Liveness Checking as Safety Checking
FMICS, July 12 — 13, Malaga, Spain

Armin Biere, Cyrille Artho, Viktor Schuppan
http://www.Inf.ethz.ch/ schuppan/

http://www.inf.ethz.ch/~{}schuppan/

Safety vs. Liveness

Safety Liveness

Something bad will not Something good will
happen eventually happen

Safety vs. Liveness

Characterization
Operations

Tool support

Safety Liveness

partial correctness termination

post U, C, N bad pre N, C, \ good
almost all less common

Safety vs. Liveness: Finite State Systems

g/”ﬂgLD- — @\g@ B«
i OO

If the number of states is finite

1. a system with a liveness property can be transformed to a

system with an equivalent safety property

2. the transformed system can be model-checked efficiently

Outline

Introduction

Counter-Based Translation

State-Recording Translation

Experimental Results

Lasso-Shaped Counterexamples

So S|>p_’ :Sk SI’C SI”h Sk’
—p —p —p —p —p —p —p —p

Lasso-shaped counterexample for AF p

Always exists In a finite state system

Example

Is AF k true?

Counter-Based Translation

Given Finite state system with n states, liveness property AF k

Find Initialized path where k is false for the first n+ 1 states

Counter-Based Translation

state
(found)

count

live

0 (1] 2
0 0 0
\]
0 1 2
_ 0 0 _ 0
0 1 k-1
0 0
]
K+1 K+2 2k
1 1 1

max. no. of
states reached

is live

Requires n forward iterations
= Impractical for realistic systems

true?

State-Recording Translation

Find Initialized path where k is false until a state is visited for

the second time

But... State space search is memory-less

Guess start of loop, save guess in copy of state variables

State-Recording Translation

state
(found)

saved
state

~ _state

L Save

&

live

co o5 9

CEXIE

[OHDOI{,

save
State

loop
detected

@2 (b)=

is live
true?

10

State-Recording Translation

VAR
state: -k..k;

11

DEFINE
found := state = k;

ASSIGN
init(state) := O;
next(state) :=
case

State =
state <
state
state >
state
state =
state
esac;

520.«
.!A
|_\
—

-k: state-1;

state+1;

||x/\ovc>o
N— xR

o

SPEC
AF found

State-Recording Translation

12

VAR
state: -k..k; _state: -k..k;
save, saved: boolean;
DEFINE

found := state = k;

ASSIGN
init(state) = 0; next(_state) := case
next(state) .= Isaved & save: state;
case 1. state;
state = 0: {-1,1}; esac;
state < 0 &
state > -k: state-1;
state > 0 &
state < k: state+1;
state = -k | -- save is an oracle
state = k: O;
esac; init(saved) = O;
next(saved) := saved | save;
SPEC

AF found

State-Recording Translation

13

VAR
state: -k..k; _state: -k..k;
live, save, saved: boolean;
DEFINE

found := state = k;

ASSIGN
init(state) = 0; next(_state) := case
next(state) := Isaved & save: state;
case 1. state;
state = 0: {-1,1}; esac;
state < 0 &
state > -k: state-1; init(live) := 0;
state > 0 & next(live) := live | found;
state < k: state+1;
state = -k | -- save is an oracle
state = k: O;
esac; init(saved) = O;
next(saved) := saved | save;
SPEC

AF found

State-Recording Translation

14

VAR
state: -k..k; _state: -k..k;
live, save, saved: boolean;
DEFINE

found := state = k;

loop = saved & state =

_state;

ASSIGN
init(state) = 0; next(_state) := case
next(state) := Isaved & save: state;
case 1. state;
state = 0: {-1,1}; esac;
state < 0 &
state > -k: state-1; init(live) = 0;
state > 0 & next(live) := live | found;
state < k: state+1;
state = -k | -- save is an oracle
state = k: O;
esac; init(saved) = O;
next(saved) := saved | save;
SPEC
AF found AG (loop -> live)

Complexity

15

Algorithm Parameter Size

Explicit no. of states Sl = 2/S/(|S/+ 1) = O(|S?)
On-the-fly no. of reachable states |Rp| <2|R|(|R|+1) = O(|R/?)
Symbolic BDD size linear in the product of

diameter

radius

— size of original BDDs
— no. of state bits
— size of BDD for states in which p holds

dp < 4d+3
rp<r-+3d+3

Adding Fairness

... Is straightforward:
— add one state bit per fairness constraint fj

— remember Iif fj was true on the loop, define fair := A f;
I

— replace AG loop=-live with AG (loop A fair) = live

16

Extension to full LTL

Arbitrary LTL formulae f can be verified

— using a tableau construction for f and

— checking = (s, A EG True) under fairness constraints

Special translation rules can be derived

—e.g. AptUp, = A(ptWp2 A Fpp)

17

Experimental Results - Skipping Counter

18

Is AF k true?

