
Boolean Abstraction for
Temporal Logic Satisfiability

A. Cimatti1, M. Roveri1, V. Schuppan1, S. Tonetta2

1FBK-irst, Trento, Italy
2University of Lugano, Faculty of Informatics, Lugano, Switzerland

CAV’07, July 3–7, 2007, Berlin, Germany

Motivation 2

⇒ Property-based system design (PROSYD):
work at the level of requirements.

⇒ In model checking, focus is on dealing with
complexity in the model.

⇒ Satisfiability of large temporal formulas can be hard.
(e.g., [Rozier, Vardi (SPIN’07)])

c© 2007 V. Schuppan

Contents 3

1. Boolean Abstraction

2. Pure Literal Simplification

3. Extracting Unsatisfiable Cores

4. Experiments

c© 2007 V. Schuppan

Boolean Abstraction 4

(well-known in SMT community)

∧ ∨¬ ⇔⇒∨

F

G

∧
U
⇒∧

X
∨
G

X

¬

temporal formula

∧ ∨¬ ⇔⇒∨

U
⇒∧

combination
Boolean

temporal
formula

c© 2007 V. Schuppan

Boolean Abstraction 5

(well-known in SMT community)

A1 A2 A3 A4

∧ ∨¬ ⇔⇒∨
∧ ∨¬ ⇔⇒∨

F

G

∧
U
⇒∧

X
∨
G

X

¬

temporal formula

∧ ∨¬ ⇔⇒∨

A2

U
⇒∧

combination
Boolean

fresh
proposition

temporal
formula

Boolean formula

abstract

c© 2007 V. Schuppan

Boolean Abstraction 6

(well-known in SMT community)

A1 A2 A3 A4

∧ ∨¬ ⇔⇒∨
∧ ∨¬ ⇔⇒∨

F

G

∧
U
⇒∧

X
∨
G

X

¬

temporal formula

∧ ∨¬ ⇔⇒∨

A2

U
⇒∧

combination
Boolean

fresh
proposition

temporal
formula

Boolean formula

abstract false?
=

yes

unsatisfiable

c© 2007 V. Schuppan

Boolean Abstraction 7

(well-known in SMT community)

A1 A2 A3 A4

∧ ∨¬ ⇔⇒∨
∧ ∨¬ ⇔⇒∨

F

G

∧
U
⇒∧

X
∨
G

X

¬

temporal formula

∧ ∨¬ ⇔⇒∨

A2

U
⇒∧

combination
Boolean

fresh
proposition

temporal
formula

A1 A3 ¬A 4

Boolean formula

abstract false?
= no

yes

unsatisfiable

extract
prime implicant

prime implicant
Boolean

c© 2007 V. Schuppan

Boolean Abstraction 8

(well-known in SMT community)

A1 A2 A3 A4

∧ ∨¬ ⇔⇒∨
∧ ∨¬ ⇔⇒∨

F

G

∧
U
⇒∧

X
∨
G

X

¬

temporal formula

∧ ∨¬ ⇔⇒∨

A2

U
⇒∧

combination
Boolean

fresh
proposition

temporal
formula

A1 A3

F

G

∧
U
⇒∧

X
∨
G

¬A 4

Boolean formula

abstract false?
= no

yes

unsatisfiable

extract
prime implicant

prime implicant
Boolean

concretize

temporal
prime implicant

¬

c© 2007 V. Schuppan

Boolean Abstraction 9

(well-known in SMT community)

A1 A2 A3 A4

∧ ∨¬ ⇔⇒∨
∧ ∨¬ ⇔⇒∨

F

G

∧
U
⇒∧

X
∨
G

X

¬

temporal formula

∧ ∨¬ ⇔⇒∨

A2

U
⇒∧

combination
Boolean

fresh
proposition

temporal
formula

A1 A3

F

G

∧
U
⇒∧

X
∨
G

¬A 4

Boolean formula

abstract false?
= no

yes

unsatisfiable

extract
prime implicant

check satisfiability

prime implicant
Boolean

concretize

temporal
prime implicant

¬

c© 2007 V. Schuppan

Boolean Abstraction 10

(well-known in SMT community)

A1 A2 A3 A4

∧ ∨¬ ⇔⇒∨
∧ ∨¬ ⇔⇒∨

F

G

∧
U
⇒∧

X
∨
G

X

¬

temporal formula

∧ ∨¬ ⇔⇒∨

A2

U
⇒∧

combination
Boolean

fresh
proposition

temporal
formula

A1 A3

F

G

∧
U
⇒∧

X
∨
G

¬A 4

SAT?

