Towards a Notion of Unsatisfiable
Cores for LTL

Viktor Schuppan’
FBK-irst, Trento, ltaly

FSEN'09, Kish Island, Iran, April 15, 2009

Twork partly performed while at Verimag/CNRS. Currently supported by the Provincia
Autonoma di Trento (project EMTELOS).



Unsatisfiable Cores

Informal definition:

— An unsatisfiable core is an unsatisfiable formula ¢’ that is derived from
another unsatisfiable formula ¢.
— ¢’ focuses on a reason for ¢ being unsatisfiable.

Use in debugging (often in a declarative setting):

Unsatisfiable cores help a user understand why a formula is unsatisfiable.



Unsatisfiable Cores in Debugging

(selection only)

[CRSTO08Db] conjunction of LTL formulas extended with first order theories.
Example: EURAILCHECK project

— Validation of requirements for railway signalling and control.

— Feasibility study: textual requirements of 100+ pages.

— Unsatisfiable core of a conjunction of 80+ formulas was determined.
[CD91] linear programming
[BDTW93] constraint programming (example: Dutch major league soccer)

BS01,ZM03b] SAT (examples: planning, FPGA routing)

[SSJ+03,TCJ08] first order relational logic (example: Alloy, based on SAT)

'SCO03,WHR+05] description logics, ontologies



Motivation and Approach

Previous work for LTL doesn’t proceed into temporal formulas.

The resulting cores are conjunctions of toplevel temporal formulas.

E.g.,in (G(p AY)) A(F(=p Av")), the whole formula would be reported
unsatisfiable irrespective of the relevance and complexity of v, 1.

Goal: Find improved notions of cores for LTL.

Approach: Investigate methods to extract cores for LTL.

(No implementation in this talk.)
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LTL

LTL formulas are evaluated on infinite sequences of sets of atomic propo-
sitions, i.e., m € (24)¥, Constants and Boolean operators as expected.
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Notions and Concepts Related to Unsatisfiable Cores |

Assume a set of formulas ¢ and a function sat : ¢ — {0, 1}.

Let sat(¢p) = 0. Derive ¢’ with sat(¢’) = 0 from ¢ such that

1. ¢’ preserves some reasons for sat(¢) being O without adding new
ones,

2. areason why sat(¢’) = 0 is easier to see than why sat(¢) = 0O,

3. the derivation of ¢’ from ¢ is such that the user can understand preser-
vation/non-addition of reasons.

Typically 1. and 3. are met by limiting the derivation to some suitable set of
operations.

2. might be handled by assuming a suitable cost function.

(No formalization beyond LTL satisfiability in this talk.)



Notions and Concepts Related to Unsatisfiable Cores |

Assume a set of formulas &, a function sat : ¢ — {0,1}, and a set of
operations. Let ¢, ¢’ € @ with sat(¢) = 0.

1. ¢’ is a core of ¢ iff ¢’ is derived from ¢ by a sequence of operations.
2. ¢ is an unsatisfiable core (UC) of ¢ iff 1. and sat(¢’) = 0.

3. ¢ is a proper unsatisfiable core of ¢ iff 2. and ¢’ is syntactically differ-
ent from ¢.

4. ¢' is an irreducible unsatisfiable core (IUC) of ¢ iff 2. and there is no
proper unsatisfiable core of ¢'.



Granularity of a Notion of UC

Of course, the formula ¢ contains all information — implicitly.

Goal: determine relevance of certain aspects of a formula ¢ to
sat(¢) = O by the mere presence or absence of elements in the UC.

= One notion of core has finer granularity than another iff it provides at
least as much information on the relevance of certain aspects as the
other notion.

Example: notion of core based on subsets of a set of formulas versus
notion that additionally proceeds into the formulas.

(In this talk no formalization.)
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UCs via Syntax Trees

11

Consider notion of UCs purely based on syntactic structure of formulas
given as syntax trees.

Set of operations: as in some forms of vacuity [KV03], replace positive
polarity occurrences of subformulas with 1, negative polarity ones with O.

Operations correspond to syntactic weakening of the formula:

= Preservation of reason(s) for unsatisfiability without addition of new
ones (if operations are applied only when preserving unsatisfiability).

= UC is smaller than the original formula, hence, unsatisfiability is easier
to see.

= Operations are easy to understand by a human.




