Liveness Checking as Safety Checking
to Find Shortest Counterexamples
to Linear Time Properties

Viktor Schuppan
Computer Systems Institute, ETH Zlrich
http://www.inf.ethz.ch/"schuppan/

Defense Thesis ETH 16268
September 28, 2005, Zlrich, Switzerland

http://www.inf.ethz.ch/~schuppan/

Safety vs. Liveness
[Lamport '77], [Alpern, Schneider '85]

Safety

“*Something bad will
not happen.”

The “bad thing”
IS Irremediable.

Liveness

“*Something good will
eventually happen.”

It remains possible for the
“good thing” to occur.

(© 2005 V. Schuppan — Computer Systems Institute, ETH Ziiricl

Model Checking of Safety Properties

[Kupferman, Vardi '01]

G(cx2)
LTL formula
system model flnlte state automaton
0) 1) 7 2))

2N AC#2) &2

(finite state) product automaton

Property is false iff a bad state is reachable.

= Find shortest finite path to bad state.

Model Checking of Liveness Properties
[Vardi, Wolper '86]

FG(c=+2)
LTL formula
system model Buch| automaton

\@D :

(Buchi) product automaton

@D

Property is false iff there is an (infinite) fair path.

= Find fair lasso.

Contents

1. Model Checking 101

2. Liveness Checking as Safety Checking

3. Tight Buchi Automata

4. Conclusions

Liveness Checking as Safety Checking

detect
fair loop

original C
state part { b (Buchi)
| copy of c
added by | |copyofb
translation status
\ | fairness

find fair
state
State-recording translation:

1. Guess loop start: save current state.
2. Find fair state in loop.

3. Find second occurrence of saved state.

Complexity

N

O— O— O—
loop closed v & ¥ & %/@m%@ [FH-3e-
P g g g S
=P, | =P, | =P, ONT%E_
loop body, \(M%@ %%@ e o o k s C_‘\
fair eRegen’ egepen’ egegene e
______________________________________ Y
loop body, Wi o Wi RV oy
notfair ..ol b S s o
I \ \/
oO—
VN -
Stem o?‘+ [I 7
rag SEEN
AN /
N
|S| branches,
no changing between branches
S _ 2 S _
Ig | . O(|§°) T !S = O(|§-|T])
_ k|
r=,d> = 0O(d) [(T=)*] =

(@© 2005 V. Schuppan — Compuit

er Systems Institute, ETH Zurich.

Experiments

Show feasibility of model checking translated model: compare BDD-based
symbolic model checking of LTL properties using

— Standard algorithm: NuSMV 2.2.2, labeled LTL
— Translated model: invariant checking in NuSMV 2.2.2, labeled L2S

Remarks

— LTL to Bichi automata with NuSMV'’s ItI2smv
— No cone of influence reduction

— BDD variable order:
— Use static order if available
— No dynamic reordering
— Interleave original state variables and L2S copies

Results

CPU time [seconds] — false

3600 - : — =
| |
1000 | -
[]
100 | - m]
~ .
"1 10} = p "
| |
" | |
1t .
0.1 = : : : :
0.1 1 10 100 1000 3600

Memory [# BDD nodes] — false

1e+08

1e+07 ¢

1e+06

LTL

1e+05 |

1e+04 |

1e+03 : : : :
16403 1e+04 1e+05 1e+06 1e+07 1e+08

L2S

LTL

CPU time [seconds] — true

3600
1000 r
100 r 1
| |
10 r
..
1t . . n o
| |
01 | . L L L
0.1 1 10 100 1000 3600

Memory [# BDD nodes] — true

LTL

1e+08

1e+07

1e+06

1e+05

1e+04

1e+03

1e+03

1e+04 1e+05 1e+06 1e+07 1e+08

L2S

(© 2005 V. Schuppan — Computer Systems Institute, ETH Ziirich.

