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Unsatisfiable Cores 2

Informal definition:

– An unsatisfiable core is an unsatisfiable formula φ′ that is derived from
another unsatisfiable formula φ.

– φ′ focuses on a reason for φ being unsatisfiable.

Use in debugging (often in a declarative setting):

Unsatisfiable cores help a user understand why a formula is unsatisfiable.
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Unsatisfiable Cores in Debugging 3

(selection only)

[CRST08b] conjunction of LTL formulas extended with first order theories.
Example: EURAILCHECK project

– Validation of requirements for railway signalling and control.

– Feasibility study: textual requirements of 100+ pages.

– Unsatisfiable core of a conjunction of 80+ formulas was determined.

[CD91] linear programming

[BDTW93] constraint programming (example: Dutch major league soccer)

[BS01,ZM03b] SAT (examples: planning, FPGA routing)

[SSJ+03,TCJ08] first order relational logic (example: Alloy, based on SAT)

[SC03,WHR+05] description logics, ontologies
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Motivation and Approach 4

Previous work for LTL doesn’t proceed into temporal formulas.

The resulting cores are conjunctions of toplevel temporal formulas.

E.g., in (G(p ∧ ψ))∧ (F(¬p ∧ ψ′)), the whole formula would be reported
unsatisfiable irrespective of the relevance and complexity of ψ, ψ′.

Goal: Find improved notions of cores for LTL.

Approach: Investigate methods to extract cores for LTL.

(No implementation in this talk.)
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LTL 6

LTL formulas are evaluated on infinite sequences of sets of atomic propo-
sitions, i.e., π ∈ (2AP)ω. Constants and Boolean operators as expected.

π, i |= p ⇔ p ∈ π[i]
i−1 i i+1 i+2 j−1 j j+1

{   ,...}p

π, i |= Xψ ⇔ π, i+ 1 |= ψ
i−1 i i+1 i+2 j−1 j j+1

ψ

π, i |= Fψ ⇔ ∃j ≥ i . π, j |= ψ
i+2i+1ii−1 j−1 j j+1

ψ

π, i |= Gψ ⇔ ∀i′ ≥ i . π, i′ |= ψ
i+2i+1ii−1 j−1 j j+1

ψψ ψψψψ

π, i |= ψUψ′ ⇔ ∃j ≥ i .
π, j |= ψ′ ∧
∀i ≤ i′′ < j . π, i′′ |= ψ

i+2i+1 j−1 jii−1 j+1

ψ’ψψψψ
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Notions and Concepts Related to Unsatisfiable Cores 7

Assume a set of formulas Φ and a function sat : Φ 7→ {0,1}.

Let sat(φ) = 0. Derive φ′ with sat(φ′) = 0 from φ such that

1. φ′ preserves some reasons for sat(φ) being 0 without adding new
ones,

2. a reason why sat(φ′) = 0 is easier to see than why sat(φ) = 0,

3. the derivation of φ′ from φ is such that the user can understand preser-
vation/non-addition of reasons.

Typically 1. and 3. are met by limiting the derivation to some suitable set of
operations.

2. might be handled by assuming a suitable cost function.

(No formalization beyond LTL satisfiability in this talk.)
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Notions and Concepts Related to Unsatisfiable Cores 8

Assume a set of formulas Φ, a function sat : Φ 7→ {0,1}, and a set of
operations. Let φ, φ′ ∈ Φ with sat(φ) = 0.

1. φ′ is a core of φ iff φ′ is derived from φ by a sequence of operations.

2. φ′ is an unsatisfiable core (UC) of φ iff 1. and sat(φ′) = 0.

3. φ′ is a proper unsatisfiable core of φ iff 2. and φ′ is syntactically differ-
ent from φ.

4. φ′ is an irreducible unsatisfiable core (IUC) of φ iff 2. and there is no
proper unsatisfiable core of φ′.
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Granularity of a Notion of UC 9

Of course, the formula φ contains all information — implicitly.

