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Introduction 1
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→ Tool users work in familiar debugging environment

→ Tool developers focus on trace generation

Approach: bytecode instrumentation
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Replay – Content-based Approach 4

Directly restore results of shared memory reads
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[e.g. Pan, Linton 1988]
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Replay – Ordering-based Approaches 1 5

Restore partial order of shared memory accesses
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directly restore order [e.g. LeBlanc, Mellor-Crummey 1987]
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Replay – Ordering-based Approaches 2 6

Restore partial order of shared memory accesses
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restore thread switches [e.g. Russinovich, Cogswell 1996]
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Replay – Comparison of Approaches 7
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Replay – Comparison of Approaches 8
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Specifying Points in an Execution – Example 9

Example:

for (i = 0; i < 3; i++) {
if (i % 2 == 0) {shared++; }
else {shared*=2; }

}

unroll:

i = 0;
if (i < 3) {

if (i % 2 == 0) {shared++; } }
i++;
if (i < 3) {

if (i % 2 == 0)
else {shared*=2; } }

i++;
if (i < 3) {

if (i % 2 == 0) {
/* replayer action */

shared++; } }
i++;
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Specifying Points in an Execution – 1 10

Software instruction counter [Mellor-Crummey, LeBlanc 1989]

(thread id, instruction, #backjumps)

capture: count backjumps

replay: count backjumps

→ less work for capture

Count specific instructions
(thread id, instruction, #executions)

capture: count each instruction

replay: count specific instructions

→ less work for replay
→ like debugger breakpoint
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Specifying Points in an Execution – 2 12

after
→ trace: handle easily
→ instrument before successors
→ more natural?

before
→ trace: may need to guess for last instruction
→ instrument before instruction

→ typically no difference in VM
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Example – Producer/Consumer 14

// Producer
Method void run()
 0 goto 3
 3 invokestatic notFull()
 6 ifeq 3
 9 iconst_0
10 invokestatic put(int)
13 goto 3

// Consumer
Method void run()
 0 goto 3
 3 invokestatic notEmpty()
 6 ifeq 3
 9 invokestatic get()
12 istore_1
13 goto 3

# (incomplete) schedule
#
# 1 (producer) running
before Producer 1 13 1
switch 2 # c1
before Consumer 1 9 1
switch 3 # c2
before Consumer 1 13 1
switch 2 # c1
# error executing get
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Syntax 15

Events When should an action occur?

before true just before specified point in execution

in true when in wait, sleep, join at specified point

Actions What action should occur?

switch switch thread

notify notify thread

timeout time-out thread

die wait for termination and switch thread

terminate terminate replay

log log message

Control flow Execute finite or infinite loop in schedule

loopbegin start loop

loopend end loop
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Notes on Implementation 16

Approach

• criteria: portability, maintenance, features

• choices: modify VM, use standard interface, instrument code

Places to instrument

• given by schedule and

• thread state related events

Mechanics

• use wait /notify to block/unblock a thread
→ get proper handling of (recursive) locks for free

• track thread state separately
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block and unblock 17

public void block() throws Exception {
    synchronized(lock) {
        while (blocked) {
            try {lock.wait();}
            catch (InterruptedException e)
                {/* report error */} }
        blocked = true; }
} // block

public void unblock() {
    synchronized(lock) {
        blocked = false; 
        lock.notifyAll(); }
} // unblock
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Results 18

Portable replay

• on Sun’s VMs 1.3/1.4, Jikes, Kaffe, Kissme

• debugging with jdb, Eclipse, JDebugTool, and JSwat

• Java thread model?
→ interrupt ed thread consumes notify ?

Overhead

• slowdown (Sun VM 1.4) typically < 10 times

• +7 instructions at each instrumented location

Capture

• use JNuke to capture benchmark runs

• implement listener for JPF with ∼250 loc as a matter of 1 – 2 days
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The End 19

Conclusions

Suggest to use debuggers to browse traces generated by checkers

Propose format to describe multi-threaded execution traces

Show feasibility of portable replay

Thanks.
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Backup-Slides 20

Keep out!

Backup slides
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JReplay 21
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Thread Model 22
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Performance – Overhead 23
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