
Liveness Checking as Safety Checking
for Infinite State Spaces

Viktor Schuppan1, Armin Biere2

1Computer Systems Institute, ETH Zürich
2Institute for Formal Models and Verification, JKU Linz

http://www.inf.ethz.ch/˜schuppan/

INFINITY’05, August 27, 2005, San Francisco, USA

http://www.inf.ethz.ch/~schuppan/

Liveness vs. Safety: Finite State Systems 2

[Biere, Artho, Schuppan, 2002; Schuppan, Biere, 2004/2005]

1 2

3

+ 7→
1 2

3 1’

3’

2’

+

Transform

system K + ω-reg. property φ

into

system KS + safety property φS

such that

K |= φ ⇔ KS |= φS

Benefits:

– Selected examples:
exponential speed-up

– Shortest counterexamples
(competitive with BMC)

– More tools/optimizations

– Q & d liveness algorithms

– Fewer liveness proofs

c© 2005 V. Schuppan – Computer Systems Institute, ETH Zürich.

Contents 3

1. Introduction

2. Finite State Systems

3. Regular Model Checking

4. Pushdown Systems

5. Timed Automata

6. Conclusions

c© 2005 V. Schuppan – Computer Systems Institute, ETH Zürich.

Finite State Case — Example 4

yr g

(Buggy) traffic light

!g1

(Negation of) specification:
! G F g

y,!gr,!g

r,1 y,1 g,1

Product automaton

Counterexample: (r,1) (y,1) (g,1)
(

(r,!g) (y,!g)
)ω

c© 2005 V. Schuppan – Computer Systems Institute, ETH Zürich.

Finite State Case — Example transformation 5

1. Nondeterministically guess loop start,
save state

2. Find fair state in loop

3. Find second occurrence of saved state,
close loop

ŝ0 ŝ0 ŝ0
copy
of s

s (r,!g) (y,!g)

(r,!g) (r,!g) (r,!g) (r,!g)

lasso st st lb lc

fair

(y,!g)

stop here!

(r,!g)

can

0 0 0 1 1 1 1

(r,1) (y,1) (g,1)

st lb lc

c© 2005 V. Schuppan – Computer Systems Institute, ETH Zürich.

Finite State Case — Formal Definition 6

Let
– K = (S,T, I ,L,F = {F0}) be a fair finite Kripke structure,
– ŝ0 ∈ Sarbitrary but fixed.

Then KS = (SS,TS, IS,LS,FS) is defined as:

SS =S×S×{st, lb, lc}× IB

IS ={(s0, ŝ0,st,0) | s0 ∈ I}∪
{(s0,s0, lb, f) | s0 ∈ I ∧ (f → s0 ∈ F0)}

TS ={((s, ŝ, lo, f),(s′, ŝ′, lo′, f ′)) | (s,s′) ∈ T ∧
((lo = st∧ lo′ = st ∧ ¬ f ∧¬ f ′ ∧ ŝ= ŝ′ = ŝ0)∨
(lo = st∧ lo′ = lb ∧ ¬ f ∧ (f ′→ s′ ∈ F0) ∧ ŝ= ŝ0∧s′ = ŝ′)∨
(lo = lb∧ lo′ = lb ∧ (f → f ′)∧ (f ′→ f ∨s′ ∈ F0)∧ ŝ= ŝ′)∨
(lo = lb∧ lo′ = lc ∧ f ∧ f ′ ∧ ŝ= s′ = ŝ′)∨
(lo = lc∧ lo′ = lc ∧ f ∧ f ′ ∧ ŝ= ŝ′))}

LS(sS)=L(s), where sS = (s, ŝ, lo, f)

FS = /0

K has reachable fair loop ⇔ KS has reachable state sS w. lo(sS) = lc
c© 2005 V. Schuppan – Computer Systems Institute, ETH Zürich.

Finite State Case — Complexity 7

1 2

3 1’

3’

2’

1 2

3 1’

3’

2’

1 2

3 1’

3’

2’

1 2

3 1’

3’

2’

1 2

3 1’

3’

2’

1 2

3 1’

3’

2’

1 2

3 1’

3’

2’

1 2

3 1’

3’

2’

1 2

3 1’

3’

2’

1 2

3 1’

3’

2’stem

not fair
loop body,

fair
loop body,

loop closed

|S| branches,
no changing between branches

|SS| = O(|S|2) |TS| = O(|S| · |T|)
rS, dS = O(d) |(TS)∗| = O(|S| · |T∗|)

c© 2005 V. Schuppan – Computer Systems Institute, ETH Zürich.

Regular Model Checking 8

after [Bouajjani, Jonsson, Nilsson, Touili, 2000]

Regular model checking:

– Initial configurations: finite automaton on finite words

– Transition relation: finite transducer on finite words
length-preserving ⇒ lasso-shaped counterexamples

Example: Token Passing:

Initial configurations
t

n

Transition relation

(t,t)

(n,t) (n,n)(t,n)(n,n)

c© 2005 V. Schuppan – Computer Systems Institute, ETH Zürich.

Regular Model Checking — Transformation 1 9

Problem: finite automaton can’t store unbounded words

Solution:
– Use pairs of characters instead of character:

first is original, second is saved component
– Prefix with position on lasso

Initial configurations:

(t,−)

(n,−)

st

start on stem:
don’t save config.

start on loop body:
save config.

(t,t)

(n,n)

lb

c© 2005 V. Schuppan – Computer Systems Institute, ETH Zürich.

