573 397 – [13,46] random formulas from fixed conjunctive normal form tem-
plates (subset of original family)

Table 1. Overview of benchmark families, grouped by benchmark categories. The first column
lists the name of the family. Columns 2 – 5 show the size (see App. A of [62]) of the largest instance
and the number of sat, unsat, and unknown instances, respectively, in that family. The 6th column
provides references to the source and the 7th column gives a brief description.

had not been used to evaluate solvers for propositional LTL satisfiability before:
acacia, anzu, and forobots.3 To provide more challenging instances we scaled
up some families. Moreover, for the families acacia demo-v3, anzu amba, and
anzu genbuf, which consist of a set of assumptions and a set of guarantees, we
not only used the form (

∧
i ai) → (

∧
i gi) but also (

∧
i ai) ∧ (

∧
i gi) (marked by

“c” in the family name). For acacia demo-v3, alaska lift, anzu amba, and
anzu genbuf we added variants with liveness conditions to trigger nontrivial
behavior (marked by “l” in the family name). For alaska lift we also use a fixed
[61] variant (marked by “f” in the family name). Finally, we added the families
schuppan O1formula, schuppan O2formula, and schuppan phltl. Our set
of benchmarks contains 3723 instances. All benchmarks are available from [7].

5 Methodology

Hardware and Software We used machines with Intel Xeon 3.0 GHz proces-
sors and 4 GB memory running Red Hat Linux 5.4 with 64 bit kernel 2.6.18-
164.2.1.el5. Run time and memory usage were measured with run [21].

Input Format and No Shuffling We converted all instances into NuSMV for-
mat and from there to the input formats of the other tools. We did not syntac-
tically alter instances as there was no risk of cheating by syntactic recognition
of benchmarks (e.g., [18]) and we, too, think that syntactic information should
be preserved for the benefit of solvers (e.g., [64]).

Stages The valid option combinations of the options in Sect. 3 yield the follow-
ing number of configurations (model construction dis-/enabled): ALASKA 4/2, LWB
1/1, NuSMV-BDD 6/4, NuSMV-SBMC 2/2, pltl 2/-, TRP++ 64/-, TSPASS 128/128.

3 While the full version of [59] uses acacia and anzu, these were included based on a
previous submission of this paper that we made available to the authors of [59].

5

http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#section.A.1

The number of configurations of TRP++ and TSPASS is too large to include
all of them in the main stage of our evaluation. We therefore performed a pre-
liminary stage with a time limit of 10 seconds and a memory limit of 2 GB on
a representative subset of instances. In that stage we used all 64 combinations
of TRP++. For TSPASS we considered the following subset of configurations: all
options at their default value (sometimes implied by other options) as well as
a single option switched to its non-default value. This resulted in 24/24 con-
figurations. We then fixed options that either had a clear benefit one way or
the other or clearly had little effect to the corresponding values and kept the
remaining configurations for the main stage (see Sect. 6). In the main stage all
configurations of ALASKA, LWB, NuSMV-BDD, NuSMV-SBMC, and pltl as well as the
remaining configurations of TRP++ and TSPASS were run with a time limit of 60
seconds and a memory limit of 2 GB.

In each stage, each configuration was run only once on each instance. While
performing more than one run would provide more accurate information about
run time distributions [55] performing only a single run allows to use more
configurations, more instances, or higher time bounds with equal resources.

Tracks We have two tracks: one for configurations with model construction dis-
or enabled (e.g., LWB using mod constructs models but is superior to sat that
doesn’t) and one for configurations with model construction enabled. The former
considers all instances; the latter is restricted to sat instances.

Correctness of Solvers is a recurring issue in tool competitions and com-
parisons (e.g., [60]). Besides obvious cross checking of the sat/unsat results re-
ported by different configurations for the same instance we used the fact that
NuSMV-SBMC produces shortest (possibly plus one) models as an additional cor-
rectness check. We did not perform further validation of generated models.

Scoring We essentially use scoring based on a higher number of solved instances
and lower time taken on solved instances (see Sect. 2) as it preserves and clearly
shows what we consider two important performance indicators.

However, there are fairly big differences in the number of instances in our
benchmark families. Still, we would like to consider many benchmarks rather
than only sampling the larger families. Hence, we modify the above scoring
method as follows. We consider the benchmark families as a tree. We then com-
pute the share of solved instances and the average run time on solved instances
for each leaf (here all instances have equal weight). Then, for each non-leaf node,
aggregate values are computed as averages with equal weights for all children of
that node. For the tree of families see App. B.2 of [62].

6 Results

For more plots and data see App. D of the full version [62] and the website [7].

Preliminary Stage For TRP++ configurations with s nor proved inferior so that
only s r, nos r, and nos nor were kept. The effects of noal/al, dfs/bfs, and
nofsr/fsr are unclear; hence all combinations were kept. nop/p had little effect
so that we set it to its default nop. All in all this left us with 24 configurations.

6

http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#subsection.A.2.2
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#section.A.4

model construction dis- or enabled (all instances) model construction enabled (sat instances)

tool winning configuration max min vbs winning configuration max min vbs

ALASKA noc nos nob 0.581 0.322 0.595 c nos nob 0.595 0.318 0.595

LWB mod 0.740 0.656 0.800 mod 0.795 0.795 0.795

NuSMV-BDD dcx fflt dyn elbwd 0.743 0.607 0.823 nodcx fflt dyn elbwd 0.754 0.625 0.771

NuSMV-SBMC nodcx c 0.723 0.651 0.726 nodcx noc 0.860 0.857 0.861

pltl tree 0.694 0.687 0.702 — — — —

TRP++ s r noal bfs nop fsr 0.752 0.593 0.776 — — — —

TSPASS ext nogrp nosev sub nosls rfmrr-

norbmrr nomod mor

0.667 0.479 0.670 ext grp sev sub nosls rfmrr-

rbmrr mod mor

0.531 0.495 0.538

Table 2. Selecting a winning configuration per tool (separately for tracks). The left-most column
lists the tool name. Next come 2 groups of 4 columns. The 1st group is for configurations with model
construction dis- or enabled, the 2nd with model construction enabled. In each group the 1st column
shows the winning configuration per tool. The 2nd column shows its score, the 3rd column shows
the worst score, and the 4th column shows the score of the vbs of all configurations of that tool.

