Evaluating LTL Satisfiability Solvers

Viktor Schuppan

Supported by the Provincia Autonoma di Trento (project EMTELOS).

j.w.w. Luthfi Darmawan

Supported by the European Master's Program in Computational Logic (EMCL).

ATVA'11, Taipei, Taiwan, October 11–14, 2011

LTL Satisfiability – (Our) Motivation

Verification gains momentum \Rightarrow specifications become object of interest

Investigation of specifications

Property Simulation (e.g., RAT [PSC+06])

- Example traces, possibly with constraints
- Makes properties executable

Property Assurance (e.g., RAT [PSC+06])

– Possibilities, assertions

Sanity Checks (e.g., RAT [PSC+06]; [RV10]; [FKSFV08])

- Satisfiability, non-validity, non-redundancy

Boil down to LTL satisfiability.

(Note: checks beyond satisfiability are important, too.)

Some specific triggers

Antichains for LTL satisfiability ([WDMR08])

- Claims advantage of ALASKA over NuSMV-BDD
- LTL satisfiability solver comparison by Rozier and Vardi ([RV10])
 - Focus on LTL satisfiability via explicit and BDD-based symbolic model checking, i.e., no SAT-based, temporal-resolution, tableaux-based tools.

Interest in Temporal Resolution and its potential for extraction of unsatisfiable cores ([Sch10])

No recent evaluation of LTL satisfiability solvers using a broad range of algorithms, a broad range of benchmarks, and comprehensive criteria available.

Objective: compare performance of off-the-shelf solvers for propositional LTL satisfiability.

This is a comparison of tools (as opposed to one of algorithms).

- Different features (e.g., preprocessing/simplification).
- Different maturity.
- Different programming languages.

1. Introduction

- 2. LTL Solvers
- 3. Benchmarks
- 4. Methodology
- 5. Findings
- 6. Conclusions

Reduction to Model Checking

- Selected: ALASKA, NuSMV-BDD, NuSMV-SBMC
- Ruled out: explicit state model checkers [RV10], Cadence SMV (BDDs)
 [RV10], SAL [RV10], VIS (BDDs)
- Last hardware model checking competition [HWMCC10] focuses on safety

Tableau-Based Algorithms

- Selected: LWB, plt1
- Ruled out: TWB, LTL Tableau [GKS09]

Temporal Resolution

- Selected: **TRP++**, **TSPASS**
- Ruled out: **TeMP** [HKR+04,LH10]

Use families from previous comparisons [WDMR08,RV10,HS02].

- But: restrict number of instances in random category.

Add families not used for LTL satisfiability before: acacia, amba, forobots.

Create new families: O1formula, O2formula, phltl.

Scale up families.

Add variants that enforce non-trivial behavior.

To my knowledge this is the most comprehensive set of benchmarks in comparing propositional LTL satisfiability solvers to date.

Family	Description	#Inst./uns.	Max. $ \phi $	Source					
Category application									
acacia	Arbiters and traffic light controllers 71/- 4		426	[FJR09]					
alaska_lift	Elevator specifications	Elevator specifications 136/34 4450		[WDMR08]					
alaska_szymanski	Mutual exclusion protocol	4/-	183 [WDMR08						
anzu₋amba	Microcontroller buffer architecture	51/-	6173	[BGJ+07a]					
anzu₋genbuf	Generalized buffer	60/-	5805	[BGJ+07b]					
forobots	Model of a robot with properties	39/25	636	[BDF09]					
Category crafted									
rozier_counter	4 variants of a serial counter	78/-	751	[RV10]					
rozier_pattern	8 scalable patterns to trigger diffi- culties in LTL to Büchi translators	244/-	7992	[RV10]					
schup01/2form.	Expon. behavior in some solvers	54/42	6001						
schuppan_phltl	Temporal variant of pigeonhole	poral variant of pigeonhole 18/10 40501							
Category random									
rozier_formulas	Obtained by generating a syntax tree [DGV99]	2000/57	185	[RV10]					
trp	Obtained by lifting propositional CNF into fixed temporal structure	970/397	1422	[HS02]					

Flow

Preliminary Stage

- Purpose: reduce number of configurations for **TRP++** and **TSPASS**
- 10 second time out

Main Stage

- All remaining configurations for all solvers
- 60 second time out

Graphical Evaluation

 Choose one winning configuration per solver based on highest score

Setup

Hardware/Software

- Intel Xeon 3.0 GHz
- 4 GB memory
- Red Had Linux 5.4,64 bit kernel 2.6.18
- Measure time, memory with **run** [BJ]

No shuffling of benchmarks

One run per instance and solver configuration

Memory out: 2 GB

Scoring

Objective:

 Score by highest number of solved instances; break ties by lower time taken on solved instances. (Frequently used.)

