Boolean Abstraction for
Temporal Logic Satisfiability

A. Cimatti', M. Roveri', V. Schuppan’, S. Tonetta?

1FBK-irst, Trento, ltaly
2Universi’[y of Lugano, Faculty of Informatics, Lugano, Switzerland

CAV’'07, July 3—7, 2007, Berlin, Germany

Motivation

= Property-based system design (PROSYD):
work at the level of requirements.

= In model checking, focus is on dealing with
complexity in the model.

= Satisfiability of large temporal formulas can be hard.
(e.g., [Rozier, Vardi (SPIN’'07)])

Contents

1. Boolean Abstraction

2. Pure Literal Simplification

3. Extracting Unsatisfiable Cores

4. Experiments

Boolean Abstraction 4
(well-known in SMT community)

temporal formula

i Boolean
0’0 - combination

temporal
formula

© 2007 V. Schuppan

Boolean Abstraction

(well-known in SMT community)

temporal formula

Boolean formula

abstract

-

A

Boolean
combination

temporal
formula

fresh
proposition

M0
0 0 =

Ay Ay, Ag Ay

© 2007 V. Schuppan

Boolean Abstraction

(well-known in SMT community)

temporal formula

Boolean formula

abstract

-

A

Boolean
combination

temporal
formula

fresh
proposition

7Y o
0 0 =

Ay Ay, Ag Ay

unsatisfiable

yes

© 2007 V. Schuppan

Boolean Abstraction 7

(well-known in SMT community)

temporal formula

As

abstract
‘I‘ Boolean
i . .
00 - combination
temporal
formula
fresh

proposition

unsatisfiable

Boolean formula yes Boolean
i prime implicant
0" DD«:»
R U B AA AA-A
9 =
A Ay As Ay false’ extract ! 3 4

prime implicant

© 2007 V. Schuppan

Boolean Abstraction 8

(well-known in SMT community)

temporal formula

abstract
‘I‘ Boolean
i . .
00 - combination
temporal
formula
fresh

proposition

unsatisfiable

Boolean formula yes Boolean
i prime implicant
0" DD«:»
R U B AA AA-A
f) i |
A Ay Az Ay false’ extract ! 3 4

prime implicant

concretize
temporal

prime implicant

© 2007 V. Schuppan

Boolean Abstraction 9

(well-known in SMT community)

temporal formula

abstract
‘I‘ Boolean
- O . .
0’0 - combination
temporal
formula
fresh

proposition

unsatisfiable

Boolean formula yes Boolean
i prime implicant
0" DD«:»
R U B AA AA-A
9 =
A Ay Az Ay false’ extract ! 3 4

prime implicant

concretize
check satisfiability
temporal

prime implicant

© 2007 V. Schuppan

Boolean Abstraction

10

(well-known in SMT community)

temporal formula

abstract
‘I‘ Boolean
- O . .
0’0 - combination
temporal
formula
A fresh
2 ..
proposition

Boolean formula

M0
0 0 =

Ay Ay, Ag Ay

yes

satisfiable

unsatisfiable

yes Boolean
prime implicant
= no
false? AN AzN\-A,

extract
prime implicant

concretize
check satisfiability
temporal

prime implicant

© 2007 V. Schuppan

Boolean Abstraction 11

(well-known in SMT community)

temporal formula

abstract
- O . .
0’0 - combination
temporal
formula
A fresh
2 o
proposition

unsatisfiable

Boolean formula yes Boolean
i prime implicant
0" DD«:»
R U B AA AA-A
9 =
A Ay As Ay false’ extract ! 3 4

prime implicant

A

remove concretize
prime implicant
no V
SAT? /\ /\
check satisfiability
yes temporal

prime implicant

satisfiable

© 2007 V. Schuppan

Contents

1. Boolean Abstraction

2. Pure Literal Simplification

3. Extracting Unsatisfiable Cores

4. Experiments

12

Pure Literal Simplification — Propositional Logic

[Davis, Putnam (1960); Dunham, Fridshal, Sward (1959)]

Assume a propositional formula ¢ in CNF:

(haV Nl g V)N AL Ve Ny, V) A (0%)
G -~ 4 v
d1 : p occurs only positively no occurrence of p

Then: ¢ is satisfiable iff p A ¢ is satisfiable.

(And similarly if p occurs only negatively in ¢y.)

13

Pure Literal Simplification — PSL

14

Extend notion of pure literal to PSL (see paper).

Let ¢ be a PSL formula such that p is pure positive in ¢.
Then: ¢ is satisfiable iff (Gp) A ¢ is satisfiable.

(And similarly if p is pure negative in ¢.)

