
JVM Independent Replay in Java
RV’04 – April 3, 2004, Barcelona, Spain

Viktor Schuppan, Marcel Baur, Armin Biere
Computer Systems Institute, ETH Zürich

http://www.inf.ethz.ch/˜schuppan/

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

http://www.inf.ethz.ch/~schuppan/

Introduction 1

execution
trace

multi−threaded
Java program

custom
browser

to find that bug?
How am I supposed

J. User

What kind of
GUI is that?

another browser?
Why write

P. Developer

test
tool

static
checker

dynamic
checker

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Introduction 2

multi−threaded
Java program

debugger
compliant

execution
deterministic

T2

T1

T0

T1
time

description
trace

test
tool

static
checker

dynamic
checker

replayer

→ Tool users work in familiar debugging environment

→ Tool developers focus on trace generation

Approach: bytecode instrumentation

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Contents 3

1. Introduction

2. Trace Description

3. Results

4. Conclusion

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Replay – Content-based Approach 4

Directly restore results of shared memory reads

replay
data

p c1 c2

buf

buf

cnt

cnt

cnt

cnt

buf

[e.g. Pan, Linton 1988]

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Replay – Ordering-based Approaches 1 5

Restore partial order of shared memory accesses

replay
data

p c1 c2

buf

cnt

cnt

buf

cnt

buf

cnt

directly restore order [e.g. LeBlanc, Mellor-Crummey 1987]

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Replay – Ordering-based Approaches 2 6

Restore partial order of shared memory accesses

replay
data

p c1 c2

buf

cnt

cnt

buf

buf

cnt

cnt

restore thread switches [e.g. Russinovich, Cogswell 1996]

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Replay – Comparison of Approaches 7

+o/ +o/

ca
ptu

re

re
play

−

o

+

−

+

se
man

tic
s

−

+

o
switches

thread

based
content−

tra
ce

 si
ze

par
all

eli
sm

or
de

ri
ng

−b
as

ed

− +

+

−

direct
order

+ o/

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Replay – Comparison of Approaches 8

+o/ +o/

ca
ptu

re

re
play

−

o

+

−

+

se
man

tic
s

−

+

o
switches

thread

based
content−

tra
ce

 si
ze

par
all

eli
sm

or
de

ri
ng

−b
as

ed

− +

+

−

direct
order

+ o/

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Specifying Points in an Execution – Example 9

Example:

for (i = 0; i < 3; i++) {
if (i % 2 == 0) {shared++; }
else {shared*=2; }

}

unroll:

i = 0;
if (i < 3) {

if (i % 2 == 0) {shared++; } }
i++;
if (i < 3) {

if (i % 2 == 0)
else {shared*=2; } }

i++;
if (i < 3) {

if (i % 2 == 0) {
/* replayer action */

shared++; } }
i++;

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Specifying Points in an Execution – 1 10

Software instruction counter [Mellor-Crummey, LeBlanc 1989]

(thread id, instruction, #backjumps)

capture: count backjumps

replay: count backjumps

→ less work for capture

Count specific instructions
(thread id, instruction, #executions)

capture: count each instruction

replay: count specific instructions

→ less work for replay
→ like debugger breakpoint

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Specifying Points in an Execution – 1 11

Software instruction counter [Mellor-Crummey, LeBlanc 1989]

(thread id, instruction, #backjumps)

capture: count backjumps

replay: count backjumps

→ less work for capture

Count specific instructions
(thread id, instruction, #executions)

capture: count each instruction

replay: count specific instructions

→ less work for replay
→ like debugger breakpoint

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Specifying Points in an Execution – 2 12

after
→ trace: handle easily
→ instrument before successors
→ more natural?

before
→ trace: may need to guess for last instruction
→ instrument before instruction

→ typically no difference in VM

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Specifying Points in an Execution – 2 13

after
→ trace: handle easily
→ instrument before successors
→ more natural?

before
→ trace: may need to guess for last instruction
→ instrument before instruction

→ typically no difference in VM

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Example – Producer/Consumer 14

