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LTL Specification Validation with Satisfiability 2

LTL + relatives widely used specification languages; methodologies exist:

– Embedded systems: e.g., [EF06]; [Pil+06].

– Business processes: e.g., [PA06]; [Awa+12].

Examples of satisfiability in validation checks of an LTL specification φ:

– Satisfiability of φ (e.g., [RV10,Awa+12]).

– Feasibility of LTL scenario φ′ in φ: satisfiability of φ∧φ′ (e.g., [Pil+06]).

– Implication of desired LTL property φ′′ by φ: unsatisfiability of φ∧¬φ′′

(e.g., [Pil+06]).

An unsatisfiable core (UC) is an unsatisfiable formula φ′ that is derived
from another unsatisfiable formula φ. φ′ focuses on a reason for φ being
unsatisfiable.

UCs can help understanding results of validation checks.
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Linear Temporal Logic (LTL) 3

LTL formulas are evaluated on infinite sequences of sets of atomic propo-
sitions, i.e., π ∈ (2AP)ω. Constants and Boolean operators as expected.

π, i |= p ⇔ p ∈ π[i]
i−1 i i+1 i+2 j−1 j j+1

{   ,...}p

π, i |= Xψ ⇔ π, i+ 1 |= ψ
i−1 i i+1 i+2 j−1 j j+1

ψ

π, i |= Fψ ⇔ ∃j ≥ i . π, j |= ψ
i+2i+1ii−1 j−1 j j+1

ψ

π, i |= Gψ ⇔ ∀i′ ≥ i . π, i′ |= ψ
i+2i+1ii−1 j−1 j j+1

ψψ ψψψψ

π, i |= ψUψ′ ⇔ ∃j ≥ i .
π, j |= ψ′ ∧
∀i ≤ i′′ < j . π, i′′ |= ψ

i+2i+1 j−1 jii−1 j+1

ψ’ψψψψ
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UCs via Syntax Trees 4

∧
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(G(p ∧ ψ ))∧(X(¬p ∧ ¬ψ′ )) (G(p ∧ 1 )) ∧ (X(¬p ∧ ¬0 ))

Replace some positive polarity occurrences of subformulas with 1 and
some negative polarity occurrences of subformulas with 0 while

preserving unsatisfiability ([Sch12b,KV03]).
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UCs with Sets of Time Points 5

In model checking it is common to annotate counterexamples with ad-
ditional information to help users understanding them (see references in
[Bee+09]).

Counterexamples can be annotated with the time points at which its atomic
propositions matter.

Almost no comparable work for UCs or vacuity (except first attempts [Sim+10]
and ideas [Sch12b]).

In our example, the p operand of the G operator “matters” only at time
point 1. Other subformulas also “matter” only at time points 0 or 1.

( G
{1}

p) ∧
{0},{0}

( X
{1}

¬
{1}

p)

Intuition: replace occurrences of subformulas at specific time points with 1

or 0 depending on polarity (rather than always as before).
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LTL with Sets of Time Points (LTLp) 7

Annotate each subformula with a set of time points ⊆ N.

Not a “new logic” but annotations incorporating the required information
naturally with well-defined semantics.

Sets of time points of a subformula are attached to the operator of its im-
mediate superformula.

The top level formula is evaluated (only) at time point 0. This is the standard
semantics anyway.

Proper subformulas are evaluated at given time points. At other time points
they are replaced with 1 or 0 depending on polarity.

Example operators:

+: (π, i) |= τ ∧
I,I ′

τ ′ ⇔ ((i 6∈ I) ∨ ((π, i) |= τ)) ∧ ((i 6∈ I ′) ∨ ((π, i) |= τ ′))

− : (π, i) |= G
I
τ ⇔ ∀i′ ≥ i . ((i′ ∈ I) ∧ ((π, i′) |= τ))
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LTLp — A More Complex Example 8

p ∧ ((G(p → XXp)) ∧ (F((¬p) ∧X¬p)))

1st and 2nd conjunct: p must be 1 at even time points  unsat!
3rd conj.: p must eventually be 0 two time points in a row

p ∧
{0},{0}

(( G
2·N

(p →
2·N,2·N

X
2·N+1

X
2·N+2

p)) ∧
{0},{0}

( F
N

(( ¬
2·N

p) ∧
2·N,2·N+1

X
2·N+2

¬
2·N+2

p)))
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Choice of Solver 9

TRP++ [HK03,HK04,trp++] by Boris Konev and Ullrich Hustadt.

Based on Temporal Resolution (TR) [Fis91,FDP01].

Uses BFS [Dix98,Dix97,Dix95] for loop search.

Performed competitive in experimental evaluation of LTL satisfiability solvers
[SD11] (in particular also on unsatisfiable instances).

Access to and reasoning about proof is straightforward.

Extended with extraction of UCs without sets of time points “previously”
[Sch12a].