For TSPASS ext, nosev, sub, and mor turned out to be advantageous. The
effects of nogrp/grp, norfmrr/rfmrr, and norbmrr/rbmrr are unclear and we
kept all. nosls/sls had little effect so that we disabled it as is default. This
resulted in 8 configurations each with model construction disabled and enabled.

We now move to the main stage.

Correctness of Solvers We found no bug in pltl but 1 or 2 bugs in each
of NuSMV, ALASKA, TRP++, and TSPASS. All of them were kindly fixed by the
respective tool authors. As of now we are not aware of wrong results or bugs
triggered in the above tools by our benchmark set. In LWB we found several bugs.
We emailed our findings to the developers but have not received a response.
There are currently 187 out of 7446 (non-negated and negated) instances known
to us that trigger bugs in LWB; 13 are wrong results. Hence, LWB is hors-concours.
Some large instances failed in ALASKA and TSPASS due to certain built-in limits.
These instances were rerun with increased limits.

Selecting Winning Configurations per Tool To focus the subsequent com-
parison we select one winning configuration per tool to be used for the compar-
isons between tools in the remainder of this section. We choose the configuration
with the highest weighted share of solved instances (see Sect. 5) for each tool. We
distinguish between model construction dis- or enabled and model construction
enabled as model construction is not available for some tools or options.

Table 2 provides a summary. For all tools except NuSMV-BDD and LWB the
weighted share of instances solved by the winning configurations is close to that
of the vbs of all configurations of that tool (Tab. 2). Below we mostly restrict
the analysis to the winning configurations. We use the tool name to identify the
respective winning configurations.

Track Model Construction Disabled In Fig. 1 we show contour/discrete raw
data plots of the run time for the winning configurations with model construction
dis- or enabled. The name is taken from [65]. A somewhat related way to display
results of a solver competition was used in Pseudo-Boolean Competitions [14].

Contrary to cactus plots contour/discrete raw data plots retain the relation-
ship between instances (one x-coordinate corresponds to the same rather than
different instances) but are more legible than line plots. They allow to see the
performance of the solvers on benchmark families that are a subfamily of the
one comprising a plot. A particular advantage is that they permit identification
of similar and complementary behavior in performance. They also allow to see

7

acacia−
example

de−
mo−
v3

de−
mo−
v3_c

de−
mo−
v3_cl

de−
mo−
v22

alaska−
lift−
lift

alaska−
lift−
lift_f

alaska−
lift−
lift_l

alaska−
lift−

lift_f_l

alaska−
lift−
lift_b

alaska−
lift−

lift_b_f

alaska−
lift−

lift_b_l

alaska−
lift−

lift_b_f_l

s
z

anzu−
amba−
amba

anzu−
amba−
amba_c

anzu−
amba−
amb._cl

anzu−
genbuf−
genbuf

anzu−
genbuf−
genbuf_c

anzu−
genbuf−

genbuf_cl
forobots

TSPASS

TRP++

pltl

NuSMV−SBMC

NuSMV−BDD

LWB

ALASKA

application

rozier−
counter

rozier−
counter−

Carry

roz_cnt−
Carry−
Linear

rozier−
counter−

Linear

rozier−
pattern−

C1formula

rozier−
pattern−

C2formula

rozier−
pattern−
Eformula

rozier−
pattern−
Qformula

rozier−
pattern−
Rformula

rozier−
pattern−
Sformula

rozier−
pattern−
Uformula

rozier−
pattern−

U2formula

schuppan−
O1formula

schuppan−
O2formula

schup−
pan−
phltl

TSPASS

TRP++

pltl

NuSMV−SBMC

NuSMV−BDD

LWB

ALASKA

crafted

rozier_formulas_n1 rozier_formulas_n2 rozier_formulas_n3 rozier_formulas_n4 rozier_formulas_n5 trp_N5x trp_N5y trp_N12x trp_N12y

TSPASS

TRP++

pltl

NuSMV−SBMC

NuSMV−BDD

LWB

ALASKA

random

Fig. 1. Contour/discrete raw data plots of run time for winning configurations with model con-
struction dis- or enabled (all instances). Instances are on the x-axes (only identified by their families),
configurations on the y-axes. Each rectangle represents the run time of one configuration on one in-
stance. sz abbreviates alaska szymanski, roz cnt abbreviates rozier counter, and demo stands
for acacia demo. Run times are encoded using the following colors:

≤ 0.1 sec; > 0.1 sec, ≤ 1 sec; > 1 sec, ≤ 10 sec; > 10 sec, ≤ 60 sec; unsolved.

how difficult a particular instance or subfamily is. However, these plots make it
harder to determine a ranking of solvers by higher number of solved instances
with ties broken by lower average time taken on solved instances. Due to space
constraints we cannot show both kinds of plots for the same data. We chose to
use the contour/discrete raw data plots here to demonstrate their utility. For
corresponding cactus plots see Fig. 10–13 in App. D.2 of [62].

Overall Picture In this paragraph we refer to all configurations used in the
main stage. No configuration solves all instances. 8–12 instances in anzu amba,

8

http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#figure.A.10
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#figure.A.13
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#subsection.A.4.2

anzu genbuf, schuppan O2formula, and schuppan phltl remain unsolved.
The instances in the former two families are expected to be sat , in the latter un-
sat . The smallest unsolved instance is O2formula50 (size 301). NuSMV-BDD is a
sota on a number of (unsat) instances in alaska lift and schuppan O2formula;
NuSMV-SBMC on instances in alaska lift, anzu amba, and anzu genbuf (all
sat); TRP++ on instances in rozier counter (sat); LWB on instances in schup-
pan phltl (unsat). See also Fig. 8 in App. D.1 of [62].