Experimental Results - Skipping Counter

check true check false
k|| live | count | safe live | count | safe
4,2 5110 0/5 0|2 4, 9 0|2 O
8|12 9|18 0|5 0|2 8|17 012 O
1212 13|26 0|5 0|2 12|25 0|2 O
16 (2 17|34 0|5 0|2 16(33 0|2 O

State-recording translation requires fewer iterations

Experimental Results - IEEE 1394 FireWire

IEEE 1394 (FireWire)
— serial high speed bus

— n nodes with p ports each form a tree

Tree Identify Protocol
— elect node as unique leader during initialization
— liveness property: AF (node€O0].root | ... | noden— 1].root)
— contention may arise = resolve with two fair coin throws

— modeled and verified with Cadence SMV

20

Experimental Results - IEEE 1394 FireWire

21

Verification of safe model is possible

check true check false
live safe live safe

n p sec MNod sec MNod sec MNod sec MNod
2 2 0.9 0.07 4.2 0.40 1.1 0.10 26 0.28
2 3 1.9 0.20 11.1 0.78 2.7 0.22 6.8 0.60
2 4 4.7 0.44 28.2 1.30 55 040, 16.0 0.94
3 2| 11.3 0.70 39.5 1.95 7.6 072 12.1 0.77
3 3| 76,1 3.78| 2831 958 | 536 3.68| 86.8 4.22
3 4| 450.7 29.22 | 1567.7 31.76 || 259.5 19.59 | 5544 14.36
4 2| 357.3 14.00 | 1376.2 3555 | 204.8 12.50 | 644.2 24.86

159 < ttls—afe < 6

ive
MEeM5fe
0.73 < MeMye 6

Conclusion

Contribution

— Transform liveness properties to equivalent safety properties

Benefits
— Use commercial/proprietary tools for safety to verify liveness
— Lift some theoretical results for safety to liveness

— Find counterexample traces of minimal length

Future work
— Reduce number of state bits needed

— Apply method to ATPG or STE

22

Backup-Slides

Safety — Symbolic Computation

uX.(X U post(X))(init)

init U post(init) U post?(init)

init U post(init)

>

>

post U, C, N bad

24

Liveness — Symbolic Computation

v X.(XN pre(X))(not good)

pre2(not good) N pre(not good) N
not good

pre(not good) N not good

not good

pre, N, C, \ good

25

Counter-Based Translation

VAR
state: -k..k;

26

DEFINE
found := state = k;

ASSIGN
init(state) := O;
next(state) .=
case

state =
state <
state
state >
state
state =
state
esac;

- R
1;
[EEY
-

-k: state-1;

state+1;

||x/\ovoo
N— xR

o

SPEC
AF found

Counter-Based Translation

VAR
state: -k..k;

count: 0..2*k+1;

27

DEFINE
found := state = k;

ASSIGN
init(state) = 0; init(count) := O;
next(state) := next(count) := case
case count < 2*k+1: count+1;
state = 0: {-1,1}; count = 2*k+1: count;
state < 0 & esac;
state > -k: state-1;
state > 0 &
state < k: state+1;
state = -k |
state = k: O;
esac;
SPEC

AF found

Counter-Based Translation

28

VAR
state: -k..k; count: 0..2*k+1;
live: boolean;
DEFINE

found := state = k;

ASSIGN
init(state) = 0; init(count) = O0;
next(state) := next(count) := case
case count < 2*k+1:. count+1;
state = 0: {-1,1}; count = 2*k+1: count;
state < 0 & esac;
state > -k: state-1;
state > 0 & init(live) = 0;
state < k: state+1; next(live) := live | found;
state = -k |
state = k: O;
esac;
SPEC

AF found

Counter-Based Translation

29

VAR
state: -k..k; count: 0..2*k+1;
live: boolean;
DEFINE

found := state = k;

stop := count = 2*k+1;

ASSIGN
init(state) = 0; init(count) = O;
next(state) := next(count) := case
case count < 2*k+1:. count+1;
state = 0: {-1,1}; count = 2*k+1: count;
state < 0 & esac;
state > -k: state-1;
state > 0 & init(live) = 0;
state < k: state+1; next(live) := live | found;
state = -k |
state = k: O;
esac;
SPEC
AF found AG (stop -> live)

Experimental Results - IEEE 1394 FireWire

30

check true check false

n p live safe live safe

2 2119 55|24 019 15/13 O
2 31(19 55|24 0|19 1613 O
2 4119 59|24 0|19 17,13 O
3 2|21 55|23 021 15|11 O
3 3|21 56|23 021 16|11 O
3 4|21 56|23 021 16|11 O
4 2131 98 (36 0|31 21|19 O

