
Liveness Checking as Safety Checking

FMICS, July 12 – 13, Malaga, Spain

Armin Biere, Cyrille Artho, Viktor Schuppan

http://www.inf.ethz.ch/˜schuppan/

http://www.inf.ethz.ch/~{}schuppan/

Safety vs. Liveness 1

Safety

Something bad will not
happen

Liveness

Something good will
eventually happen

Safety vs. Liveness 2

Safety Liveness

Characterization partial correctness termination

Operations post, ∪, ⊆, ∩ bad pre, ∩, ⊆, \ good

Tool support almost all less common

Safety vs. Liveness: Finite State Systems 3

1 2

3

+ 7→ 1’

3’

2’
⊥

1 2

3 +

If the number of states is finite

1. a system with a liveness property can be transformed to a

system with an equivalent safety property

2. the transformed system can be model-checked efficiently

Outline 4

Introduction

Counter-Based Translation

State-Recording Translation

Experimental Results

Lasso-Shaped Counterexamples 5

¬p ¬p ¬p ¬p ¬p ¬p ¬p ¬p

s0 sk s l’ sk’s l’’ls

Lasso-shaped counterexample for AF p

Always exists in a finite state system

Example 6

k−k −k+1 −2 −1 0 1 2 k−1

......

Is AF k true?

Counter-Based Translation 7

−2 −1 0 1 2−k+1−k k−1 k

... ...

Given Finite state system with n states, liveness property AF k

Find Initialized path where k is false for the first n+1 states

Counter-Based Translation 8

max. no. of
states reached

is live
true?

state

live

0

0

0

0 0

1

0

2 k

0

0

1

1

1 1

k−1 k

1

count 1

0
2

0 1

k

0

k+1

0

k+2 2k

0

2k+1

1

(found)

Requires n forward iterations
⇒ impractical for realistic systems

State-Recording Translation 9

...

−2 −1 0 1 2−k −k+1 k−1 k

...

Find Initialized path where k is false until a state is visited for

the second time

But. . . State space search is memory-less

Guess start of loop, save guess in copy of state variables

State-Recording Translation 10

save
state

oracle

state
saved

0

0 0

−1 −2
−4

−3

−2
−10

0 0 0 0

0

0
0

0

0

0
0

0

0

0

state

live

save

_state
0

⊥

0

⊥

1

⊥

0

−2

0

0
−2

0

−2

0

0

−2
0

−2

0

−2

−k
(found)

is live
true?

loop
detected

State-Recording Translation 11

VAR
state: -k..k;

DEFINE
found := state = k;

ASSIGN
init(state) := 0;
next(state) :=
case

state = 0: {-1,1};
state < 0 &

state > -k: state-1;
state > 0 &

state < k: state+1;
state = -k |

state = k: 0;
esac;

SPEC
AF found

State-Recording Translation 12

VAR
state: -k..k; _state: -k..k;

save, saved: boolean;

DEFINE
found := state = k;

ASSIGN
init(state) := 0;
next(state) :=
case

state = 0: {-1,1};
state < 0 &

state > -k: state-1;
state > 0 &

state < k: state+1;
state = -k |

state = k: 0;
esac;

next(_state) := case
!saved & save: state;
1: _state;

esac;

-- save is an oracle

init(saved) := 0;
next(saved) := saved | save;

SPEC
AF found

State-Recording Translation 13

VAR
state: -k..k; _state: -k..k;

live, save, saved: boolean;

DEFINE
found := state = k;

ASSIGN
init(state) := 0;
next(state) :=
case

state = 0: {-1,1};
state < 0 &

state > -k: state-1;
state > 0 &

state < k: state+1;
state = -k |

state = k: 0;
esac;

next(_state) := case
!saved & save: state;
1: _state;

esac;

init(live) := 0;
next(live) := live | found;

-- save is an oracle

init(saved) := 0;
next(saved) := saved | save;

SPEC
AF found

State-Recording Translation 14

VAR
state: -k..k; _state: -k..k;

live, save, saved: boolean;

DEFINE
found := state = k; loop := saved & state = _state;

ASSIGN
init(state) := 0;
next(state) :=
case

state = 0: {-1,1};
state < 0 &

state > -k: state-1;
state > 0 &

state < k: state+1;
state = -k |

state = k: 0;
esac;

next(_state) := case
!saved & save: state;
1: _state;

esac;

init(live) := 0;
next(live) := live | found;

-- save is an oracle

init(saved) := 0;
next(saved) := saved | save;

SPEC
AF found AG (loop -> live)

Complexity 15

Algorithm Parameter Size

Explicit no. of states |Sp|= 2|S|(|S|+1) = O(|S|2)

On-the-fly no. of reachable states |Rp| ≤ 2|R|(|R|+1) = O(|R|2)

Symbolic BDD size linear in the product of
– size of original BDDs
– no. of state bits
– size of BDD for states in which p holds

diameter dp≤ 4d+3

radius rp≤ r +3d+3

Adding Fairness 16

. . . is straightforward:

– add one state bit per fairness constraint fi

– remember if fi was true on the loop, define fair :=
∧
i

fi

– replace AG loop⇒ live with AG (loop ∧ fair) ⇒ live

Extension to full LTL 17

Arbitrary LTL formulae f can be verified

– using a tableau construction for f and

– checking ¬ (s¬ f ∧ EG True) under fairness constraints

Special translation rules can be derived

– e. g. A p1 U p2 ≡ A (p1 W p2 ∧ F p2)

Experimental Results - Skipping Counter 18

k−k −k+1 −2 −1 0 1 2 k−1

......