Goal: determine relevance of certain aspects of a formula φ to
sat(φ) = 0 by the mere presence or absence of elements in the UC.

⇒ One notion of core has finer granularity than another iff it provides at
least as much information on the relevance of certain aspects as the
other notion.

Example: notion of core based on subsets of a set of formulas versus
notion that additionally proceeds into the formulas.

(In this talk no formalization.)
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UCs via Syntax Trees 11

Consider notion of UCs purely based on syntactic structure of formulas
given as syntax trees.

Set of operations: as in some forms of vacuity [KV03], replace positive
polarity occurrences of subformulas with 1, negative polarity ones with 0.

Operations correspond to syntactic weakening of the formula:

⇒ Preservation of reason(s) for unsatisfiability without addition of new
ones (if operations are applied only when preserving unsatisfiability).

⇒ UC is smaller than the original formula, hence, unsatisfiability is easier
to see.

⇒ Operations are easy to understand by a human.
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UCs via Syntax Trees 12

Example

∧

G

∧

p ψ

F

∧

¬

p

ψ′

∧

G

∧

p 1

F

∧

¬

p

1

(G(p ∧ ψ )) ∧ (F(¬p ∧ ψ′ )) (G(p ∧ 1 )) ∧ (F(¬p ∧ 1 ))

(In this talk no simplification, no sharing of subformulas.)
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UCs via Definitional Conjunctive Normal Forms 13

Translate formula φ into equisatisfiable dCNF(φ):

1. Introduce a fresh atomic proposition x ∈ X for each node in the syntax
tree.

2. Let ψ Conjunct ∈ dCNF aux(φ)

b with b ∈ {0,1} xψ ↔ b

p with p ∈ AP xψ ↔ p

◦1ψ′ with ◦1 ∈ {¬,X,F,G} xψ ↔ ◦1xψ′
ψ′ ◦2 ψ′′ with ◦2 ∈ {∨,∧,U} xψ ↔ xψ′ ◦2 xψ′′

3. Set dCNF(φ) ≡ xφ ∧G
∧

c∈dCNF aux(φ)

c

(For Fisher’s SNF see paper.)
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UCs via Definitional Conjunctive Normal Forms 14

Consider notion of UCs based on removal of conjuncts from a dCNF.

Set of operations: as in many notions of UCs in other settings, remove
conjuncts from a set of conjuncts (and make sure no superfluous conjuncts
are left).

Removal of conjuncts clearly constitutes weakening of the original formula:

⇒ Preservation of reason(s) for unsatisfiability without addition of new
ones (if operations are applied only when preserving unsatisfiability).

⇒ UC is smaller than the original formula, hence, unsatisfiability is easier
to see.

⇒ Operations are easy to understand by a human.
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UCs via Definitional Conjunctive Normal Forms 15

Example (G(p ∧ ψ)) ∧ (F(¬p ∧ ψ′)) continued:

x(G(p∧ψ))∧(F(¬p∧ψ′)) ↔ xG(p∧ψ) ∧ xF(¬p∧ψ′)
xG(p∧ψ) ↔ Gxp∧ψ
xp∧ψ ↔ xp ∧ xψ
xp ↔ p

xψ ↔ . . .

. . . ↔ . . .

xF(¬p∧ψ′) ↔ Fx¬p∧ψ′
x¬p∧ψ′ ↔ x¬p ∧ xψ′
x¬p ↔ ¬x′p
x′p ↔ p

xψ′ ↔ . . .

. . . ↔ . . .
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UCs via Definitional Conjunctive Normal Forms 16

Example (G(p ∧ ψ)) ∧ (F(¬p ∧ ψ′)) continued:

x(G(p∧ψ))∧(F(¬p∧ψ′)) ↔ xG(p∧ψ) ∧ xF(¬p∧ψ′)
xG(p∧ψ) ↔ Gxp∧ψ
xp∧ψ ↔ xp ∧ xψ
xp ↔ p

xψ ↔ . . .