Problem:

- Benchmark families with very different numbers of instances.
- Smallest family has 4 instances; largest has > 2000.

Solution:

- Arrange benchmark families in tree.
- Assign equal weight to the (immediate) children of each node.

Caveat:

- The weight of an instance may change between different scores, e.g., share of solved instances (all instances count) and run time on solved instances (only solved instances count).
- The weight of an instance may change between different solvers for the same score, e.g., run time on solved instances (only instances solved by particular solver count).

Cactus Plots

- are standard;
- easily allow to identify the winner when ranking by highest number of solved instances with ties broken by time spent on solved instances;
- break the correlation between different solvers on the same instance.

Contour/Discrete Raw Data Plots

- retain the correlation between different solvers on the same instance;
- easily allow to identify similar and complementary behavior;
- easily allow to see performance of a solver on subfamilies;
- easily allow to see difficulty of instances and subfamilies.

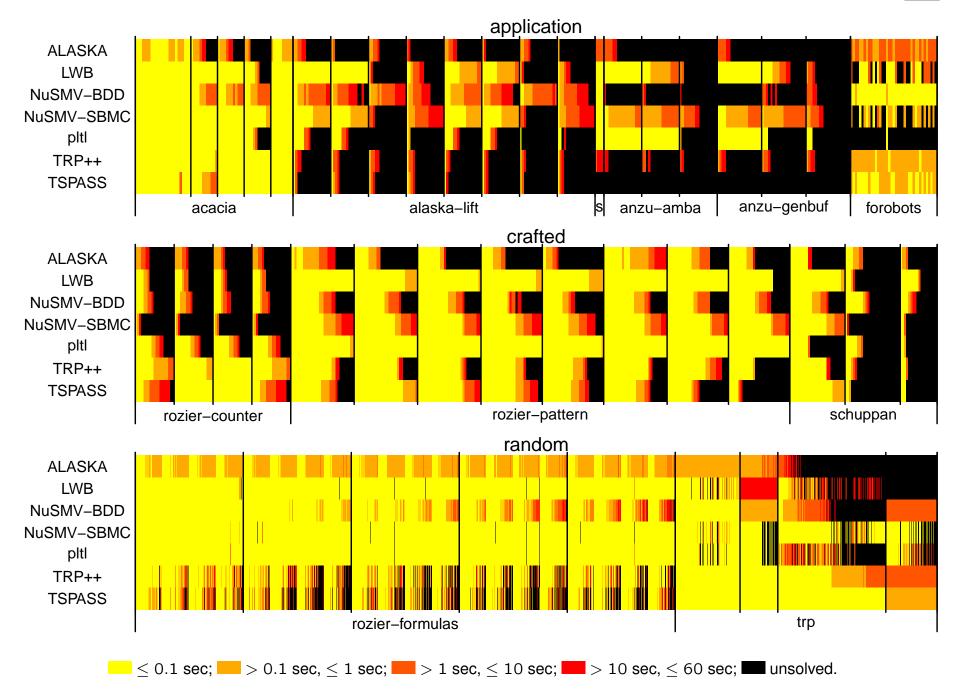
Correctness

We found 1 or 2 bugs each in ALASKA, NuSMV, TRP++, and TSPASS.