yes

satisfiable

Boolean formula

abstract false?
= no

yes

unsatisfiable

extract
prime implicant

check satisfiability

prime implicant
Boolean

concretize

temporal
prime implicant

¬

c© 2007 V. Schuppan

Boolean Abstraction 11

(well-known in SMT community)

A1 A2 A3 A4

∧ ∨¬ ⇔⇒∨
∧ ∨¬ ⇔⇒∨

F

G

∧
U
⇒∧

X
∨
G

X

¬

temporal formula

∧ ∨¬ ⇔⇒∨

A2

U
⇒∧

combination
Boolean

fresh
proposition

temporal
formula

A1 A3

F

G

∧
U
⇒∧

X
∨
G

¬A 4

prime implicant
remove

SAT?

no

yes

satisfiable

Boolean formula

abstract false?
= no

yes

unsatisfiable

extract
prime implicant

check satisfiability

prime implicant
Boolean

concretize

temporal
prime implicant

¬

c© 2007 V. Schuppan

Contents 12

1. Boolean Abstraction

2. Pure Literal Simplification

3. Extracting Unsatisfiable Cores

4. Experiments

c© 2007 V. Schuppan

Pure Literal Simplification — Propositional Logic 13

[Davis, Putnam (1960); Dunham, Fridshal, Sward (1959)]

Assume a propositional formula φ in CNF:

(l1,1∨ . . .∨ l1,n1∨ p)∧ . . .∧ (lk,1∨ . . .∨ lk,nk ∨ p)︸ ︷︷ ︸
φ1 : p occurs only positively

∧ φ2︸︷︷︸
no occurrence of p

Then: φ is satisfiable iff p∧φ is satisfiable.

(And similarly if p occurs only negatively in φ1.)

c© 2007 V. Schuppan

Pure Literal Simplification — PSL 14

Extend notion of pure literal to PSL (see paper).

Let φ be a PSL formula such that p is pure positive in φ.

Then: φ is satisfiable iff (Gp)∧φ is satisfiable.

(And similarly if p is pure negative in φ.)

(Modal logic K : [Pan, Sattler, Vardi (J. Applied Non-Classical Logics 2006)])

c© 2007 V. Schuppan

Boolean Abstraction and Pure Literal Simplification 15

∧ ∨¬ ⇔⇒∨
∧ ∨¬ ⇔⇒∨

F

G

∧

F

G

∧

U
⇒∧

U
⇒∧

X
∨
G

X
∨
G

A1
A1A2 A3

A3A4
¬A 4

¬

¬
X

temporal formula Boolean formula Boolean
prime implicant

temporal
prime implicant

abstract

yes

unsatisfiable

false?
no=

extract
prime implicant

concretize

check satisfiability

satisfiable

yes

SAT?

no

remove
prime implicant

(Pure literal)
Simplification

c© 2007 V. Schuppan

Contents 16

1. Boolean Abstraction

2. Pure Literal Simplification

3. Extracting Unsatisfiable Cores

4. Experiments

c© 2007 V. Schuppan

Unsatisfiable Cores 17

Assume

φ ≡ (Gp) ∧ (F¬p) ∧ ((Xp)∨ (XXp))

Prime implicants:

(Gp) ∧ (F¬p) ∧ (Xp)

(Gp) ∧ (F¬p) ∧ (XXp)

They share unsatisfiable part⇒ no need to check both!

Given {φi | i ∈ I} with
V

i∈I φi unsatisfiable,
any {φ j | j ∈ J ⊆ I} with

V
j∈J φ j unsatisfiable is an unsatisfiable core.

c© 2007 V. Schuppan

Boolean Abstraction and Unsat Core Extraction 18

∧ ∨¬ ⇔⇒∨
∧ ∨¬ ⇔⇒∨

F

G

∧

F

G

∧

U
⇒∧

U
⇒∧

X
∨
G

X
∨
G

A1
A1A2 A3

A3A4
¬A 4

¬

¬
X

temporal formula Boolean formula Boolean
prime implicant

temporal
prime implicant

abstract

yes

unsatisfiable

false?
no=

extract
prime implicant

concretize

check satisfiability

satisfiable

yes

SAT?

no

remove
prime implicant

Extract/remove
unsat core(s)

c© 2007 V. Schuppan

Activation Variables 19

Propositional case: [Lynce, Marques-Silva (SAT’04)]

1. Assume prime implicant
V

i∈I φi.

