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Safety vs. Liveness
[Lamport '77], [Alpern, Schneider '85]

Safety

“*Something bad will
not happen.”

The “bad thing”
IS Irremediable.

Liveness

“*Something good will
eventually happen.”

It remains possible for the
“good thing” to occur.
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Model Checking of Safety Properties

[Kupferman, Vardi '01]
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Property is false iff a bad state is reachable.

= Find shortest finite path to bad state.




Model Checking of Liveness Properties
[Vardi, Wolper '86]
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Property is false iff there is an (infinite) fair path.

= Find fair lasso.
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Liveness Checking as Safety Checking
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State-recording translation:

1. Guess loop start: save current state.
2. Find fair state in loop.

3. Find second occurrence of saved state.




Complexity
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Experiments

Show feasibility of model checking translated model: compare BDD-based
symbolic model checking of LTL properties using

— Standard algorithm: NuSMV 2.2.2, labeled LTL
— Translated model: invariant checking in NuSMV 2.2.2, labeled L2S

Remarks

— LTL to Bichi automata with NuSMV'’s ItI2smv
— No cone of influence reduction

— BDD variable order:
— Use static order if available
— No dynamic reordering
— Interleave original state variables and L2S copies




Results
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Half-way Summary

Benefits
— Find shortest lassos with a BDD-based model checker
— Make tools and methods for safety available for liveness properties
— Have quick and dirty liveness algorithm

— Need fewer liveness proofs

What's more
— Exponential speed up on selected examples

— Extension to infinite state systems:
regular model checking, pushdown systems, timed automata

— Optimizations
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Tight Blchi Automata
Not all Blichi automata allow to find shortest counterexamples:
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To find shortest counterexamples, for each counterexample the Blchi au-
tomaton must have an accepting run of the same shape as the counterex-
ample:

Va=By?elLangB).dp=01®c RungB) .p=a A |B|=|o|Alt| =Y

= Extend notion of tight automaton [Kupferman, Vardi '01] to Buchi aut.
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How Bad Is It? 13

Let
— @ be a future time/mixed future and past time LTL property,
— B™® be a Buchi automaton constructed with the method of
Gerth et al./Kesten et al. , and

— o = By® be a counterexample to @.

Then there is an accepting run p = ot® on a in B™? with
0] < 1B+ (hegys (@) + DY)

and
T =1v
where h IS the maximum number of nested future/past operators.

flp

Popular methods to construct Blichi automata may lead to counterexam-
ples with excess length linear in the maximum number of nested operators.

The method by Kesten et al. produces tight automata for future time LTL.
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Tightening Blichi Automata

Assume the following (abstract) run and counterexample:
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Have different parts of run work in parallel: form vectors of states

OO OO 8y O D
©On@On®r OnOHOf OGO
un (-G O-@EOOE O OEr

A4 V
stem loop stem loop loop

o @-O-@-@O- o @-B-O-@-@-O-@-C-

stem loop stem loop loop

/
/

14




Experiments
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Determine counterexample length using

— standard algorithm and standard automaton
— invariant checking of translated model and standard automaton
— Invariant checking of translated model and tight automaton

Compare finding shortest counterexamples with tight encoding using

— SAT-based BMC [Heljanko, Junttila, Latvala '05]
= preliminary incremental implementation of [Latvala et al. '05]
modified NuSMV 2.2.2, labeled BMC

— BDD-based invariant checking of translated model, labeled L2S

Remarks

— as before, but

— no static order for BDDs (other than interleaving of original and L2S
copies of state variables)




Results: Reduction in Counterexample Length
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The End

Summary:
— Feasible translation from liveness to safety
— Tight Blchi automata

— Practical BDD-based method to find shortest counterexamples for LTL

Future Work:
— More powerful logics
— Tight Buchi automata for explicit state model checking

— Complementary property of tightness
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