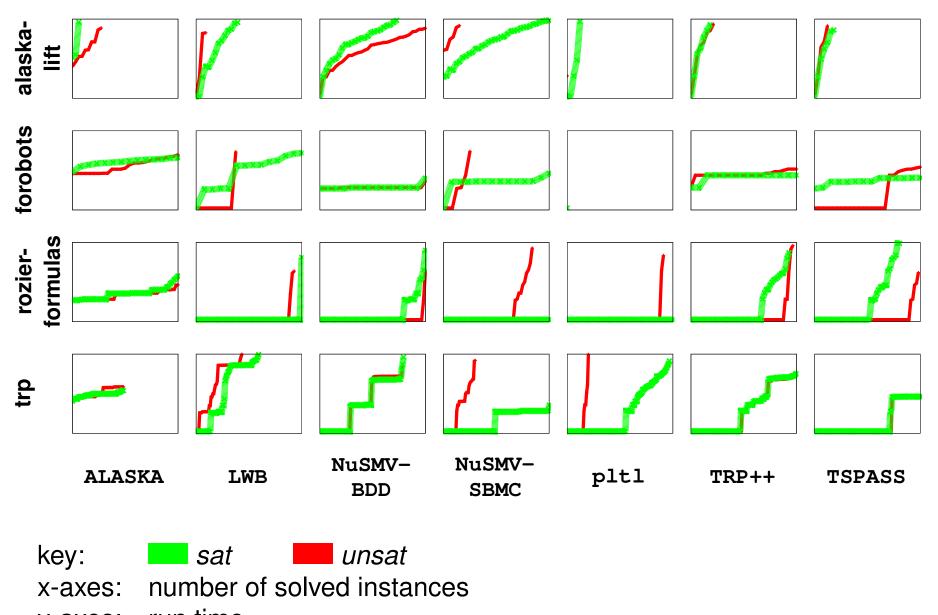
- Kindly fixed quickly by tool authors.

We also found bugs in LWB.

- We contacted the developers.
- We received no response.
- 187 out of 7446 instances (known) buggy.
- 13 wrong results.
- Others abnormal termination.
- Hors concours.

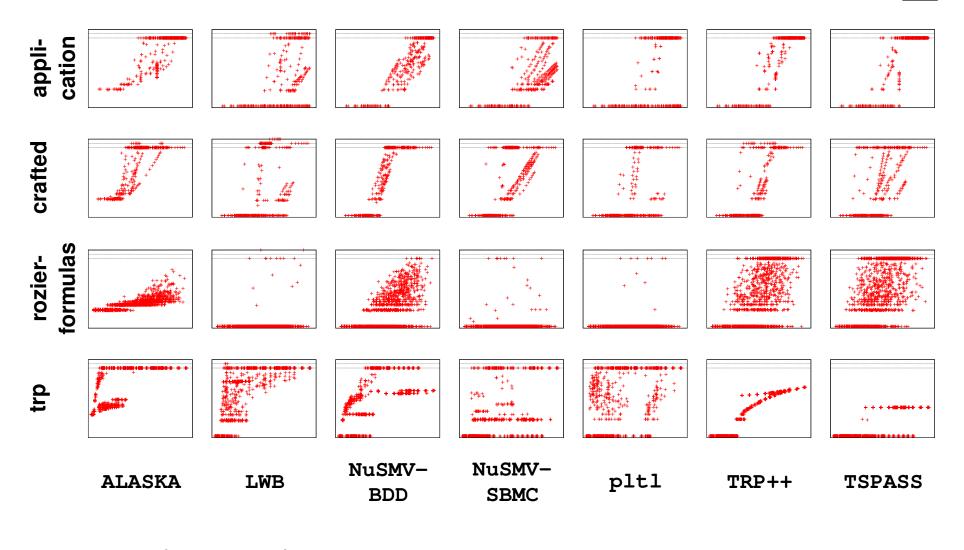

Winning Configurations per Tool

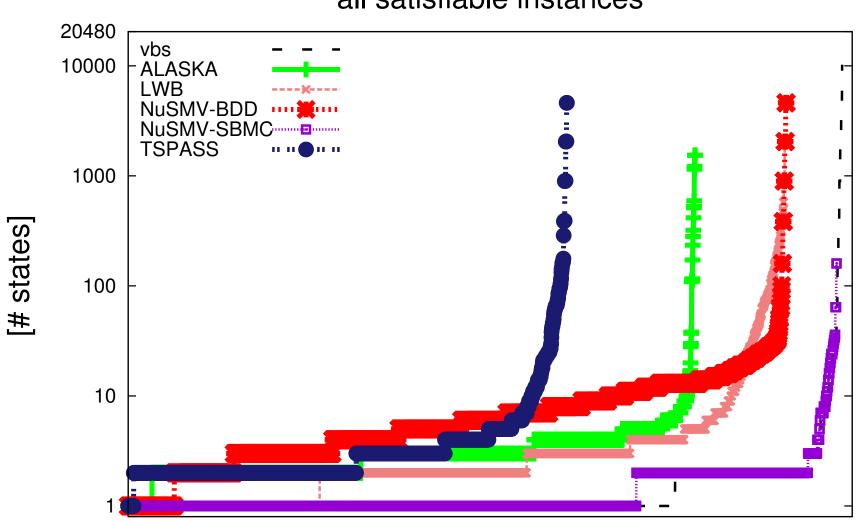
	model construction disabled (<i>sat</i> and <i>unsat</i> instances)							
tool	winning configuration	max	min	vbs				
ALASKA	noc_nos_nob	0.581	0.322	0.595				
LWB	mod	0.740	0.656	0.800				
NuSMV-BDD	dcx_fflt_dyn_elbwd	0.743	0.607	0.823				
NuSMV-SBMC	nodcx_c	0.723	0.651	0.726				
pltl	tree	0.694	0.687	0.702				
TRP++	s_r_noal_bfs_nop_fsr	0.752	0.593	0.776				
TSPASS	ext_nogrp_nosev_sub_nosls_rfmrr-	0.667	0.479	0.670				
	_norbmrr_nomod_mor							