Families The majority of benchmark families contain instances that are challeng-
ing for some solver. In category application the 3 families with larger instances,
alaska lift, anzu amba, and anzu genbuf, are the more difficult ones. Among
them the variants that were modified to trigger meaningful behavior are the
hardest. In category crafted the (unsat) families schuppan O2formula and
schuppan phltl are the most difficult. rozier counter is hard for most solvers,
except for TRP++ and TSPASS (and NuSMV-BDD in a configuration using only back-
ward fixed point computation). The two families in category random show very
different pictures. Family rozier random is solved well by non-resolution-based
tools but somewhat more difficult for TRP++ and TSPASS; roles are reversed in
family trp. Note that trp comes from the temporal resolution community, while
rozier random is taken from the model checking community.

Solvers: Similarities and Differences Figure 1 shows that TRP++ and TSPASS,
which both use temporal resolution, have similar strengths and weaknesses.
TSPASS tends to improve over TRP++ on trp, while TRP++ tends to be faster
on most of the remaining families. Between the two tools using symbolic fixed
point computation NuSMV-BDD mostly dominates ALASKA; the latter has a higher
start up time than the other tools. The strengths and weaknesses of NuSMV-BDD
mostly resemble those of TRP++ and TSPASS. Intuitively, symbolic fixed point
computation [30] is closer in spirit to temporal resolution as performed in TRP++

[44] than to searching models (stating a more formal relationship is left as fu-
ture work). LWB, NuSMV-SBMC, and pltl display similar characteristics. Note that
these solvers essentially try to find models, although NuSMV-SBMC uses a fairly
different technique than pltl and LWB. It is important to note that the strengths
and weaknesses of NuSMV-BDD, TRP++, and TSPASS are somewhat complementary
to those of LWB, NuSMV-SBMC, and pltl.

Sat versus Unsat Instances NuSMV-SBMC exhibits the largest difference in its
behavior between sat and unsat instances. NuSMV-SBMC solves most sat instances
among the solvers. A notable exception is rozier counter, which has shortest
models of exponential size; few shortest models outside rozier counter have size
larger than 3 (see below). On the contrary, NuSMV-BDD and ALASKA, which are
based on symbolic fixed computation, are hardly affected. For plots see Fig. 14–
17 in App. D.3 of [62] and Fig. 18–21 in App. D.4 of [62].

Instance Size The two tools based on symbolic fixed point computation, ALASKA
and NuSMV-BDD, show a fairly clear influence of the size of an instance on their run
time. At the other end of the spectrum are LWB and pltl, trying to find models.
They solve some large instances in almost no time. For plots see Fig. 22–25 in
App. D.5 of [62].

9

http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#figure.A.8
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#subsection.A.4.1
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#figure.A.14
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#figure.A.17
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#subsection.A.4.3
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#figure.A.18
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#figure.A.21
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#subsection.A.4.4
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#figure.A.22
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#figure.A.25
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#subsection.A.4.5

Non-negated versus Negated Instances The relevance of negated versions of in-
stances is questionable. We have not included negated versions of instances in any
part of this paper, except where stated explicitly. However, we briefly comment
on one aspect because of the size of the observed effect. On the rozier formulas
family — where negation should not change any relevant characteristic of the
benchmark set — the variation in performance between the non-negated and the
negated version of an instance is considerably higher for TSPASS and TRP++ than
for NuSMV-BDD and ALASKA. For scatter plots see Fig. 26 in App. D.6 of [62].

Memory Memory usage turned out to be less of a problem than time taken,
therefore we do not report detailed results. In fact, very rarely a configuration
used more than 300 MB when it solved an instance. ALASKA typically used most
memory. For plots see App. D of [62].

VBS rather than Winning Configurations While the findings above were mostly
stated for the winning configurations of each tool, the picture does not change
significantly when comparing the vbs of each tool (for plots see App. D of [62]).
As suggested by Tab. 2 notable improvements only happen for NuSMV-BDD, LWB,
and, to a lesser extent, TRP++.

Track Model Construction Enabled We focus on model size. Figure 2 shows
a cactus plot for the winning configurations with model construction enabled (sat
instances). A vbs of all configurations with model construction enabled solves all
but the largest instances of anzu amba, anzu genbuf, and rozier counter.
NuSMV-BDD is a sota based on instances in rozier counter; NuSMV-SBMC on in-
stances in alaska lift, anzu amba, anzu genbuf, and rozier pattern; LWB
on instances in rozier pattern.

95 % of the satisfiable instances have shortest models of size 3 or less. In-
stances with shortest models of size larger than 11 are either from rozier coun-
ter or from the variants in application modified to trigger meaningful behavior.

NuSMV-SBMC mostly produces shortest models, while NuSMV-BDD produces
the longest ones. On the other hand, NuSMV-BDD solves more instances of the
rozier counter family (which has very long models) than the other tools.

A Performance Advantage of ALASKA over NuSMV-BDD? In [69] De Wulf
et al. perform a comparison between ALASKA and NuSMV-BDD for satisfiabil-
ity and model checking of LTL. For LTL satisfiability they find that ALASKA

outperforms NuSMV-BDD on alaska lift, alaska szymanski, and a subfamily of
rozier formulas, while NuSMV-BDD performs better on rozier counter.