2. Introduce one fresh, Boolean activation variable Ai per φi.

3. Build Büchi automaton B for ^
i∈I

(Ai→ φi)

Let J ⊆ I. B has fair path from some initial state with {A j | j ∈ J} true
iffV

j∈J φ j is satisfiable.

Independent of how Büchi automaton is constructed!

c© 2007 V. Schuppan

Extracting Unsatisfiable Cores with BDD-based Solvers 20

Let B be a Büchi automaton for
V

i∈I(Ai→ φi).

1. Let S be the set of states in B that are the start of a fair path
(e.g., Emerson-Lei).

2. Restrict S to initial states in B.

3. Project S onto {Ai | i ∈ I}.

4. Complement S.

Now S contains the set of unsatisfiable cores of
V

i∈I φi.

(We obtain all unsatisfiable cores.)

c© 2007 V. Schuppan

Extracting Unsatisfiable Cores with SAT-based Solvers 21

Let B be a Büchi automaton for
V

i∈I(Ai→ φi).

1. Let k← 0.

2. Encode feasibility of loop-free path of length k in B.

3. Check satisfiability assuming {Ai | i ∈ I} is true at time 0.

4. If unsat, obtain conflict in terms of assumptions {A j | j ∈ J ⊆ I}
at time 0.

5. Otherwise, increase k and repeat.

Now {φ j | j ∈ J} contains an unsatisfiable core of
V

i∈I φi.

(We obtain one unsatisfiable core.)

c© 2007 V. Schuppan

Contents 22

1. Boolean Abstraction

2. Pure Literal Simplification

3. Extracting Unsatisfiable Cores

4. Experiments

c© 2007 V. Schuppan

Experiments 23

Benchmarks on PSL satisfiability

(Used in [Cimatti, Roveri, Semprini, Tonetta (FMCAD’06);
Cimatti, Roveri, Tonetta (TACAS’07)])

1. Fill typical patterns extracted from industrial specifications [Ben-David,
Orni (2005)] with random regular expressions.

2. Generate benchmarks by aggregating patterns from step 1 into the fol-
lowing shapes:

– large conjunction,

– (large conjunction) implies (large conjunction),

– (large conjunction) iff (large conjunction),

– random Boolean combination.

We’d love to have challenging realistic benchmarks from industry.

c© 2007 V. Schuppan

Experiments 24

Implementation

– Basis: NuSMV

– Translation from PSL to automata: [Cimatti, Roveri, Tonetta (TACAS’07)]

– BDD-based solver: backward Emerson-Lei, dynamic reordering
baseline for BDD-based approaches

– SAT-based solver: incremental and complete SBMC with MiniSat
[Heljanko, Junttila, Latvala (CAV’05)]
baseline for SAT-based approaches

Resources

– Time out: 120 seconds

– Memory out: 768 MB

Download
http://sra.itc.it/people/roveri/cav07-bapsl/

c© 2007 V. Schuppan

http://sra.itc.it/people/roveri/cav07-bapsl/

Results 25

Boolean abstraction vs. not

SAT BDD

to

 100

 10

 1

 0.1

0
to 100 10 1 0.10

B
a
s
e
lin

e

[s

e
c
o
n
d
s
]

Boolean abstraction [seconds]

to

 100

 10

 1

 0.1

0
to 100 10 1 0.10

B
a
s
e
lin

e

[s

e
c
o
n
d
s
]

Boolean abstraction [seconds]

unsat
sat

c© 2007 V. Schuppan

Results 26

Pure literal simplification vs. not (without Boolean abstraction)

SAT BDD

to

 100

 10

 1

 0.1

0
to 100 10 1 0.10

B
a
s
e
lin

e

[s

e
c
]

Baseline, pure lit. [sec]

to

 100

 10

 1

 0.1

0
to 100 10 1 0.10

B
a
s
e
lin

e

[s

e
c
]

Baseline, pure lit. [sec]

unsat
sat

c© 2007 V. Schuppan

Results 27

Pure literal rule vs. not (with Boolean abstraction)

SAT BDD

to

 100

 10

 1

 0.1

0
to 100 10 1 0.10

B
o
o
l.
 a

b
s
.
 [
s
e
c
]

Bool. abs., pure lit. [sec]

to

 100

 10

 1

 0.1

0
to 100 10 1 0.10

B
o
o
l.
 a

b
s
.
 [
s
e
c
]

Bool. abs., pure lit. [sec]

unsat
sat

c© 2007 V. Schuppan

Results 28

Unsat core extraction vs. not

SAT BDD

run time

to

 100

 10

 1

 0.1

0
to 100 10 1 0.10

B
o

o
l.
 a

b
s
.