We select one winning configuration (column max) per tool.

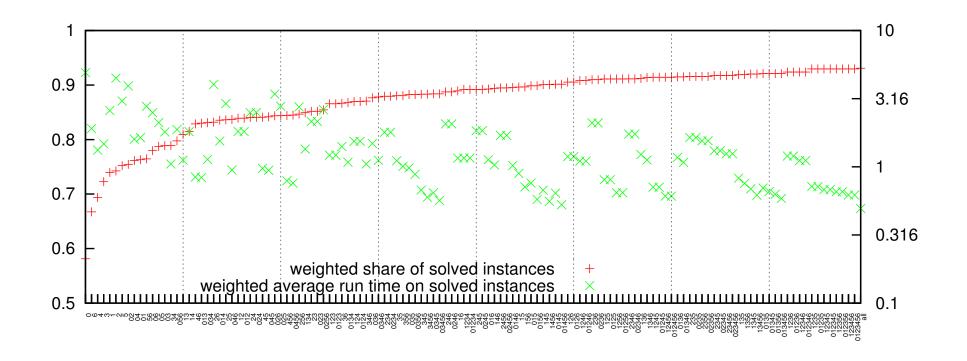
Numbers: weighted share of solved instances. vbs: virtual best solver.

Run Times (Contour/Discrete Raw Data Plots)


Run Times Sat vs. Unsat Instances


y-axes: run time

Instances selected to "equalize" features.


Run Times by Instance Size

x-axes: instance size y-axes: run time

all satisfiable instances

Mode: perfect oracle selects best portfolio member for any given instance. Best case scenario for portfolio solvers without communication between portfolio members. Unrealistic.

Left y-axis: weighted share of solved instances.

Right y-axis: weighted average run time on solved instances [seconds].

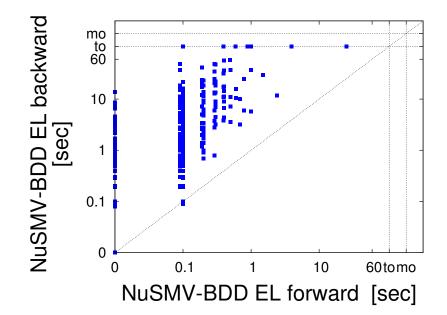
Mode: task switching with no overhead and infinitely small time slices between portfolio members. Reference case scenario for portfolio solvers without communication between portfolio members. Should be beaten.

Left y-axis: weighted share of solved instances.

Right y-axis: weighted average run time on solved instances [seconds].

Potential of a Portfolio Solver (Fast Presolver)

Even a simplistic portfolio solver can yield considerable benefits.


Pick 4 best 2-configuration portfolios.

Run one as fast presolver [XHH+08] for a short time. If that fails, run the other solver for the remaining time.