. . . ↔ . . .

xF(¬p∧ψ′) ↔ Fx¬p∧ψ′
x¬p∧ψ′ ↔ x¬p ∧ xψ′
x¬p ↔ ¬x′p
x′p ↔ p

xψ′ ↔ . . .

. . . ↔ . . .
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UCs via Definitional Conjunctive Normal Forms 17

Variants by example of a positive polarity U:

Basic Form Replacing
Biimplications
with
Implications

Temporal Unfolding Splitting
Conjunctions
in Temporal
Unfolding

xψ′Uψ′′ ↔ xψ′Uxψ′′

{xψ′ ↔ . . .}
{xψ′′ ↔ . . .}

xψ′Uψ′′ → xψ′Uxψ′′

{xψ′ → . . .}
{xψ′′ → . . .}

xψ′Uψ′′ →
xψ′′ ∨ (xψ′ ∧Xxψ′Uψ′′)

xψ′Uψ′′ → Fxψ′′

{xψ′ → . . .}
{xψ′′ → . . .}

xψ′Uψ′′ →
xψ′′ ∨ xψ′

xψ′Uψ′′ →
xψ′′ ∨Xxψ′Uψ′′

xψ′Uψ′′ → Fxψ′′

{xψ′ → . . .}
{xψ′′ → . . .}

(Potentially) Finer Granularity
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UCs via Definitional Conjunctive Normal Forms 18

Example:

Replacing Biimplications
with Implications

Temporal Unfolding

(ψ′Uψ′′) ∧
(¬ψ′ ∧ ¬ψ′′)

. . .

xψ′Uψ′′ → xψ′Uxψ′′

{xψ′ → . . .}
{xψ′′ → . . .}
. . .

. . .

xψ′Uψ′′ →
xψ′′ ∨ (xψ′ ∧Xxψ′Uψ′′)

{xψ′ → . . .}
{xψ′′ → . . .}
. . .

(ψ′Uψ′′) ∧
((¬ψ′ ∧¬ψ′′)∨
(G¬ψ′′))

. . .

xψ′Uψ′′ →
xψ′′ ∨ (xψ′ ∧Xxψ′Uψ′′)

xψ′Uψ′′ → Fxψ′′

{xψ′ → . . .}
{xψ′′ → . . .}
. . .
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UCs via Bounded Model Checking 19

In the most fine-granular version of the dCNF all conjuncts are of one of
the two forms:

(
∨
i

[X] [¬] xψi) or ([¬] xψ ∨ F [¬] xψ′)

Dropping conjuncts of the latter form results in a transition relation.

Any satisfiable formula φ has at least one witness π such that
– π has infinite length, and
– π observes the above transition relation.

If there is some k s.t. no prefix of length k exists that observes
(1) the initial condition and (2) the transition relation from 0 up to

k − 1, then φ is unsatisfiable. (Incomplete!)

For a given k, the path from 0 to k is finite. Hence, it can be encoded as a
SAT problem. ⇒ Map back core from SAT solver to LTL.

Close relation to SAT-based Bounded Model Checking [HLJ05].
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Granularity 20

via dCNF
base

via dCNF
biimp −> imp

via dCNF
SNF

via dCNF
split &/|

via dCNF
temp unf

via dCNF
sp temp unf

via BMC
sp temp unf

via
tableaux

< <

=
=

= =

≠ ≠

≤

Finer Granularity

trees
via syntax
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Related Work — Vacuity 22

Vacuity detection
– Technique in model checking for quality assurance (mostly) of passing

specifications.

– Finds parts of specifications that are not used during verification.

– Original notion [BBDER01,KV03] replaces occurrences of subformu-
las with 0/1 depending on polarity.

Main differences
– Normally defined w.r.t. a specific model. But see vacuity without de-

sign [CS07] and inherent vacuity [FKSFV08].