UCs via Syntax Trees

Example
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(In this talk no simplification, no sharing of subformulas.)
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UCs via Definitional Conjunctive Normal Forms

Translate formula ¢ into equisatisfiable dCNF (¢):

13

1. Introduce a fresh atomic proposition =z € X for each node in the syntax

tree.
2. Let W Conjunct € dCNF g (¢)
bwithb € {0,1} Ty < b
pwithp € AP Lopy <> P
019’ with o1 € {=, X, F, G} | 2y < o1z
lb/ ©2 W/ with 02 € {\/7 N, U} Lafy 7 Loyt O Loyt
3. Set dCNF(¢) =24 NG A c

(For Fisher's SNF see paper.)
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UCs via Definitional Conjunctive Normal Forms

14

Consider notion of UCs based on removal of conjuncts from a dCNF.

Set of operations: as in many notions of UCs in other settings, remove
conjuncts from a set of conjuncts (and make sure no superfluous conjuncts
are left).

Removal of conjuncts clearly constitutes weakening of the original formula:

= Preservation of reason(s) for unsatisfiability without addition of new
ones (if operations are applied only when preserving unsatisfiability).

= UC is smaller than the original formula, hence, unsatisfiability is easier
to see.

= Operations are easy to understand by a human.




UCs via Definitional Conjunctive Normal Forms

Example (G(p A ¢)) A (F(=p A")) continued:
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UCs via Definitional Conjunctive Normal Forms

Example (G(p A ¥)) A (F(=p A 2’)) continued:
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UCs via Definitional Conjunctive Normal Forms

17
Variants by example of a positive polarity U:

Basic Form Replacing Temporal Unfolding | Splitting
Biimplications Conjunctions
with in Temporal
Implications Unfolding

Tyuy < TpyUzy | Tyuy = TpUTy | puy — Tyruyr —
Topr V (xr(/)/ A XIWUW/) Topr V Tojy
x¢/U¢// —
ZC¢// V melUwﬁ
:CWUW’ — F:Cd}// 3377[}/le/ — F:Cd}//
{xwu — .. } {ajwu — .. } {.Cljwu — .. } {ajwn — .. }

(Potentially) Finer Granularity




UCs via Definitional Conjunctive Normal Forms 18

Example:
Replacing Biimplications Temporal Unfolding
with Implications
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UCs via Bounded Model Checking

In the most fine-granular version of the dCNF all conjuncts are of one of
the two forms:

VX Hlzy)  or ([Flay v F[2]zy)

Dropping conjuncts of the latter form results in a transition relation.

Any satisfiable formula ¢ has at least one witness 7 such that
— 7 has infinite length, and
— 7 observes the above transition relation.

If there is some k s.t. no prefix of length k exists that observes
(1) the initial condition and (2) the transition relation from O up to
k — 1, then ¢ is unsatisfiable. (Incomplete!)

For a given k, the path from O to & is finite. Hence, it can be encoded as a
SAT problem. = Map back core from SAT solver to LTL.

Close relation to SAT-based Bounded Model Checking [HLJO5].



Granularity 20
via syntax
trees
via via dCNF
tableaux ¢ SNF ¢
[
via dCNF — via dCNF —_— via dCNF via dCNF < via dCNF
base ~  biimp—>imp split &/ temp unf sp temp unf
via BMC
sp temp unf

Finer Granularity
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Related Work — Vacuity

22

Vacuity detection

— Technique in model checking for quality assurance (mostly) of passing
specifications.

— Finds parts of specifications that are not used during verification.

— Original notion [BBDERO1,KV03] replaces occurrences of subformu-
las with 0/1 depending on polarity.

Main differences

— Normally defined w.r.t. a specific model. But see vacuity without de-
sign [CS07] and inherent vacuity [FKSFV08].

— Geared to answer whether there exists a strengthening s.t. the model
still satisfies the specification. But see mutual vacuity [GC04b, CS07]
and work on strongest passing formulas [CGSO08].

— Focuses on strengthening a formula. But vacuity is defined, e.g., in
[BBDERO1,KV03,FKSFV08] for both passing and failing formulas.




Related Work — Vacuity 23

Inherent vacuity [FKSFV08] defines a framework for vacuity without design
[CS07] with 4 parameters:

— vacuity type: non-shared vs. shared subformulas,
— equivalence type: closed vs. open systems,

— tightening type: equivalence vs. preservance of satisfiability/realizability,
and

— polarity type: strengthening vs. weakening.

Close relation between (I)UCs and the (non-shared, closed systems, equiv-
alence, weakening) instance of the framework:

Given a proper UC ¢’ via syntax tree of some unsatisfiable formula ¢,
1. ¢ is inherently vacuous, and
2. ¢’ is an IUC iff it is not inherently vacuous.



The End

Summary

— We propose notions of UC for LTL.

24

— Some notions have higher granularity than others — and there’s hope

for more.

— We discuss a connection to vacuity.

Ongoing and Future Work
— Implementation and evaluation.
— Improve notions.
— Complexity.

— Formalize general concepts.

oooooooooooooo
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