(Modal logic K: [Pan, Sattler, Vardi (J. Applied Non-Classical Logics 2006)])

Boolean Abstraction and Pure Literal Simplification

no

(Pure literal)
Simplification
——

unsatisfiable

abstract Ap Ay Aj

remove
prime implicant

AN

prime implicant

concretize

satisfiable

check satisfiability

An

Y

VAN

15

Contents

1. Boolean Abstraction

2. Pure Literal Simplification

3. Extracting Unsatisfiable Cores

4. Experiments

16

Unsatisfiable Cores

Assume
o = (Gp) N (F-p) A ((Xp)V (XXp))

Prime implicants:

They share unsatisfiable part = no need to check both!

Given {0; | i € I} with A;c;9; unsatisfiable,

any {¢; | jeJ C1}with A c;¢; unsatisfiable is an unsatisfiable core.

17

Boolean Abstraction and Unsat Core Extraction

unsatisfiable

yes

»

, AN AA
abstract Ap Ay Aj false’ extract . ?

A prime implicant

0 concretize
pri p

no

Extract/remove
unsat core(s) SAT? /\ A-

check satisfiability

yes

satisfiable

18

Activation Variables

19

Propositional case: [Lynce, Marques-Silva (SAT’'04)]

1. Assume prime implicant A;c; 0;.
2. Introduce one fresh, Boolean activation variable A; per ¢;.

3. Build Buchi automaton B for

A4 — ¢))

icl
Let J C I. B has fair path from some initial state with {A; | j € J} true

iff
A jes 0] is satisfiable.

Independent of how Blchi automaton is constructed!

Extracting Unsatisfiable Cores with BDD-based Solvers |

Let B be a Buchi automaton for A;c;(A; — 0;).

1. Let S be the set of states in B that are the start of a fair path
(e.g., Emerson-Lei).

2. Restrict S to initial states in B.
3. Project Sonto {A; | i€ I}.

4. Complement S.

Now S contains the set of unsatisfiable cores of A;-;9;.

(We obtain all unsatisfiable cores.)

20

oooooooooooooo

Extracting Unsatisfiable Cores with SAT-based Solvers |

Let B be a Bluchi automaton for A;c;(A; — 0;).

1. Let k< O.
Encode feasibility of loop-free path of length & in B.

Check satisfiability assuming {A; | i € I} is true at time 0.

>~ W P

If unsat, obtain conflict in terms of assumptions {A; | j € J C I}
at time 0.

5. Otherwise, increase k and repeat.

Now {¢;| j € J} contains an unsatisfiable core of A;;9;.

(We obtain one unsatisfiable core.)

21

oooooooooooooo

Contents

1. Boolean Abstraction

2. Pure Literal Simplification

3. Extracting Unsatisfiable Cores

4. Experiments

22

Experiments

23

Benchmarks on PSL satisfiability

(Used in [Cimatti, Roveri, Semprini, Tonetta (FMCAD’06);
Cimatti, Roveri, Tonetta (TACAS'07)])

1. Fill typical patterns extracted from industrial specifications [Ben-David,
Orni (2005)] with random regular expressions.

2. Generate benchmarks by aggregating patterns from step 1 into the fol-
lowing shapes:

— large conjunction,
— (large conjunction) implies (large conjunction),
— (large conjunction) iff (large conjunction),

— random Boolean combination.

We'd love to have challenging realistic benchmarks from industry.

Experiments 24

Implementation
— Basis: NuSMV
— Translation from PSL to automata: [Cimatti, Roveri, Tonetta (TACAS'07)]

— BDD-based solver: backward Emerson-Lei, dynamic reordering
baseline for BDD-based approaches

— SAT-based solver: incremental and complete SBMC with MiniSat
[Heljanko, Junttila, Latvala (CAV’05)]
baseline for SAT-based approaches

Resources

— Time out: 120 seconds
— Memory out: 768 MB

Download
http://sra.itc.it/people/roveri/cav07-bapsl/

http://sra.itc.it/people/roveri/cav07-bapsl/

25

Results

Boolean abstraction vs. not

BDD

SAT

[spuooas] auleseq

[spuooss] auljeseqg

100 to

10
Boolean abstraction [seconds]

0.1

100 to

10

Boolean abstraction [seconds]

0.1

® unsat

sat

© 2007 V. Schuppan

Results

26

Pure literal simplification vs. not (without Boolean abstraction)

to
100
O
o)
L,
)
=
o)
()]
S
M o1
0

SAT

—_
o
T

—_
T

0.1 1 10 100 to
Baseline, pure lit. [sec]

—_
o
T

—_
T

to
100
)
()
D,
()
£
D
7))
(4]
M0 g1
0
® unsat

e Sat

BDD

Baseline, pure lit. [sec]

. . R . r
§: .' o 0% o° . ,:"/
| ,.) L .o toe ..‘
E:;' P e - ~f
L
. ': :.o ‘,v q. .V .
i: ooy
1 '.i..’. / °
e H '\ XS
[[t
o “!é"
3 §lst
® se0
e
0.1 1 10 100 to

oooooooooooooo

Results

27

Pure literal rule vs. not (with Boolean abstraction)