Is AF k true?

Experimental Results - Skipping Counter 19

check true check false
k live count safe live count safe
4 2 5 10 0 5 0 2 4 9 0 2 0
8 2 9 18 0 5 0 2 8 17 0 2 0

12 2 13 26 0 5 0 2 12 25 0 2 0
16 2 17 34 0 5 0 2 16 33 0 2 0

State-recording translation requires fewer iterations

Experimental Results - IEEE 1394 FireWire 20

IEEE 1394 (FireWire)

– serial high speed bus

– n nodes with p ports each form a tree

Tree Identify Protocol

– elect node as unique leader during initialization

– liveness property: AF (node[0].root | . . . | node[n−1].root)

– contention may arise⇒ resolve with two fair coin throws

– modeled and verified with Cadence SMV

Experimental Results - IEEE 1394 FireWire 21

check true check false
live safe live safe

n p sec MNod sec MNod sec MNod sec MNod
2 2 0.9 0.07 4.2 0.40 1.1 0.10 2.6 0.28
2 3 1.9 0.20 11.1 0.78 2.7 0.22 6.8 0.60
2 4 4.7 0.44 28.2 1.30 5.5 0.40 16.0 0.94
3 2 11.3 0.70 39.5 1.95 7.6 0.72 12.1 0.77
3 3 76.1 3.78 283.1 9.58 53.6 3.68 86.8 4.22
3 4 450.7 29.22 1567.7 31.76 259.5 19.59 554.4 14.36
4 2 357.3 14.00 1376.2 35.55 204.8 12.50 644.2 24.86

1.59 <
tsafe
tlive

< 6

0.73 <
memsafe
memlive

< 6

Verification of safe model is possible

Conclusion 22

Contribution

– Transform liveness properties to equivalent safety properties

Benefits

– Use commercial/proprietary tools for safety to verify liveness

– Lift some theoretical results for safety to liveness

– Find counterexample traces of minimal length

Future work

– Reduce number of state bits needed

– Apply method to ATPG or STE

Backup-Slides 23

Keep out!

Backup slides

Safety – Symbolic Computation 24

µX.(X U post(X))(init)

bad

init

init U post(init)

init U post(init) U post²(init)

...

post, ∪, ⊆, ∩ bad

Liveness – Symbolic Computation 25

U U

U

X.(X pre(X))(not good)ν

U

pre(not good) not good

pre²(not good) pre(not good)
not good

...
init

not good

pre, ∩, ⊆, \ good

Counter-Based Translation 26

VAR
state: -k..k;

DEFINE
found := state = k;

ASSIGN
init(state) := 0;
next(state) :=
case

state = 0: {-1,1};
state < 0 &

state > -k: state-1;
state > 0 &

state < k: state+1;
state = -k |

state = k: 0;
esac;

SPEC
AF found

Counter-Based Translation 27

VAR
state: -k..k; count: 0..2*k+1;

DEFINE
found := state = k;

ASSIGN
init(state) := 0;
next(state) :=
case

state = 0: {-1,1};
state < 0 &

state > -k: state-1;
state > 0 &

state < k: state+1;
state = -k |

state = k: 0;
esac;

init(count) := 0;
next(count) := case

count < 2*k+1: count+1;
count = 2*k+1: count;

esac;

SPEC
AF found

Counter-Based Translation 28

VAR
state: -k..k; count: 0..2*k+1;

live: boolean;

DEFINE
found := state = k;

ASSIGN
init(state) := 0;
next(state) :=
case

state = 0: {-1,1};
state < 0 &

state > -k: state-1;
state > 0 &

state < k: state+1;
state = -k |

state = k: 0;
esac;

init(count) := 0;
next(count) := case

count < 2*k+1: count+1;
count = 2*k+1: count;

esac;

init(live) := 0;
next(live) := live | found;

SPEC
AF found

Counter-Based Translation 29

VAR
state: -k..k; count: 0..2*k+1;

live: boolean;

DEFINE
found := state = k; stop := count = 2*k+1;

ASSIGN
init(state) := 0;
next(state) :=
case

state = 0: {-1,1};
state < 0 &

state > -k: state-1;
state > 0 &

state < k: state+1;
state = -k |

state = k: 0;
esac;

init(count) := 0;
next(count) := case

count < 2*k+1: count+1;
count = 2*k+1: count;

esac;

init(live) := 0;
next(live) := live | found;

SPEC
AF found AG (stop -> live)

Experimental Results - IEEE 1394 FireWire 30

check true check false
n p live safe live safe
2 2 19 55 24 0 19 15 13 0
2 3 19 55 24 0 19 16 13 0
2 4 19 59 24 0 19 17 13 0
3 2 21 55 23 0 21 15 11 0
3 3 21 56 23 0 21 16 11 0
3 4 21 56 23 0 21 16 11 0
4 2 31 98 36 0 31 21 19 0