A comparison of the antichain-based algorithm in ALASKA [69] and the
Emerson-Lei algorithm [30] used in NuSMV-BDD shows that the algorithm in
[69] computes fixed points using forward image computation, while NuSMV-BDD

up to version 2.4.3 only uses (as is common) backward image computations
for [30]. This triggered us to implement a forward version (e.g., [40]) of the
Emerson-Lei algorithm in NuSMV-BDD. Figure 3 shows that the forward version
performs considerably better than the backward version on the rozier formulas
family. Using forward image computation NuSMV-BDD outperforms ALASKA on

10

http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#figure.A.26
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#subsection.A.4.6
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#section.A.4
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#section.A.4

 1

 10

 100

 1000

 10000

 20480

[#

 s
ta

te
s
]

all (sat)

vbs

ALASKA

LWB

NuSMV-BDD

NuSMV-SBMC

TSPASS

Fig. 2. Cactus plot of model size for the win-
ning configurations with model construction en-
abled (sat instances).

0

 0.1

 1

 10

 60

to

0 0.1 1 10 60 to

n
u

s
m

v
_
b

d
d

_
d

c
x
_

ff
lt
_
d

y
n

_
e
lb

w
d

[s

e
c
]

nusmv_bdd_dcx_fflt_dyn_elfwd [sec]

Fig. 3. Scatter plot comparing run time for
the forward and the backward version of the
Emerson-Lei algorithm in NuSMV-BDD on the
rozier formulas family. “to” marks time-out.

rozier formulas. Note also that ALASKA can be switched to perform backward
image computation in which case its performance degrades considerably.

Our evaluation shows that NuSMV-BDD can solve the alaska lift and
alaska szymanski families easily (and faster than ALASKA) by restricting com-
putation to reachable states (fflt) and enabling dynamic reordering (dyn).

7 Potential of a Portfolio Solver

In the previous section we saw that some configurations behave complementarily.
This motivates constructing portfolio solvers that consist of a set of configura-
tions with the goal that the resulting solver performs better than any of its
constituent configurations (e.g., [43]). Different modes of execution are consid-
ered for portfolio solvers in the literature (e.g., [43,49,34,70]).

Perfect Oracle We assume an oracle that for each instance predicts (using
no time and memory) an optimal configuration in a portfolio and then executes
that configuration on that instance (see, e.g., [49]). I.e., the performance of a
portfolio solver on an instance is determined by the performance of an optimal
configuration in a portfolio on that instance. If configurations do not collabo-
rate (e.g., by exchanging partial results) that is a bound on the performance
of a practical solver using that portfolio. An alternative view of this mode of
execution is that each member of the portfolio is run on a separate processor in
parallel until one configuration finishes while taking into account only the cost
of one processor and disregarding the cost of other processors.

We estimate the potential of such a portfolio solver by considering all portfo-
lios consisting of subsets of winning configurations with model construction dis-
or enabled from Tab. 2. Figure 4 shows the result.

While individual configurations solve at most a weighted share of 0.752, using
a portfolio helps to solve up to 0.931. All portfolios that solve a weighted share of
0.866 or more contain at least one of ALASKA, NuSMV-BDD, TRP++, and TSPASS and
at least one of LWB, NuSMV-SBMC, and pltl. All that solve 0.9 or more contain
at least one of LWB and NuSMV-SBMC and at least one of TRP++ and TSPASS.
The 4 best portfolios with two configurations are (LWB, TRP++), (LWB, TSPASS),
(NuSMV-SBMC, TRP++), and (NuSMV-SBMC, TSPASS). Adding ALASKA to a portfolio
that contains NuSMV-BDD does not help in most cases.

11

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 6 4 3 1 2 5
0

2
0

4
0

1
5

6
0

6
0

5
0

3
3

4
0
5

6
1

3
1

4
4

6
0
1

3
0
3

4
2

6
0
1

4
2

5
0
4

6
1

2
0
1

2
2

4
0
2

4
4

5
0
4

5
0
2

6
0
2

5
4
5

6
0
4

5
6

2
5

6
1
3

4
2

3
0
2

3
0
2

5
6

1
2

3
0
1

2
3

3
6

0
1

3
4

1
2

4
0
1

2
4

3
4

6
0
3

6
0
3

4
6

2
3

4
0
2

3
4

3
5

3
5

6
0
3

5
0
3

5
6

3
4

5
3
4

5
6

0
3

4
5

0
3
4

5
6

2
4

6
0
2

4
6

1
6

1
2

3
4

0
1
2

3
4

2
4

5
0
2

4
5

0
1

6
1
4

6
2
4

5
6

0
2
4

5
6

0
1

4
6

1
5

1
5

6
0
1

5
0
1

5
6

1
4

5
1
4

5
6

0
1

4
5

0
1
4

5
6

1
2

6
0
1

2
6

1
2

4
6

0
1
2

4
6

2
3

6
0
2

3
6

1
2

5
0
1

2
5

1
2

5
6

0
1
2

5
6

2
3

4
6

0
2
3

4
6

1
3

6
1
3

4
6

1
2

4
5

0
1
2

4
5

1
2
4

5
6

0
1
2

4
5

6
0
1

3
6

0
1
3

4
6

2
3

5
0
2

3
5

2
3

5
6

0
2
3

5
6

2
3

4
5

0
2
3

4
5

2
3
4

5
6

0
2
3

4
5

6
1
3

5
1
3

5
6

1
3

4
5

1
3
4

5
6

0
1

3
5

0
1
3

4
5

0
1
3

5
6

0
1
3

4
5

6
1
2

3
6

0
1
2

3
6

1
2
3

4
6

0
1
2

3
4

6
1
2

3
5

0
1
2

3
5

1
2
3

4
5

0
1
2

3
4

5
1

2
3

5
6

0
1
2

3
5

6
1

2
3

4
5

6
0

1
2

3
4

5
6

a
ll

 0.1

 0.316

 1

 3.16

 10

w
e
ig

h
te

d
 s

h
a
re

 o
f
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

w
e
ig

h
te

d
 a

v
e
ra

g
e
 r

u
n
 t
im

e
 o

n
s
o
lv

e
d
 i
n
s
ta

n
c
e
s
 [
s
e
c
o
n
d
s
]

weighted share of solved instances
weighted average run time on solved instances

Fig. 4. Potential of a portfolio solver consisting of subsets of the winning configurations with model
construction dis- or enabled using a perfect oracle. Portfolios are identified by their constituent con-
figurations: 0: ALASKA; 1: LWB; 2: NuSMV-BDD; 3: NuSMV-SBMC; 4: pltl; 5: TRP++; 6: TSPASS. On the x-axis
are the portfolios sorted in increasing order of weighted share of solved instances; ties are broken by
decreasing order of weighted average run time on solved instances. For each portfolio the weighted
share of solved instances is marked by a red vertical/horizontal cross (scale on the left y-axis); the
corresponding weighted average run time on solved instances is marked by a green diagonal cross
(scale on the right y-axis). “all” considers all configurations with model construction dis- or enabled
rather than only the winning configurations. For an enlarged plot see App. D.8 of [62].

