# Boolean Abstraction for Temporal Logic Satisfiability 

A. Cimatti ${ }^{1}$, M. Roveri ${ }^{1}$, V. Schuppan ${ }^{1}$, S. Tonetta ${ }^{2}$

${ }^{1}$ FBK-irst, Trento, Italy<br>${ }^{2}$ University of Lugano, Faculty of Informatics, Lugano, Switzerland

CAV'07, July 3-7, 2007, Berlin, Germany

## Motivation

$\Rightarrow$ Property-based system design (PROSYD): work at the level of requirements.
$\Rightarrow$ In model checking, focus is on dealing with complexity in the model.
$\Rightarrow$ Satisfiability of large temporal formulas can be hard. (e.g., [Rozier, Vardi (SPIN'07)])

## Contents

1. Boolean Abstraction
2. Pure Literal Simplification
3. Extracting Unsatisfiable Cores
4. Experiments

## Boolean Abstraction

(well-known in SMT community)
temporal formula


## Boolean Abstraction

(well-known in SMT community)
temporal formula


Boolean formula

$\begin{array}{llll}A_{1} & A_{2} & A_{3} & A_{4}\end{array}$


## Boolean Abstraction

(well-known in SMT community)


## Boolean Abstraction

(well-known in SMT community)


## Boolean Abstraction

(well-known in SMT community)


## Boolean Abstraction

(well-known in SMT community)

(well-known in SMT community)


## Boolean Abstraction

(well-known in SMT community)


## Contents

## 1. Boolean Abstraction

2. Pure Literal Simplification
3. Extracting Unsatisfiable Cores
4. Experiments

## Pure Literal Simplification - Propositional Logic

[Davis, Putnam (1960); Dunham, Fridshal, Sward (1959)]

Assume a propositional formula $\phi$ in CNF:



Then: $\phi$ is satisfiable iff $p \wedge \phi$ is satisfiable.
(And similarly if $p$ occurs only negatively in $\phi_{1}$. )

## Pure Literal Simplification - PSL

Extend notion of pure literal to PSL (see paper).

Let $\phi$ be a PSL formula such that $p$ is pure positive in $\phi$.

## Then: $\phi$ is satisfiable iff $(\mathbf{G} p) \wedge \phi$ is satisfiable.

(And similarly if $p$ is pure negative in $\phi$.)
(Modal logic $\mathcal{K}: ~[P a n$, Sattler, Vardi (J. Applied Non-Classical Logics 2006)])

## Boolean Abstraction and Pure Literal Simplification



## Contents

1. Boolean Abstraction
2. Pure Literal Simplification
3. Extracting Unsatisfiable Cores
4. Experiments

## Unsatisfiable Cores

Assume

$$
\phi \equiv(\mathbf{G} p) \wedge(\mathbf{F} \neg p) \wedge((\mathbf{X} p) \vee(\mathbf{X} \mathbf{X} p))
$$

Prime implicants:

$$
\begin{aligned}
& (\mathbf{G} p) \wedge(\mathbf{F} \neg p) \wedge(\mathbf{X} p) \\
& (\mathbf{G} p) \wedge(\mathbf{F} \neg p) \wedge \quad(\mathbf{X X} p)
\end{aligned}
$$

They share unsatisfiable part $\Rightarrow$ no need to check both!

Given $\left\{\phi_{i} \mid i \in I\right\}$ with $\bigwedge_{i \in I} \phi_{i}$ unsatisfiable, any $\left\{\phi_{j} \mid j \in J \subseteq I\right\}$ with $\bigwedge_{j \in J} \phi_{j}$ unsatisfiable is an unsatisfiable core.

## Boolean Abstraction and Unsat Core Extraction



## Activation Variables

Propositional case: [Lynce, Marques-Silva (SAT'04)]

1. Assume prime implicant $\bigwedge_{i \in I} \phi_{i}$.
2. Introduce one fresh, Boolean activation variable $A_{i}$ per $\phi_{i}$.
3. Build Büchi automaton $B$ for

$$
\bigwedge_{i \in I}\left(A_{i} \rightarrow \phi_{i}\right)
$$

Let $J \subseteq I$. $B$ has fair path from some initial state with $\left\{A_{j} \mid j \in J\right\}$ true iff
$\wedge_{j \in J} \phi_{j}$ is satisfiable.

Independent of how Büchi automaton is constructed!

## Extracting Unsatisfiable Cores with BDD-based Solvers

Let $B$ be a Büchi automaton for $\bigwedge_{i \in I}\left(A_{i} \rightarrow \phi_{i}\right)$.

1. Let $S$ be the set of states in $B$ that are the start of a fair path (e.g., Emerson-Lei).
2. Restrict $S$ to initial states in $B$.
3. Project $S$ onto $\left\{A_{i} \mid i \in I\right\}$.
4. Complement $S$.

Now $S$ contains the set of unsatisfiable cores of $\bigwedge_{i \in I} \phi_{i}$.
(We obtain all unsatisfiable cores.)