// Producer
Method void run()
 0 goto 3
 3 invokestatic notFull()
 6 ifeq 3
 9 iconst_0
10 invokestatic put(int)
13 goto 3

// Consumer
Method void run()
 0 goto 3
 3 invokestatic notEmpty()
 6 ifeq 3
 9 invokestatic get()
12 istore_1
13 goto 3

(incomplete) schedule
#
1 (producer) running
before Producer 1 13 1
switch 2 # c1
before Consumer 1 9 1
switch 3 # c2
before Consumer 1 13 1
switch 2 # c1
error executing get

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Syntax 15

Events When should an action occur?

before true just before specified point in execution

in true when in wait, sleep, join at specified point

Actions What action should occur?

switch switch thread

notify notify thread

timeout time-out thread

die wait for termination and switch thread

terminate terminate replay

log log message

Control flow Execute finite or infinite loop in schedule

loopbegin start loop

loopend end loop

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Notes on Implementation 16

Approach

• criteria: portability, maintenance, features

• choices: modify VM, use standard interface, instrument code

Places to instrument

• given by schedule and

• thread state related events

Mechanics

• use wait /notify to block/unblock a thread
→ get proper handling of (recursive) locks for free

• track thread state separately

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

block and unblock 17

public void block() throws Exception {
 synchronized(lock) {
 while (blocked) {
 try {lock.wait();}
 catch (InterruptedException e)
 {/* report error */} }
 blocked = true; }
} // block

public void unblock() {
 synchronized(lock) {
 blocked = false;
 lock.notifyAll(); }
} // unblock

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Results 18

Portable replay

• on Sun’s VMs 1.3/1.4, Jikes, Kaffe, Kissme

• debugging with jdb, Eclipse, JDebugTool, and JSwat

• Java thread model?
→ interrupt ed thread consumes notify ?

Overhead

• slowdown (Sun VM 1.4) typically < 10 times

• +7 instructions at each instrumented location

Capture

• use JNuke to capture benchmark runs

• implement listener for JPF with ∼250 loc as a matter of 1 – 2 days

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

The End 19

Conclusions

Suggest to use debuggers to browse traces generated by checkers

Propose format to describe multi-threaded execution traces

Show feasibility of portable replay

Thanks.

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Backup-Slides 20

Keep out!

Backup slides

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

JReplay 21

modified
.class

replay
engine

.class

jreplay
compliant

T0

T1

T2

tT1

VM/
debugger

schedule deterministic
execution

before Class 1 0 1
switch 1
in Class 2 1 1
switch 2
in Class 1 2 1

terminate

switch 1
notify 1

before Class 2 1 1

JNuke

static
checker

dynamic
checker

VM

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Thread Model 22

j. joined

waiting

w. timed−out

j. timed−out

joining interrupt

time−out

join

interrupt

time−out

notify

wait

interrupt

time−out

sleeping

sleep

r. interrupted

w
a
i
t
,
j
o
i
n
,
s
l
e
e
p
/

died

t
h
r
o
w

I
n
t
e
r
r
u
p
t
e
d
E
x
c
e
p
t
i
o
n

startexisting

new Thread()

dead

i
n
t
e
r
r
u
p
t

i
n
t
e
r
r
u
p
t
e
d

r
u
n
.
r
e
t
u
r
n

r
u
n
.
r
e
t
u
r
n

s. timed−out

interrupt

interrupt

died

interrupt

interrupt
notify

interrupt notify

w. int. flag

w.notified

w. int. throw

j. int. throw

j. int. flag

s. int. throw

s. int. flag

(reacquire lock), reschedule

(reacquire lock), reschedule/set interrupted flag

(reacquire lock), reschedule/throw InterruptedException

running

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

Performance – Overhead 23

 Barrier Sync LUFact Crypt SOR SMM
0

10

20

30

40

Sun 1.4

Sun 1.3

Jikes

Kaffe

Sable

c© 2004 V. Schuppan – Computer Systems Institute, ETH Zürich.

