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Motivation

= Property-based system design (PROSYD):
work at the level of requirements.

= In model checking, focus is on dealing with
complexity in the model.

= Satisfiability of large temporal formulas can be hard.
(e.g., [Rozier, Vardi (SPIN’'07)])
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Pure Literal Simplification — Propositional Logic

[Davis, Putnam (1960); Dunham, Fridshal, Sward (1959)]

Assume a propositional formula ¢ in CNF:

(haV Nl g V)N AL Ve Ny, V) A (0%)
G -~ 4 v
d1 : p occurs only positively no occurrence of p

Then: ¢ is satisfiable iff p A ¢ is satisfiable.

(And similarly if p occurs only negatively in ¢y.)
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Pure Literal Simplification — PSL
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Extend notion of pure literal to PSL (see paper).

Let ¢ be a PSL formula such that p is pure positive in ¢.
Then: ¢ is satisfiable iff (Gp) A ¢ is satisfiable.

(And similarly if p is pure negative in ¢.)

(Modal logic K: [Pan, Sattler, Vardi (J. Applied Non-Classical Logics 2006)])




Boolean Abstraction and Pure Literal Simplification

no

(Pure literal)
Simplification
——

unsatisfiable

abstract Ap Ay Aj

remove
prime implicant

AN

prime implicant

concretize

satisfiable

check satisfiability

An

Y

VAN

15




Contents

1. Boolean Abstraction

2. Pure Literal Simplification

3. Extracting Unsatisfiable Cores

4. Experiments

16




Unsatisfiable Cores

Assume
o = (Gp) N (F-p) A ((Xp)V (XXp))

Prime implicants:

They share unsatisfiable part = no need to check both!

Given {0; | i € I} with A;c;9; unsatisfiable,

any {¢; | jeJ C1}with A c;¢; unsatisfiable is an unsatisfiable core.
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Boolean Abstraction and Unsat Core Extraction
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Activation Variables
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Propositional case: [Lynce, Marques-Silva (SAT’'04)]

1. Assume prime implicant A;c; 0;.
2. Introduce one fresh, Boolean activation variable A; per ¢;.

3. Build Buchi automaton B for

A4 — ¢))

icl
Let J C I. B has fair path from some initial state with {A; | j € J} true

iff
A jes 0] is satisfiable.

Independent of how Blchi automaton is constructed!




Extracting Unsatisfiable Cores with BDD-based Solvers |

Let B be a Buchi automaton for A;c;(A; — 0;).

1. Let S be the set of states in B that are the start of a fair path
(e.g., Emerson-Lei).

2. Restrict S to initial states in B.
3. Project Sonto {A; | i€ I}.

4. Complement S.

Now S contains the set of unsatisfiable cores of A;-;9;.

(We obtain all unsatisfiable cores.)

20
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Extracting Unsatisfiable Cores with SAT-based Solvers |

Let B be a Bluchi automaton for A;c;(A; — 0;).

1. Let k< O.
Encode feasibility of loop-free path of length & in B.

Check satisfiability assuming {A; | i € I} is true at time 0.

>~ W P

If unsat, obtain conflict in terms of assumptions {A; | j € J C I}
at time 0.

5. Otherwise, increase k and repeat.

Now {¢;| j € J} contains an unsatisfiable core of A;;9;.

(We obtain one unsatisfiable core.)

21
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Experiments
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Benchmarks on PSL satisfiability

(Used in [Cimatti, Roveri, Semprini, Tonetta (FMCAD’06);
Cimatti, Roveri, Tonetta (TACAS'07)])

1. Fill typical patterns extracted from industrial specifications [Ben-David,
Orni (2005)] with random regular expressions.

2. Generate benchmarks by aggregating patterns from step 1 into the fol-
lowing shapes:

— large conjunction,
— (large conjunction) implies (large conjunction),
— (large conjunction) iff (large conjunction),

— random Boolean combination.

We'd love to have challenging realistic benchmarks from industry.




Experiments 24

Implementation
— Basis: NuSMV
— Translation from PSL to automata: [Cimatti, Roveri, Tonetta (TACAS'07)]

— BDD-based solver: backward Emerson-Lei, dynamic reordering
baseline for BDD-based approaches

— SAT-based solver: incremental and complete SBMC with MiniSat
[Heljanko, Junttila, Latvala (CAV’05)]
baseline for SAT-based approaches

Resources

— Time out: 120 seconds
— Memory out: 768 MB

Download
http://sra.itc.it/people/roveri/cav07-bapsl/


http://sra.itc.it/people/roveri/cav07-bapsl/
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Results

Boolean abstraction vs. not
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Results
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Pure literal simplification vs. not (without Boolean abstraction)
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Results
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Pure literal rule vs. not (with Boolean abstraction)
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Results

run time

search space
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Unsat core extraction vs. not
SAT BDD
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The End

Introduce Boolean abstraction for PSL.
= Very helpful with BDD-based, unclear with SAT-based solvers.
= SAT- and BDD-based approaches complementary.

Extend pure literal simplification to PSL.
=- Very helpful, more so when applied to prime implicants.

Extract unsatisfiable cores from solvers.
=- Reduces search space, though at the cost of run time.

Much room for improvement:
— Optimize extraction of unsatisfiable cores.
— Reuse partial results between prime implicants.

— Improve prioritization of prime implicants.

— ... (and some more) ... Than kS'
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Pure Literal Simplification — PSL

1. p(—p) is a positive (negative) occurrence of p.

2. A positive occurrence of p in ¢,r is a positive (negative) occurrence of

pin
X0
OVy yVo
dAY YAO
oUWy yUO
¢ Ry YR
rOo— Y § O— 0
rew s 0

(and analogously for a negative occurrence of p).

p is pure positive (negative) in ¢ iff all occurrences of p in ¢
are positive (negative).

oooooooooooooo
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Complete Simple Bounded Model Checking 32
[Heljanko, Junttila, Latvala (CAV’05)]

—h

k < O;
while true do

check for contradiction at length k;
If contradiction then return no fair path exists fi

check for non-redundant path of length k;
If no non-redundant path then return no fair path exists fi

check for fair lasso-shaped path of length k;
if fair lasso-shaped path then return fair path exists fi

© oo N OO0 AW N

K++;

10 od

Note: all constraints added in lines 3, 5 for k are present at lines 3, 5, 7 for K’ > k.



Extracting Unsatisfiable Cores with SAT-based Solvers |
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Extracting Unsatisfiable Cores with SAT-based Solvers |
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(We obtain one unsatisfiable core.)

© 2007 V. Schuppan
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Pure literal simplification at top + prime implicant levels vs.
only at top
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Results

SAT vs. BDD

without Boolean abstraction
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