Perfect Task Switcher We now assume that all configurations of a portfo-
lio are executed on a single processor in a time-sharing fashion with equal and
infinitely small time slices, no task switching overhead, and memory usage not
an issue (e.g., [43]). I.e., rather than assuming a perfect oracle, we only as-
sume a perfect task switcher. Now the performance of a portfolio solver with k
configurations on an instance is determined by the performance of an optimal
configuration in a portfolio on that instance multiplied by k (that might induce
time-out even if some configuration solves the instance). If configurations do not
collaborate this can be considered a portfolio solver that any practical portfo-
lio solver using that portfolio should aim to beat. An alternative view is that
each portfolio member runs on a separate processor in parallel until one member
finishes and taking into account the cost for all processors.

For a plot analogous to Figure 4 see App. D.8 of [62]. Here the best portfolio
considered is (LWB, NuSMV-BDD, NuSMV-SBMC, TRP++), which solves a weighted
share of 0.922. Otherwise, similar remarks as for the case of a perfect oracle
apply.
Fast Presolver We now show that even a simplistic portfolio solver (imple-
mentable as shell script) can yield considerable benefits. We take the 4 best
2-configuration portfolios from above and use one of the two solvers as fast pre-
solver [70] by executing it until it either solves an instance or reaches its (short)
time limit. If the instance is not yet solved, then we execute the other solver for
the remaining time (60 seconds minus the time limit of the presolver).

Results are shown in Tab. 3. In each case the portfolios using a fast presolver
significantly increase the weighted share of solved instances while decreasing the
weighted average run time over the respective portfolio members in isolation.

8 Conclusion

Benchmarks and data from our evaluation, available at [7], identify reference
solvers with their command line options at the level of benchmark instances.

12

http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#subsection.A.4.8
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf#subsection.A.4.8

1st in 2nd in perfect perf. task 1st as fast presolver 2nd as fast presolver
isolation isolation oracle switcher 1 second 2 seconds 1 second 2 seconds

share time share time share time share time share time share time share time share time

(LWB, TRP++) 0.740 2.59 0.752 3.03 0.896 0.89 0.894 1.12 0.880 1.09 0.885 1.30 0.841 1.26 0.850 1.45
(LWB, TSPASS) 0.740 2.59 0.667 1.91 0.889 1.16 0.881 1.27 0.868 0.88 0.874 1.10 0.850 1.20 0.858 1.48
(NuSMV-SBMC, TRP++) 0.723 1.47 0.752 3.03 0.880 1.11 0.874 1.37 0.823 1.03 0.841 1.18 0.860 0.97 0.862 1.31
(NuSMV-SBMC, TSPASS) 0.723 1.47 0.667 1.91 0.867 1.41 0.853 1.60 0.813 1.00 0.831 1.21 0.837 1.17 0.840 1.42

Table 3. Performance of the 4 best 2-configuration portfolios in various execution modes. After
the portfolio members in the 1st column there are 8 groups of 2 columns. In each group the 1st
column shows the weighted share of solved instances, the 2nd column shows the weighted average
run time on solved instances in seconds. The 1st and 2nd column groups are for the 1st and 2nd
member of each portfolio in isolation. The 3rd and 4th groups are for perfect oracle and perfect
task switcher modes. The 5th and 6th groups are for fast presolver mode with 1 and 2 seconds time
limit when the 1st member of the portfolio is used as a fast presolver; the 7th and 8th groups are
analogous for the 2nd member as a fast presolver. The time limits of 1 and 2 seconds were chosen
among some that we tried as they represent a sweet spot that exhibits both an increase in weighted
share of solved instances and a decrease in weighted average run time on solved instances.

This helps to improve existing solvers, provides a point of reference in the eval-
uation of new techniques, and can serve as a basis for developing heuristics for
portfolio solvers. Our evaluation shows that solvers have different, complemen-
tary strengths and weaknesses. We do not declare any solver to be the winner
(those who disagree are referred to Tab. 2). Instead, for a solver aiming to be
competitive on a broad range of benchmarks we advocate a portfolio approach.

Acknowledgements J.-F. Raskin and N. Maquet for help with ALASKA and hosting
the 1st author for 1 week. R. Goré and F. Widmann for help with pltl. B. Konev
and M. Ludwig for help with TRP++ and TSPASS. C. Dixon for the forobots family.
B. Jobstmann and G. Hofferek for help with the amba family. K. Rozier for feed-
back. A. Artale for supervising the 2nd author’s MSc thesis. The ES group at FBK,
esp. A. Cimatti, A. Mariotti, and M. Roveri, for discussion and support. The Provincia
Autonoma di Trento (project EMTELOS) for financial support of the 1st author. The
European Master’s Program in Comput. Logic for financial support of the 2nd author.

References

1. http://www.antichains.be/alaska/.
2. http://www.lwb.unibe.ch/index.html.
3. http://nusmv.fbk.eu/.
4. http://users.cecs.anu.edu.au/~rpg/PLTLProvers/.
5. http://www.csc.liv.ac.uk/~konev/software/trp++/.
6. http://www.csc.liv.ac.uk/~michel/software/tspass/.
7. http://www.schuppan.de/viktor/atva11/.
8. http://www.kenmcmil.com/smv.html.
9. http://minisat.se/.

