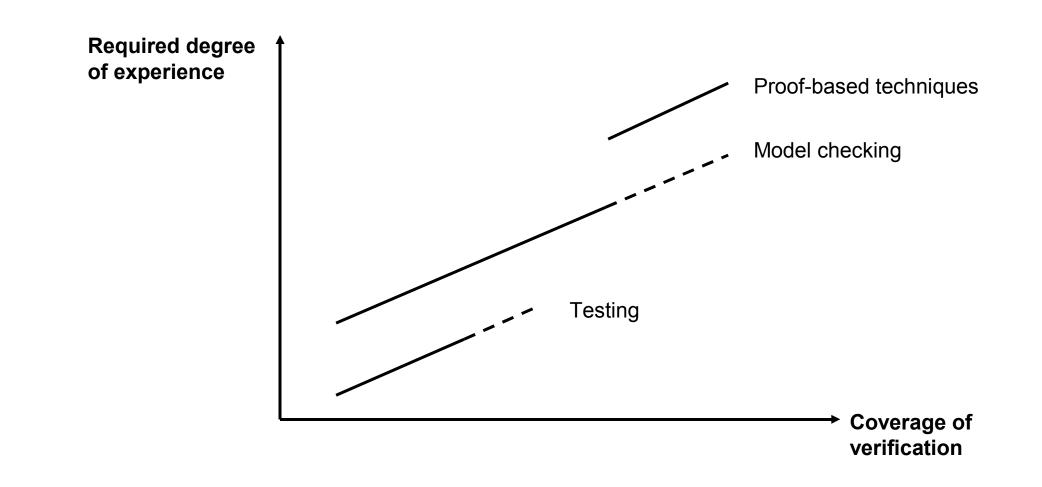


## IEEE 1394 (FireWire) Workshop

# A Simple Verification of the Tree Identify Protocol with SMV

## Viktor Schuppan


Viktor.Schuppan@inf.ethz.ch

Armin Biere

Armin.Biere@inf.ethz.ch

A Simple Verification of the Tree Identify Protocol with SMV © ETH Zürich 2001 Viktor Schuppan, Armin Biere 13.03.2001 1

# Model Checking between Testing and Theorem Proving





## Model Checking with SMV - Process -

- Build model as state machine in SMV input language.
- 2. Give specification as CTL formula.
- 3. Check specification with SMV.
- 4. Refine model and specification, check again.

# Model Checking with SMV - Tool -

- BDD-based symbolic model checker
- Developed by Ken McMillan
- Several variants available, e.g. Bwolen Yang, NuSMV, Cadence
- Hardware-oriented input language
- Synchronous or interleaving execution
- No continuous real time model / specification
- Communication by shared variables

#### **Model - Node**

- Basic building block
- Contains entire state machine
- All states of Tree Id Protocol are implemented
- State T3 refined, state S0 added
- Directly use line-states for communication
- Time-out and force-root are modeled with counters
- Resolution of root contention: nodes choose paths of different length

## **Model - Configuration**

Properties of the model involving several nodes, e.g.:

- Sound interconnection of nodes:
  - node[i].port[j] = (k, l) -> node[k].port[l] = (i, j)
  - reachability of nodes
  - no cycles
- Initial configuration
- Different paths are eventually chosen in root contention



#### **Model - Variants**

|                                    | # 1      | #2 | # 3      |
|------------------------------------|----------|----|----------|
| interleaved<br>execution           | <b>~</b> | ×  | ×        |
| force root<br>non-determinism      | <b>~</b> | •  | ✓        |
| configuration<br>non-determinism   | ×        | ×  | <b>~</b> |
| number of nodes<br>non-determinism | ×        | ×  | ?        |

## **Specification - Part 1**

1. A leader is eventually chosen.

AF (AG node[0].root | ...)

2. Only one leader is chosen.

AF AG ((node[0].root -> !node[1].root & ...) & (node[1].root -> !node[0].root & ...) ...)

## **Specification - Part 2**

- 3. Every node reaches state S0.
- 4. All roles are finally determined.
- 5. All links are finally idle.
- 6. No timeout.
- 7. No known problems.
- 8. Configuration dependent.
- 9. Force root takes effect.
- 10. Once a leader is chosen it doesn't change.

## Results

- Synchronous execution: all properties are verified.
- Interleaving execution:

   a well known timing issue shows up
   (described e.g. by Simons and Stoelinga):
   the protocol may fail if nodes can have

  processing time > ROOT\_CONTEND\_FAST



#### **Results - Data**

|         | Run time [s] | Bytes allocated<br>[MBytes] | # states reachable | # states |    |
|---------|--------------|-----------------------------|--------------------|----------|----|
| 10 det. | 3            | 29                          | 2^38               | 2^276    |    |
| 10 frn. | 409          | 429                         | 2^50               | 2^276    | #2 |
| 20 det. | 15           | 99                          | 2^80               | 2^551    |    |
| 20 frn. | -            | -                           | -                  | -        | J  |
| 3 det.  | 64           | 272                         | 2^13               | 2^122    |    |
| 3 frn.  | 65           | 273                         | 2^17               | 2^122    |    |
| 3 cfn.  | 69           | 293                         | 2^28               | 2^122    |    |
| 3 n.    | 2852         | 463                         | 2^32               | 2^122    | #3 |
| 5 det.  | 292          | 554                         | ?                  | ?        |    |
| 5 frn.  | 274          | 554                         | ?                  | ?        |    |
| 5 cfn.  | -            | -                           | -                  | -        |    |
| 5 n.    | -            | -                           | -                  |          | ון |

Cfg: PIII 850, 1,5 GB RAM, Linux 2.2.18

## **Evaluation**

- First author only recently started PhD
- Experience in software engineering, not in model checking
- ~ 2 weeks of introductory reading
- First prototype completed in about one week
- Refinement process started; problem: turn around time
- Model is easier to come up with than specification
- Experience required in formulation of model and selection and operation of tool to keep run times low
- Problem: research versions provide limited features

## Conclusion

Model checking proved effective:

- The first model was developed quickly
- Verification was straight forward
- Extension based on first model are easily possible

Limitations:

- Experience is needed for verification of larger model: formulation execution
- Limited scalability for larger number of nodes