SAT

to
— 100
(&)
(D)
(72]
— 10}
0
QO
(4] 1t
o)
@]
o 0.1
0 I I I I
0 0.1 1 10 100 to

Bool. abs., pure lit. [sec]

BDD

to . - -
—_ 100 sl . '... . .]
O : N .: -..'.'. :
o N et
—_— i :‘...' VT »’
10 !:..Eaizz:-‘..}-’. ..
y AR
§ | HinEess
— :'x:'.ﬁ' of
o ."%0
o, b
8 or | ||l
H
HE-
.
0 ! ! ! !
0 0.1 1 10 100 to

Bool. abs., pure lit. [sec]

unsat
sat

Results

run time

search space

28
Unsat core extraction vs. not
SAT BDD

to to
—_, 100 —_, 100
O O
() ()
(7] [77]
= 10| = 10|
»)
o) O
(4] 1t (4] 1t
5 5
o o
m 01 @ 0.1

oL’ : : : : ol : : : :

0 0.1 1 10 100 to 0 0.1 1 10 100 to
Bool. abs., core extr. [sec] Bool. abs., core extr. [sec]
— 1000 — 1000
Q. o
E E
() (0]
E 100} £ 100}
S . ol
had T 3t
g o i g o0y
© D < ¢
5 : 5 T
o o
o 1 . . m 1 . .
1 10 100 1000 1 10 100 1000

Bool. abs., core extr. [# prime impl.]

Bool. abs., core extr. [# prime impl.]

© 2007 V. Schuppan

The End

Introduce Boolean abstraction for PSL.
= Very helpful with BDD-based, unclear with SAT-based solvers.
= SAT- and BDD-based approaches complementary.

Extend pure literal simplification to PSL.
=- Very helpful, more so when applied to prime implicants.

Extract unsatisfiable cores from solvers.
=- Reduces search space, though at the cost of run time.

Much room for improvement:
— Optimize extraction of unsatisfiable cores.
— Reuse partial results between prime implicants.

— Improve prioritization of prime implicants.

— ... (and some more) ... Than kS'

29

Backup-Slides

Pure Literal Simplification — PSL

1. p(—p) is a positive (negative) occurrence of p.

2. A positive occurrence of p in ¢,r is a positive (negative) occurrence of

pin
X0
OVy yVo
dAY YAO
oUWy yUO
¢ Ry YR
rOo— Y § O— 0
rew s 0

(and analogously for a negative occurrence of p).

p is pure positive (negative) in ¢ iff all occurrences of p in ¢
are positive (negative).

oooooooooooooo

31

Complete Simple Bounded Model Checking 32
[Heljanko, Junttila, Latvala (CAV’05)]

—h

k < O;
while true do

check for contradiction at length k;
If contradiction then return no fair path exists fi

check for non-redundant path of length k;
If no non-redundant path then return no fair path exists fi

check for fair lasso-shaped path of length k;
if fair lasso-shaped path then return fair path exists fi

© oo N OO0 AW N

K++;

10 od

Note: all constraints added in lines 3, 5 for k are present at lines 3, 5, 7 for K’ > k.

Extracting Unsatisfiable Cores with SAT-based Solvers |

assumed
l -
,/ literals

SAT solver

" "UNSAT" +
' conflict

N

I|SATII +
assighment '

1

oooooooooooooo

33

Extracting Unsatisfiable Cores with SAT-based Solvers |

{A}

at time step O

LIai - o
I

no contradiction

up to time step k

l

l

assumed
l -
/. literals

4
I
4
l
1
1

S

, SAT solver

\
\
\
\

N "UNSAT" +
. conflict

"SAT" +
assignment '

1

-

-
-
R e i

-
-

'

{Aj } at time step O

such that I:ICPJ- is unsat
J

34

(We obtain one unsatisfiable core.)

© 2007 V. Schuppan

Results

35

Pure literal simplification at top + prime implicant levels vs.
only at top

to to - L—e% o wom --
100 100 , W e
c 10} ; c 10} " S
(@] (@) ° ¢°
o &) o
Q >
21 A2
o o
(@] (@]
01 ~ 01
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 0.1 1 10 100 to 0 0.1 1 10 100 to
top + prime implicant [seconds] top + prime implicant [seconds]

® unsat
e Sat

Results

SAT vs. BDD

without Boolean abstraction

g to e g to
8 100 1 I ° o A » 100 +
e % LY 3 e
S 3 —
5 | z
— 10 | . - =
= $ o
= i a3
o <
a o0
~ 0.1 ~ 0.1
))
=) =)
m o ‘ : : : m o
0 0.1 1 10 100 to
SAT (pure lit.) [seconds]
® unsat

sat

10

with Boolean abstraction

0 0‘.1 1 1‘0 160
SAT (BA, pure lit.) [seconds]

to

© 2007 V. Schuppan

36