10. http://www.antichains.be/acacia/.
11. http://www.iaik.tugraz.at/content/research/design_verification/anzu/.
12. http : / / shemesh . larc . nasa . gov / people / kyr / benchmarking _ scripts /

benchmarking_scripts.html.
13. http://www.csc.liv.ac.uk/~ullrich/TRP/.
14. http://www.cril.univ-artois.fr/PB10/.
15. P. Abate and R. Goré. “The Tableau Workbench”. In: M4M. 2007.
16. I. Beer et al. “Efficient Detection of Vacuity in Temporal Model Checking”. In:

FMSD 18.2 (2001).
17. A. Behdenna, C. Dixon, and M. Fisher. “Deductive Verification of Simple Foraging

Robotic Behaviours”. In: Int. J. of Intelligent Comput. and Cybernetics 2.4 (2009).

13

http://www.antichains.be/alaska/
http://www.lwb.unibe.ch/index.html
http://nusmv.fbk.eu/
http://users.cecs.anu.edu.au/~rpg/PLTLProvers/
http://www.csc.liv.ac.uk/~konev/software/trp++/
http://www.csc.liv.ac.uk/~michel/software/tspass/
http://www.schuppan.de/viktor/atva11/
http://www.kenmcmil.com/smv.html
http://minisat.se/
http://www.antichains.be/acacia/
http://www.iaik.tugraz.at/content/research/design_verification/anzu/
http://shemesh.larc.nasa.gov/people/kyr/benchmarking_scripts/benchmarking_scripts.html
http://shemesh.larc.nasa.gov/people/kyr/benchmarking_scripts/benchmarking_scripts.html
http://www.csc.liv.ac.uk/~ullrich/TRP/
http://www.cril.univ-artois.fr/PB10/
http://scholar.google.com/scholar?q=%22The+Tableau+Workbench%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Efficient+Detection+of+Vacuity+in+Temporal+Model+Checking%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Deductive+Verification+of+Simple+Foraging+Robotic+Behaviours%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Deductive+Verification+of+Simple+Foraging+Robotic+Behaviours%22&hl=en&lr=&btnG=Search

18. D. Le Berre and L. Simon. “The Essentials of the SAT 2003 Competition”. In:
SAT. Vol. 2919. LNCS. Springer, 2003.

19. D. Le Berre et al. “The SAT 2009 competition results: does theory meet practice?
(presentation)”. In: SAT. Vol. 5584. LNCS. Springer, 2009.

20. A. Biere and K. Claessen. “Hardware Model Checking Competition (presenta-
tion)”. In: Hardware Verification Workshop 2010, Edinburgh, UK, 2010. 2010.

21. A. Biere and T. Jussila. Benchmark Tool Run. http://fmv.jku.at/run/.
22. A. Biere et al. Handbook of Satisfiability. IOS Press, 2009.
23. R. Bloem et al. “Automatic hardware synthesis from specifications: a case study”.

In: DATE. 2007.
24. R. Bloem et al. “Specify, Compile, Run: Hardware from PSL”. In: COCV.

Vol. 190(4). ENTCS. Elsevier, 2007.
25. A. Cimatti et al. “Boolean Abstraction for Temporal Logic Satisfiability”. In:

CAV. Vol. 4590. LNCS. Springer, 2007.
26. A. Cimatti et al. “NuSMV 2: An OpenSource Tool for Symbolic Model Checking”.

In: CAV. Vol. 2404. LNCS. Springer, 2002.
27. E. Clarke, O. Grumberg, and K. Hamaguchi. “Another Look at LTL Model Check-

ing”. In: FMSD 10.1 (1997).
28. M. Daniele, F. Giunchiglia, and M. Vardi. “Improved Automata Generation for

Linear Temporal Logic”. In: CAV. Vol. 1633. LNCS. Springer, 1999.
29. E. Emerson. “Temporal and Modal Logic”. In: Handbook of Theoretical Computer

Science, Volume B: Formal Models and Sematics (B). 1990.
30. E. Emerson and C. Lei. “Efficient Model Checking in Fragments of the Proposi-

tional Mu-Calculus (Extended Abstract)”. In: LICS. 1986.
31. E. Filiot, N. Jin, and J. Raskin. “An Antichain Algorithm for LTL Realizability”.

In: CAV. Vol. 5643. LNCS. Springer, 2009.
32. M. Fisher, C. Dixon, and M. Peim. “Clausal temporal resolution”. In: ACM Trans.

Comput. Log. 2.1 (2001).
33. D. Fisman et al. “A Framework for Inherent Vacuity”. In: HVC. Vol. 5394. LNCS.

Springer, 2008.
34. C. Gomes and B. Selman. “Algorithm portfolios”. In: Artif. Intell. 126.1-2 (2001).
35. V. Goranko, A. Kyrilov, and D. Shkatov. “Tableau Tool for Testing Satisfiability

in LTL: Implementation and Experimental Analysis”. In: M4M. 2009.
36. R. Goré. Personal Communication. 2010.
37. R. Goré and F. Widmann. “An Experimental Comparison of Theorem Provers

for CTL”. In: CLoDeM. 2010.
38. R. Goré and F. Widmann. “An Optimal On-the-Fly Tableau-Based Decision Pro-

cedure for PDL-Satisfiability”. In: CADE. Vol. 5663. LNCS. Springer, 2009.
39. K. Heljanko, T. Junttila, and T. Latvala. “Incremental and Complete Bounded

Model Checking for Full PLTL”. In: CAV. Vol. 3576. LNCS. Springer, 2005.
40. T. Henzinger, O. Kupferman, and S. Qadeer. “From Pre-Historic to Post-Modern

Symbolic Model Checking”. In: FMSD 23.3 (2003).
41. A. Heuerding et al. “Propositional Logics on the Computer”. In: TABLEAUX.