Regular Model Checking — Transformation 2 10

Transition relation:

((t,a),(t,a))^ ^

((t,a),(n,a)) ((n,a),(t,a))^ ^ ^ ^((n,a),(n,a))^ ^ ((n,a),(n,a))^ ^

((t,t),(t,t))

((t,n),(n,n)) ((n,t),(t,t)) ((n,n),(n,n))((n,n),(n,n))

(lb,lc)

(st,st) v (lb,lb) v (lc,lc)

switch from loop body
to loop closed

close loop:

((n,−),(n,n)) ((t,−),(n,n))

((t,−),(t,t))

((n,−),(t,t)) ((n,−),(n,n))

(st,lb) save config:
switch from stem
to loop body

loop body or
loop closed

remain in stem,

c© 2005 V. Schuppan – Computer Systems Institute, ETH Zürich.

Regular Model Checking — Bounded Local Depth 11

Bouajjani et al. show that bounded local depth is sufficient for
termination of their computation of the transitive closure.

Assume, the original system has bounded local depth k.
The transformation preserves boundedness:

a l,0
a l,1

a l,n

a l,0
a l,1

a l,n

...

lb

...

a l,0
a l,1

a l,n

a l,0
a l,1

a l,n

a l,0
a l,1

a l,n

st
−
−
...
−

st
−
−
...
−

a
a

a

0,0

0,1

a
a

a
... ...

l−1,0

l−1,1

l−1,n0,n

...

lb

...

a
a

a

k−1,0

k−1,1

k−1,n

......

lc

k k 1 k+ + + +

...

<= 3k + 21

c© 2005 V. Schuppan – Computer Systems Institute, ETH Zürich.

Pushdown Systems — Repeatable Heads 1 12

[Bouajjani, Esparza, Maler, 1997]

(top symbol)
stack

s
α

t

β γ
δ

ϕ φ
κ

γ

uu v w x y z w z u

ν

head
repeatable head

(control state, top symbol)
1. matching heads
2. sufficient stack height

φ
δ

γ

stack
grows

control state

c© 2005 V. Schuppan – Computer Systems Institute, ETH Zürich.

Pushdown Systems — Repeatable Heads 2 13

[Bouajjani, Esparza, Maler, 1997]

(top symbol)
stack

head
repeatable head

(control state, top symbol)
1. matching heads

=> can repeat infinitely often
2. sufficient stack height

=> found in every infinite run

s
α

t

β
δ

ϕ φ
κ δ

ϕ φ
κ

v w x y zv w x y zu

γ

γ

u

φ

φ

control state

c© 2005 V. Schuppan – Computer Systems Institute, ETH Zürich.

Pushdown Systems — Transformation 14

α,− α,− α,− α,− α,− α,− α,− α,− α,− α,− α,− α,−
γ,−γ,−γ,1γ,1γ,1γ,1γ,1

δ,0 δ,0 δ,0 δ,0 δ,0 δ,0 ν,−
γ,0φ,0φ,0ϕ,0

κ,0

stack height error

lasso

stack top (copy)

control state (copy)

control state

stack

β,−

−−

st st lb lb lb lb lb lc lc lc

γγγγγγγγ−

−

−

− u u u u u u u u

s t v w x y z u w z u

0 0 0 0 0 0 0 0

on loop:
loop closure: check head, error flag

check stack height, set error flag

φ,0
δ,−

γ,−

start loop: save head, mark stack height

γ,− γ,1

u

u

γ

lbst

− 0

−

−

c© 2005 V. Schuppan – Computer Systems Institute, ETH Zürich.

Pushdown Systems — No Shortest Counterexamples 15

soonest 2nd
occurrence of
repeatable head

α

χ

αααααα
β β

χ

s s s t u u ucontrol state

stack

t t

δ
β
α

t

δ
β
α

t

β
α α

βββ
α

t

counterexample
shortest

The soonest second occurrence of a repeatable head does

not guarantee shortest counterexamples.

That requires repeatable prefixes.

c© 2005 V. Schuppan – Computer Systems Institute, ETH Zürich.

Timed Automata 16

W.r.t. ω-regular properties, timed automata can be abstracted

to ordinary finite state automata [Alur, Dill, 1994].

Region construction can be expressed within formalism (with

difference constraints).

⇒ technical, “can be done”.

c© 2005 V. Schuppan – Computer Systems Institute, ETH Zürich.

Related Work 17

Infinite state systems:

Shilov, Yi, Eo, O, Choe, 2001/2005 Reduction of SOEPDL (> 2M of C.
Stirling) to reachability. Requires closure under Cartesian product and
subset constructions. Doubly exponential.

Bouajjani, Esparza, Maler, 1997 is reduction to reachability. Requires sep-
arate computation of “bad states”.

Aceto, Bouyer, Burgue ño, Larsen, 1998/2003 Power of reachability test-
ing for timed automata.

Finite state systems:

Burch, 1990 Reduction for timed trace structures. Requires user to come
up with appropriate time constraint.

Ultes-Nitsche, 2002 Satisfaction within fairness corresponds to some safety
property. Not always desired semantics.

c© 2005 V. Schuppan – Computer Systems Institute, ETH Zürich.

The End 18

Conclusions

– Reduction usually is “pulling the algorithm into the model.”

– System size typically grows moderately

Future work

– Experimental evaluation.

– When does it not work?

– Use it to come up with liveness algorithm.

c© 2005 V. Schuppan – Computer Systems Institute, ETH Zürich.