 [
s
e

c
]

Bool. abs., core extr. [sec]

to

 100

 10

 1

 0.1

0
to 100 10 1 0.10

B
o

o
l.
 a

b
s
.

 [
s
e

c
]

Bool. abs., core extr. [sec]

search space

 1000

 100

 10

 1
 1000 100 10 1

B
o

o
l.
 a

b
s
.

 [
#

 p
ri
m

e
 i
m

p
l.
]

Bool. abs., core extr. [# prime impl.]

 1000

 100

 10

 1
 1000 100 10 1

B
o

o
l.
 a

b
s
.

 [
#

 p
ri
m

e
 i
m

p
l.
]

Bool. abs., core extr. [# prime impl.]

c© 2007 V. Schuppan

The End 29

Introduce Boolean abstraction for PSL.
⇒ Very helpful with BDD-based, unclear with SAT-based solvers.
⇒ SAT- and BDD-based approaches complementary.

Extend pure literal simplification to PSL.
⇒ Very helpful, more so when applied to prime implicants.

Extract unsatisfiable cores from solvers.
⇒ Reduces search space, though at the cost of run time.

Much room for improvement:

– Optimize extraction of unsatisfiable cores.

– Reuse partial results between prime implicants.

– Improve prioritization of prime implicants.

– ... (and some more) ... Thanks!
c© 2007 V. Schuppan

Backup-Slides 30

Keep out!

Backup slides

c© 2007 V. Schuppan

Pure Literal Simplification — PSL 31

1. p(¬p) is a positive (negative) occurrence of p.

2. A positive occurrence of p in φ,r is a positive (negative) occurrence of
p in

Xφ

φ∨ψ ψ∨φ

φ∧ψ ψ∧φ

φ U ψ ψ U φ

φ R ψ ψ R φ

r 3→ ψ s 3→ φ

r |→ ψ s |→ φ

(and analogously for a negative occurrence of p).

p is pure positive (negative) in φ iff all occurrences of p in φ

are positive (negative).

c© 2007 V. Schuppan

Complete Simple Bounded Model Checking 32

[Heljanko, Junttila, Latvala (CAV’05)]

1 k← 0;

2 while true do

3 check for contradiction at length k;
4 if contradiction then return no fair path exists fi

5 check for non-redundant path of length k;
6 if no non-redundant path then return no fair path exists fi

7 check for fair lasso-shaped path of length k;
8 if fair lasso-shaped path then return fair path exists fi

9 k++;

10 od

Note: all constraints added in lines 3, 5 for k are present at lines 3, 5, 7 for k′ > k.

c© 2007 V. Schuppan

Extracting Unsatisfiable Cores with SAT-based Solvers 33

literals
assumed

CNF

"UNSAT" +
conflict

"SAT" +
assignment

SAT solver

c© 2007 V. Schuppan

Extracting Unsatisfiable Cores with SAT-based Solvers 34

literals
assumed

CNF

"UNSAT" +
conflict

"SAT" +
assignment

∧
j

φjsuch that is unsat

∧
i

Ai → φi

SAT solver

{A } at time step 0j

at time step 0
i{A }

no contradiction
up to time step k

(We obtain one unsatisfiable core.)

c© 2007 V. Schuppan

Results 35

Pure literal simplification at top + prime implicant levels vs.
only at top

SAT BDD

to

 100

 10

 1

 0.1

0
to 100 10 1 0.10

to
p

[s

e
c
o
n
d
s
]

top + prime implicant [seconds]

to

 100

 10

 1

 0.1

0
to 100 10 1 0.10

to
p

[s

e
c
o
n
d
s
]

top + prime implicant [seconds]

unsat
sat

c© 2007 V. Schuppan

Results 36

SAT vs. BDD

without Boolean abstraction with Boolean abstraction

to

 100

 10

 1

 0.1

0
to 100 10 1 0.10

B
D

D
 (

p
u
re

 l
it
.)

[s

e
c
o
n
d
s
]

SAT (pure lit.) [seconds]

to

 100

 10

 1

 0.1

0
to 100 10 1 0.10

B
D

D
 (

B
A

,
p
u
re

 l
it
.)

[s

e
c
.]

SAT (BA, pure lit.) [seconds]

unsat
sat

c© 2007 V. Schuppan