Vol. 918. LNCS. Springer, 1995.
42. B. Hirsch and U. Hustadt. “Translating PLTL into WS1S: Application Descrip-

tion”. In: M4M. 2001.
43. B. Huberman, R. Lukose, and T. Hogg. “An Economics Approach to Hard Com-

putational Problems”. In: Science 275.5296 (1997).
44. U. Hustadt and B. Konev. “TRP++: A temporal resolution prover”. In: Collegium

Logicum. Vol. 8. Kurt Gödel Society, 2004.

14

http://scholar.google.com/scholar?q=%22The+Essentials+of+the+SAT+2003+Competition%22&hl=en&lr=&btnG=Search
http://www.satcompetition.org/2009/sat09comp-slides.pdf
http://www.satcompetition.org/2009/sat09comp-slides.pdf
http://fmv.jku.at/biere/talks/Biere-HWMCC10-talk.pdf
http://fmv.jku.at/biere/talks/Biere-HWMCC10-talk.pdf
http://fmv.jku.at/run/
http://scholar.google.com/scholar?q=%22Handbook+of+Satisfiability%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Automatic+hardware+synthesis+from+specifications:+a+case+study%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Specify,+Compile,+Run:+Hardware+from+PSL%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Boolean+Abstraction+for+Temporal+Logic+Satisfiability%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22NuSMV+2:+An+OpenSource+Tool+for+Symbolic+Model+Checking%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Another+Look+at+LTL+Model+Checking%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Another+Look+at+LTL+Model+Checking%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Improved+Automata+Generation+for+Linear+Temporal+Logic%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Improved+Automata+Generation+for+Linear+Temporal+Logic%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Temporal+and+Modal+Logic%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Efficient+Model+Checking+in+Fragments+of+the+Propositional+Mu-Calculus+(Extended+Abstract)%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Efficient+Model+Checking+in+Fragments+of+the+Propositional+Mu-Calculus+(Extended+Abstract)%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22An+Antichain+Algorithm+for+LTL+Realizability%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Clausal+temporal+resolution%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22A+Framework+for+Inherent+Vacuity%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Algorithm+portfolios%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Tableau+Tool+for+Testing+Satisfiability+in+LTL:+Implementation+and+Experimental+Analysis%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Tableau+Tool+for+Testing+Satisfiability+in+LTL:+Implementation+and+Experimental+Analysis%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22An+Experimental+Comparison+of+Theorem+Provers+for+CTL%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22An+Experimental+Comparison+of+Theorem+Provers+for+CTL%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22An+Optimal+On-the-Fly+Tableau-Based+Decision+Procedure+for+PDL-Satisfiability%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22An+Optimal+On-the-Fly+Tableau-Based+Decision+Procedure+for+PDL-Satisfiability%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Incremental+and+Complete+Bounded+Model+Checking+for+Full+PLTL%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Incremental+and+Complete+Bounded+Model+Checking+for+Full+PLTL%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22From+Pre-Historic+to+Post-Modern+Symbolic+Model+Checking%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22From+Pre-Historic+to+Post-Modern+Symbolic+Model+Checking%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Propositional+Logics+on+the+Computer%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Translating+PLTL+into+WS1S:+Application+Description%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Translating+PLTL+into+WS1S:+Application+Description%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22An+Economics+Approach+to+Hard+Computational+Problems%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22An+Economics+Approach+to+Hard+Computational+Problems%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22TRP++:+A+temporal+resolution+prover%22&hl=en&lr=&btnG=Search

45. U. Hustadt and R. A. Schmidt. “Formulae which Highlight Differences between
Temporal Logic and Dynamic Logic Provers”. In: Issues in the Design and Ex-
perimental Evaluation of Systems for Modal and Temporal Logics. Dipartimento
di Ingegneria dell’Informazione, Unversitá degli Studi di Siena, 2001.

46. U. Hustadt and R. A. Schmidt. “Scientific Benchmarking with Temporal Logic
Decision Procedures”. In: KR. Morgan Kaufmann, 2002.

47. U. Hustadt et al. “TeMP: A Temporal Monodic Prover”. In: IJCAR. Vol. 3097.
LNCS. Springer, 2004.

48. G. Janssen. “Logics for Digital Circuit Verification: Theory, Algorithms, and Ap-
plications”. PhD thesis. Technische Universiteit Eindhoven, 1999.

49. K. Leyton-Brown et al. “A Portfolio Approach to Algorithm Selection”. In: IJCAI.
Morgan Kaufmann, 2003.

50. M. Ludwig and U. Hustadt. “Fair Derivations in Monodic Temporal Reasoning”.
In: CADE. Vol. 5663. LNCS. Springer, 2009.

51. M. Ludwig and U. Hustadt. “Implementing a fair monodic temporal logic prover”.
In: AI Commun. 23.2-3 (2010).

52. M. Ludwig and U. Hustadt. “Resolution-Based Model Construction for PLTL”.
In: TIME. 2009.

53. L. de Moura. SAL: Tutorial. 2004.
54. L. de Moura et al. “SAL 2”. In: CAV. Vol. 3114. LNCS. Springer, 2004.
55. M. Nikolic. “Statistical Methodology for Comparison of SAT Solvers”. In: SAT.

Vol. 6175. LNCS. Springer, 2010.
56. I. Pill et al. “Formal analysis of hardware requirements”. In: DAC. 2006.
57. Prosyd. http://www.prosyd.org/.
58. L. Pulina and A. Tacchella. “A self-adaptive multi-engine solver for quantified

Boolean formulas”. In: Constraints 14.1 (2009).
59. K. Rozier and M. Vardi. “A Multi-encoding Approach for LTL Symbolic Satisfi-

ability Checking”. In: FM. Vol. 6664. LNCS. Springer, 2011.
60. K. Rozier and M. Vardi. “LTL Satisfiability Checking”. In: STTT 12.2 (2010).
61. V. Schuppan. “Towards a notion of unsatisfiable and unrealizable cores for LTL”.