Half-way Summary

Benefits
— Find shortest lassos with a BDD-based model checker
— Make tools and methods for safety available for liveness properties
— Have quick and dirty liveness algorithm

— Need fewer liveness proofs

What's more
— Exponential speed up on selected examples

— Extension to infinite state systems:
regular model checking, pushdown systems, timed automata

— Optimizations

10

Contents

1. Model Checking 101

2. Liveness Checking as Safety Checking

3. Tight Buchi Automata

4. Conclusions

11

Tight Blchi Automata
Not all Blichi automata allow to find shortest counterexamples:

“(PAXGQ)
LTL formula

e
N N

(—(X

system model Buchi automaton

(o0 o (P2)
N L/

(Buchi) product automaton

To find shortest counterexamples, for each counterexample the Blchi au-
tomaton must have an accepting run of the same shape as the counterex-
ample:

Va=By?elLangB).dp=01®c RungB) .p=a A |B|=|o|Alt| =Y

= Extend notion of tight automaton [Kupferman, Vardi '01] to Buchi aut.

(© 2005 V. Schuppan — Computer Systems Institute, ETH Ziirich

12

How Bad Is It? 13

Let
— @ be a future time/mixed future and past time LTL property,
— B™® be a Buchi automaton constructed with the method of
Gerth et al./Kesten et al. , and

— o = By® be a counterexample to @.

Then there is an accepting run p = ot® on a in B™? with
0] < 1B+ (hegys (@) + DY)

and
T =1v
where h IS the maximum number of nested future/past operators.

flp

Popular methods to construct Blichi automata may lead to counterexam-
ples with excess length linear in the maximum number of nested operators.

The method by Kesten et al. produces tight automata for future time LTL.

(© 2005 V. Schuppan — Computer Systems Institute, ETH Ziirich

Tightening Blichi Automata

Assume the following (abstract) run and counterexample:

un (D-@-@O-@- O~ O-@-©-10-()-(-19-0)-

cex (-~~~ -~~~

Have different parts of run work in parallel: form vectors of states

OO OO 8y O D
©On@On®r OnOHOf OGO
un (-G O-@EOOE O OEr

A4 V
stem loop stem loop loop

o @-O-@-@O- o @-B-O-@-@-O-@-C-

stem loop stem loop loop

/
/

14

Experiments

15

Determine counterexample length using

— standard algorithm and standard automaton
— invariant checking of translated model and standard automaton
— Invariant checking of translated model and tight automaton

Compare finding shortest counterexamples with tight encoding using

— SAT-based BMC [Heljanko, Junttila, Latvala '05]
= preliminary incremental implementation of [Latvala et al. '05]
modified NuSMV 2.2.2, labeled BMC

— BDD-based invariant checking of translated model, labeled L2S

Remarks

— as before, but

— no static order for BDDs (other than interleaving of original and L2S
copies of state variables)

Results: Reduction in Counterexample Length

400

LTL, not tight

350 | L2S, not tlght I
L2S, tight m—

300 r
250 r
200 r

length

150 |
100 |
50 r

0

sample

16

Resu

L

3600

1000 r

BMC (SAT)

1 F

0.1

100 |

10

lts: BDDs vs. SAT

2S vs incremental BMC
— CPU time [seconds]

0.1 1 10 100

L2S (BDDs)

1000 3600

L2S vs incremental BMC

1000 r

BMC (SAT)

100 |

10

17

— Memory [MByte]

-
|] u .
™y
10 100 1000
L2S (BDDs)

Related Work 18

Liveness Checking as Safety Checking:

Shilov, Yi, Eo, O, Choe '01/'05 Reduction of SOEPDL (> 2M of C. Stir-
ling) to reachability. Requires closure under Cartesian product and
subset constructions. More powerful but doubly exponential.

Burch '90 Reduction for timed trace structures. Requires user to come up
with appropriate time constraint.

Ultes-Nitsche '02 Satisfaction within fairness corresponds to some safety
property. May change semantics.

Tight Blchi Automata:

Kupferman, Vardi ‘01 Shortest counterexamples for safety properties. Tight
automata on finite words.

Benedetti, Cimatti '03 Virtual unrolling for BMC.

Latvala, Biere, Heljanko, Junttila '05 Inspiration for tight Blichi automata.

(© 2005 V. Schuppan — Computer Systems Institute, ETH Ziirich

The End

Summary:
— Feasible translation from liveness to safety
— Tight Blchi automata

— Practical BDD-based method to find shortest counterexamples for LTL

Future Work:
— More powerful logics
— Tight Buchi automata for explicit state model checking

— Complementary property of tightness

19