Results	1st as fast 1 second		t presolver 2 seconds		2nd as fas 1 second		t presolver 2 seconds	
	share	time	share	time	share	time	share	time
(LWB, TRP++)	0.880	1.09	0.885	1.30	0.841	1.26	0.850	1.45
(LWB, TSPASS)	0.868	0.88	0.874	1.10	0.850	1.20	0.858	1.48
(NuSMV-SBMC, TRP++)	0.823	1.03	0.841	1.18	0.860	0.97	0.862	1.31
(NuSMV-SBMC, TSPASS)	0.813	1.00	0.831	1.21	0.837	1.17	0.840	1.42

Reference	1st in isolation		2nd in isolation		perfect oracle		perf. task switcher	
	share	time	share	time	share	time	share	time
(LWB, TRP++)	0.740	2.59	0.752	3.03	0.896	0.89	0.894	1.12
(LWB, TSPASS)	0.740	2.59	0.667	1.91	0.889	1.16	0.881	1.27
(NuSMV-SBMC, TRP++)	0.723	1.47	0.752	3.03	0.880	1.11	0.874	1.37
(NuSMV-SBMC, TSPASS)	0.723	1.47	0.667	1.91	0.867	1.41	0.853	1.60

A Performance Advantage of ALASKA over NuSMV-BDD?

[WDMR08] claims an advantage of **ALASKA** over **NuSMV-BDD**.

A difference beyond representation (antichains vs. BDDs) was direction of fixed point computations. (Forward fixed point computation was not available in **NuSMV-BDD** when [WDMR08] was done.)

Using appropriate options in **NuSMV** and forward rather than backward fixed point computation **ALASKA** does not outperform **NuSMV-BDD**.

Summary

Identification of reference solvers with options at instance level.

No solver dominates. Rather, complementary behavior.

We don't declare any single solver to be the winner.

A portfolio approach seems worth trying.

Benchmarks, data, more plots available: http://www.schuppan.de/viktor/atva11/.

Future Work

Check out participants of HWMCC'11.

Consider explicit state model checkers that handle the property on-the-fly.

Have a proper competition?

Thanks to

- ... you for your attention,
- ... J.-F. Raskin and N. Maquet for help with **ALASKA** and hosting the first author for one week,
- ... R. Goré and F. Widmann for help with plt1,
- ... B. Konev and M. Ludwig for help with **TRP++** and **TSPASS**,
- ... C. Dixon for the **forobots** family,
- ... B. Jobstmann and G. Hofferek for help with the **amba** family,
- ... K. Rozier for feedback,
- ... A. Artale for supervising the second author's MSc thesis,
- ... the ES group at FBK, esp. A. Cimatti, A. Mariotti, and M. Roveri for discussion and support.

Questions?

References

- **BDF09** A. Behdenna, C. Dixon, and M. Fisher. Deductive verification of simple foraging robotic behaviours. International Journal of Intelligent Computing and Cybernetics, 2009.
- BGJ+07a R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, M. Weiglhofer. Automatic hardware synthesis from specifications: a case study. DATE'07.
- BGJ+07b R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, M. Weiglhofer. Specify, compile, run: Hardware from PSL. COCV'07.
- FJR09 E. Filiot, N. Jin, J. Raskin. An antichain algorithm for LTL realizability. CAV'09.
- FKSFV08 D. Fisman, O. Kupferman, S. Sheinvald-Faragy, M. Vardi. A Framework for Inherent Vacuity. HVC'08.
- GKS09 V. Goranko, A. Kyrikov, D. Shkatov: Tableau Tool for Testing Satisfiability in LTL: Implementation and Experimental Analysis. M4M'09.
- HKR+04 U. Hustadt, B. Konev, A. Riazanov, A. Voronkov. TeMP: A Temporal Monodic Prover. IJCAR'04.
- HS02 U. Hustadt, R. Schmidt. Scientific benchmarking with temporal logic decision procedures. KR'02.
- HWMCC10 A. Biere, K. Claessen. Hardware Model Checking Competition (presentation, slides only). HWVW'10.
- LH10 M. Ludwig and U. Hustadt. Implementing a fair monodic temporal logic prover. AI Commun 23 (2-3) 2001: 69–96.
- PSC+06 I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, A. Cimatti. Formal analysis of hardware requirements. DAC'06.
- RV10 K. Rozier and M. Vardi. LTL satisfiability checking. STTT, 12(2):123–137, 2010.
- Sch10 V. Schuppan. Towards a Notion of Unsatisfiable and Unrealizable Cores for LTL. Science of Computer Programming, 2010. In press.
- WDMR08 M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. Antichains: Alternative algorithms for LTL satisfibility and model-checking. TACAS'08.
- XHH+08 L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based Algorithm Selection for SAT". J. Artif. Intell. Res. (JAIR) 32 (2008): 565–606.