In: Sci. Comput. Program. In Press (2010). doi: 10.1016/j.scico.2010.11.004.
62. V. Schuppan and L. Darmawan. Evaluating LTL Satisfiability Solvers (full ver-

sion). http://www.schuppan.de/viktor/VSchuppanLDarmawan- ATVA- 2011-

full.pdf. 2011.
63. S. Schwendimann. “A New One-Pass Tableau Calculus for PLTL”. In:

TABLEAUX. Vol. 1397. LNCS. Springer, 1998.
64. L. Simon and D. Le Berre. “Some Results and Lessons from the SAT Competi-

tions (invited talk, slides only)”. In: Second International Workshop on Constraint
Propagation and Implementation, Sitges, Spain, October 1, 2005. 2005.

65. StatSoft, Inc. Electronic Statistics Textbook. StatSoft, Tulsa, OK, USA. Available
from http://www.statsoft.com/textbook/.

66. G. Sutcliffe and C. Suttner. “Evaluating general purpose automated theorem prov-
ing systems”. In: Artif. Intell. 131.1-2 (2001).

67. The VIS Group. “VIS: A System for Verification and Synthesis”. In: CAV.
Vol. 1102. LNCS. Springer, 1996.

68. P. Wolper. “The Tableau Method for Temporal Logic: An Overview”. In: Logique
et Analyse 28.110–111 (1985).

69. M. De Wulf et al. “Antichains: Alternative Algorithms for LTL Satisfiability and
Model-Checking”. In: TACAS. Vol. 4963. LNCS. Springer, 2008.

70. L. Xu et al. “SATzilla: Portfolio-based Algorithm Selection for SAT”. In: JAIR
32 (2008).

15

http://scholar.google.com/scholar?q=%22Formulae+which+Highlight+Differences+between+Temporal+Logic+and+Dynamic+Logic+Provers%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Formulae+which+Highlight+Differences+between+Temporal+Logic+and+Dynamic+Logic+Provers%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Scientific+Benchmarking+with+Temporal+Logic+Decision+Procedures%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Scientific+Benchmarking+with+Temporal+Logic+Decision+Procedures%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22TeMP:+A+Temporal+Monodic+Prover%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Logics+for+Digital+Circuit+Verification:+Theory,+Algorithms,+and+Applications%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Logics+for+Digital+Circuit+Verification:+Theory,+Algorithms,+and+Applications%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22A+Portfolio+Approach+to+Algorithm+Selection%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Fair+Derivations+in+Monodic+Temporal+Reasoning%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Implementing+a+fair+monodic+temporal+logic+prover%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Resolution-Based+Model+Construction+for+PLTL%22&hl=en&lr=&btnG=Search
http://sal.csl.sri.com/doc/salenv_tutorial.pdf
http://scholar.google.com/scholar?q=%22SAL+2%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Statistical+Methodology+for+Comparison+of+SAT+Solvers%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Formal+analysis+of+hardware+requirements%22&hl=en&lr=&btnG=Search
http://www.prosyd.org/
http://scholar.google.com/scholar?q=%22A+self-adaptive+multi-engine+solver+for+quantified+Boolean+formulas%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22A+self-adaptive+multi-engine+solver+for+quantified+Boolean+formulas%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22A+Multi-encoding+Approach+for+LTL+Symbolic+Satisfiability+Checking%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22A+Multi-encoding+Approach+for+LTL+Symbolic+Satisfiability+Checking%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22LTL+Satisfiability+Checking%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Towards+a+notion+of+unsatisfiable+and+unrealizable+cores+for+LTL%22&hl=en&lr=&btnG=Search
http://dx.doi.org/10.1016/j.scico.2010.11.004
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf
http://www.schuppan.de/viktor/VSchuppanLDarmawan-ATVA-2011-full.pdf
http://scholar.google.com/scholar?q=%22A+New+One-Pass+Tableau+Calculus+for+PLTL%22&hl=en&lr=&btnG=Search
http://www.lri.fr/~simon/recherche/papiers/InvitedTalk-CPAI2005-Simon.zip
http://www.lri.fr/~simon/recherche/papiers/InvitedTalk-CPAI2005-Simon.zip
http://www.statsoft.com/textbook/
http://scholar.google.com/scholar?q=%22Evaluating+general+purpose+automated+theorem+proving+systems%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Evaluating+general+purpose+automated+theorem+proving+systems%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22VIS:+A+System+for+Verification+and+Synthesis%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22The+Tableau+Method+for+Temporal+Logic:+An+Overview%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Antichains:+Alternative+Algorithms+for+LTL+Satisfiability+and+Model-Checking%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22Antichains:+Alternative+Algorithms+for+LTL+Satisfiability+and+Model-Checking%22&hl=en&lr=&btnG=Search
http://scholar.google.com/scholar?q=%22SATzilla:+Portfolio-based+Algorithm+Selection+for+SAT%22&hl=en&lr=&btnG=Search

	Evaluating LTL Satisfiability Solvers-1ex
	1 Introduction
	Related Work
	Organization

	2 Preliminaries
	3 Solvers
	Choice of Solvers
	Solver Descriptions

	4 Benchmarks
	5 Methodology
	Hardware and Software
	Input Format and No Shuffling
	Stages
	Tracks
	Correctness of Solvers
	Scoring

	6 Results
	Preliminary Stage
	Correctness of Solvers
	Selecting Winning Configurations per Tool
	Track Model Construction Disabled
	Track Model Construction Enabled
	A Performance Advantage of ALASKA over NuSMV-BDD?

	7 Potential of a Portfolio Solver
	Perfect Oracle
	Perfect Task Switcher
	Fast Presolver

	8 Conclusion