## Extracting Unsatisfiable Cores with SAT-based Solvers

Let $B$ be a Büchi automaton for $\wedge_{i \in I}\left(A_{i} \rightarrow \phi_{i}\right)$.

1. Let $k \leftarrow 0$.
2. Encode feasibility of loop-free path of length $k$ in $B$.
3. Check satisfiability assuming $\left\{A_{i} \mid i \in I\right\}$ is true at time 0 .
4. If unsat, obtain conflict in terms of assumptions $\left\{A_{j} \mid j \in J \subseteq I\right\}$ at time 0.
5. Otherwise, increase $k$ and repeat.

Now $\left\{\phi_{j} \mid j \in J\right\}$ contains an unsatisfiable core of $\bigwedge_{i \in I} \phi_{i}$.
(We obtain one unsatisfiable core.)

## Contents

1. Boolean Abstraction
2. Pure Literal Simplification
3. Extracting Unsatisfiable Cores
4. Experiments

## Experiments

Benchmarks on PSL satisfiability
(Used in [Cimatti, Roveri, Semprini, Tonetta (FMCAD'06);
Cimatti, Roveri, Tonetta (TACAS'07)])

1. Fill typical patterns extracted from industrial specifications [Ben-David, Orni (2005)] with random regular expressions.
2. Generate benchmarks by aggregating patterns from step 1 into the following shapes:

- large conjunction,
- (large conjunction) implies (large conjunction),
- (large conjunction) iff (large conjunction),
- random Boolean combination.

We'd love to have challenging realistic benchmarks from industry.

## Experiments

Implementation

- Basis: NuSMV
- Translation from PSL to automata: [Cimatti, Roveri, Tonetta (TACAS'07)]
- BDD-based solver: backward Emerson-Lei, dynamic reordering baseline for BDD-based approaches
- SAT-based solver: incremental and complete SBMC with MiniSat [Heljanko, Junttila, Latvala (CAV'05)] baseline for SAT-based approaches

Resources

- Time out: 120 seconds
- Memory out: 768 MB

Download
http://sra.itc.it/people/roveri/cav07-bapsl/

Boolean abstraction vs. not


BDD


- unsat
- sat

Pure literal simplification vs. not (without Boolean abstraction)


BDD


- unsat
- sat

Pure literal rule vs. not (with Boolean abstraction)

SAT


BDD


- unsat
- sat


## Unsat core extraction vs. not



## The End

Introduce Boolean abstraction for PSL.
$\Rightarrow$ Very helpful with BDD-based, unclear with SAT-based solvers.
$\Rightarrow$ SAT- and BDD-based approaches complementary.
Extend pure literal simplification to PSL.
$\Rightarrow$ Very helpful, more so when applied to prime implicants.

Extract unsatisfiable cores from solvers.
$\Rightarrow$ Reduces search space, though at the cost of run time.

Much room for improvement:

- Optimize extraction of unsatisfiable cores.
- Reuse partial results between prime implicants.
- Improve prioritization of prime implicants.
- ... (and some more) ...

Backup-Slides

## epout!

## Pure Literal Simplification — PSL

1. $p(\neg p)$ is a positive (negative) occurrence of $p$.
2. A positive occurrence of $p$ in $\phi, r$ is a positive (negative) occurrence of $p$ in
$\mathbf{X} \phi$

| $\phi \vee \psi$ | $\psi \vee \phi$ |
| :--- | :--- |
| $\phi \wedge \psi$ | $\psi \wedge \phi$ |
| $\phi \mathbf{U} \psi$ | $\psi \mathbf{U} \phi$ |
| $\phi \mathbf{R} \psi$ | $\psi \mathbf{R} \phi$ |
| $r \diamond \leftrightarrow \psi$ | $s \diamond \rightarrow \phi$ |
| $r \mapsto \psi$ | $s \mapsto \phi$ |

(and analogously for a negative occurrence of $p$ ).
$p$ is pure positive (negative) in $\phi$ iff all occurrences of $p$ in $\phi$ are positive (negative).

```
Complete Simple Bounded Model Checking
1 k
2 while true do
3 check for contradiction at length k;
4 if contradiction then return no fair path exists fi
5 check for non-redundant path of length k;
6 if no non-redundant path then return no fair path exists fi
7 check for fair lasso-shaped path of length k;
8 if fair lasso-shaped path then return fair path exists fi
 k++;
10 od
```

Note: all constraints added in lines 3,5 for $k$ are present at lines $3,5,7$ for $k^{\prime}>k$.

## Extracting Unsatisfiable Cores with SAT-based Solvers



## Extracting Unsatisfiable Cores with SAT-based Solvers


(We obtain one unsatisfiable core.)
$\left\{\mathrm{A}_{\mathrm{j}}\right\}$ at time step 0
such that $\widehat{j}^{\mathbf{j}}{ }_{\mathrm{j}}$ is unsat

Pure literal simplification at top + prime implicant levels vs. only at top


## SAT vs. BDD

without Boolean abstraction

with Boolean abstraction


- unsat
- sat