– Geared to answer whether there exists a strengthening s.t. the model
still satisfies the specification. But see mutual vacuity [GC04b, CS07]
and work on strongest passing formulas [CGS08].

– Focuses on strengthening a formula. But vacuity is defined, e.g., in
[BBDER01,KV03,FKSFV08] for both passing and failing formulas.
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Related Work — Vacuity 23

Inherent vacuity [FKSFV08] defines a framework for vacuity without design
[CS07] with 4 parameters:

– vacuity type: non-shared vs. shared subformulas,

– equivalence type: closed vs. open systems,

– tightening type: equivalence vs. preservance of satisfiability/realizability,
and

– polarity type: strengthening vs. weakening.

Close relation between (I)UCs and the (non-shared, closed systems, equiv-
alence, weakening) instance of the framework:

Given a proper UC φ′ via syntax tree of some unsatisfiable formula φ,
1. φ is inherently vacuous, and

2. φ′ is an IUC iff it is not inherently vacuous.
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The End 24

Summary

– We propose notions of UC for LTL.

– Some notions have higher granularity than others — and there’s hope
for more.

– We discuss a connection to vacuity.

Ongoing and Future Work

– Implementation and evaluation.

– Improve notions.

– Complexity.

– Formalize general concepts.

c© 2009 V. Schuppan



References (1) 25

BBDER01 I. Beer, S. Ben-David, C. Eisner, Y. Rodeh: Efficient Detection of Vacuity in
Temporal Model Checking. Formal Methods in System Design 18(2)2001:141–163.

BDTW93 R. Bakker, F. Dikker, F. Tempelman, P. Wognum: Diagnosing and Solving Over-
Determined Constraint Satisfaction Problems. IJCAI’93.

BS01 R. Bruni, A. Sassano: Restoring Satisfiability or Maintaining Unsatisfiability by find-
ing small Unsatisfiable Subformulae. SAT’01.

CD91 J. Chinneck, E. Dravnieks: Locating Minimal Infeasible Constraint Sets in Linear
Programs. ORSA Journal on Computing 3(2):157–168, 1991.

CGS08 H. Chockler, A. Gurfinkel, O. Strichman: Beyond Vacuity: Towards the Strongest
Passing Formula. FMCAD’08.

CRST08b A. Cimatti, M. Roveri, A. Susi, S. Tonetta: From Informal Requirements to
Property-Driven Formal Validation. FMICS’08.

CS07 H. Chockler, O. Strichman: Easier and More Informative Vacuity Checks. MEM-
OCODE’07.

FKSFV08 D. Fisman, O. Kupferman, S. Sheinvald-Faragy, M. Vardi: A Framework for
Inherent Vacuity. HVC’08.

c© 2009 V. Schuppan



References (2) 26

GC04b A. Gurfinkel, M. Chechik: How Vacuous Is Vacuous? TACAS’04.

HLJ05 K. Heljanko, T. Junttila, T. Latvala: Incremental and Complete Bounded Model
Checking for Full PLTL. CAV’05.

KV03 O. Kupferman, M. Vardi: Vacuity detection in temporal model checking. STTT
4(2)2003:224–233.

SC03 S. Schlobach, R. Cornet: Non-Standard Reasoning Services for the Debugging of
Description Logic Terminologies. IJCAI’03.

SSJ+03 I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, M. Taghdiri: Debugging Over-
constrained Declarative Models Using Unsatisfiable Cores. ASE’03.

TCJ08 E. Torlak, F. Chang, D. Jackson: Finding Minimal Unsatisfiable Cores of Declara-
tive Specifications. FM’08.

WHR+05 H. Wang, M. Horridge, A. Rector, N. Drummond, J. Seidenberg: Debugging
OWL-DL Ontologies: A Heuristic Approach. ISWC’05.

ZM03b L. Zhang, S. Malik: Extracting Small Unsatisfiable Cores from Unsatisfiable Boolean
Formula. SAT’03.

c© 2009 V. Schuppan