Available as source code.
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Separated Normal Form (SNF) 10

TR works on a clausal normal form called Separated Normal Form (SNF)
[FDP01].

Let p1, . . . , pn, q1, . . . , qn′, l with 0 ≤ n, n′ be literals such that p1, . . . , pn
and q1, . . . , qn′ are pairwise different.

(p1 ∨ . . . ∨ pn) is an initial clause.

(G((p1 ∨ . . . ∨ pn) ∨ (X(q1 ∨ . . . ∨ qn′)))) is a global clause.

(G((p1 ∨ . . . ∨ pn) ∨ (F(l)))) is an eventuality clause.

() or (G()), denoted 2, stand for 0 or G(0) and are called empty clause.

Let c1, . . . , cn with 0 ≤ n be SNF clauses. Then
∧

1≤i≤n ci is an LTL
formula in SNF.

There exists a structure-preserving translation from an LTL formula into an
equisatisfiable formula in SNF [FDP01].
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A Taste of Temporal Resolution 11

One part: straightforward extension of propositional resolution. Examples:

(p1 ∨ . . . ∨ pn ∨ l) (G(¬l ∨ q1 ∨ . . . ∨ qn′))

(p1 ∨ . . . ∨ pn ∨ q1 ∨ . . . ∨ qn′)
init-in

(G(p1 ∨ . . . ∨ pn ∨ l))
(G((q1 ∨ . . . ∨ qn′) ∨ (X(¬l ∨ r1 ∨ . . . ∨ rn′′))))

(G((q1 ∨ . . . ∨ qn′) ∨X(p1 ∨ . . . ∨ pn ∨ r1 ∨ . . . ∨ rn′′)))
step-nx

Note: time step of 1 between first premise and conclusion.

Other part: for resolving with eventuality clauses. Note: Fixed point check
involves subsumption between already derived clauses.
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Resolution Graph, UC w/o Sets of Time Points [Sch12a] 12

Graph with clauses as
vertices and edges from
premises to conclu-
sions.

UC w/o sets of time
points obtained by
taking input clauses
backward reachable
from empty clause.

Standard in proposi-
tional SAT.

G(F¬a) G((¬a) ∨Xa) a

G(X¬a) G((¬a) ∨Xa)

G(¬a)

G(¬a) 2

loo
p-

co
nc

1

loop-it-i-x

init-instep-xx

step-xx

loop-it-s
ub

loop-conc1

init-in

{(a), (G((¬a) ∨ (X(a)))), (G(F(¬a)))}

Crucial differences to propositional SAT for this paper:
– Time shifting of premises by either 0 or 1 time steps.
– Loops from subsumption checks (makes computation non-straightforward).
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Assigning Sets of Time Points 1 13

TR terminates with result unsatisfiable iff the empty clause is derived.

The empty clause comes in an initial and a universal flavor.

The empty initial clause must be assigned time point 0.

The empty universal clause could be assigned any time point; we pick 0.

Now propagate sets of time points from conclusions to premises, ...

... taking time steps into account.
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Assigning Sets of Time Points 2 14

G(F¬a)

{0}

G((¬a) ∨Xa)

N

a

{0}

G(X¬a)

N

G((¬a) ∨Xa)

N

G(¬a)

N

G(¬a)

{0}

2

{0}

loo
p-

co
nc

1

lo
op

-it
-i-

x

in
it-

in

step-xx

step-xx

loop-it-s
ub

lo
op

-c
on

c1

init-in

Blue edges involved time steps of 0, red edges time steps of 1.

Sets of time points for input clauses are obtained by taking contributions
from all (reverse) paths from the empty clause into account.

Note that loops prevent us from simply pushing information until a fixed
point is reached.
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Excursion: Parikh Images 15

Let Σ be a finite alphabet, σ ∈ Σ a letter in Σ, L ⊆ Σ∗ a language over
Σ, and w ∈ L a word in L.

Define a function from words and letters to naturals Ψ : Σ∗ × Σ →
N, (w, σ) 7→ m where m is the number of occurrences of σ in w.

Ψ is called Parikh mapping and Ψ(w, σ) is called the Parikh image of σ in
w.

The Parikh image of a set of words W is defined in the natural way:
Ψ(W,σ) = {Ψ(w, σ) | w ∈W}.

Parikh’s theorem [Par66] states that for every context-free language L, for
every letter σ, the Parikh image Ψ(L, σ) is semilinear.
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Computing Sets of Time Points for Input Clauses 1 16

For each input clause:

– Turn the resolution graph into an NFA over the alphabet {0,1} as fol-
lows.
– The set of states is given by the set of clauses of the resolution

graph.
– The single initial state is the empty clause.
– The single final state is the input clause.
– The set of transitions is given by the set of reversed edges of the

resolution graph.
– The transitions are labeled with 0 or 1 depending on their time

steps.

– Now the set of time points for the input clause is just the Parikh image
of the letter 1 in the regular language given by the NFA.

For |C| input clauses and a resolution graph with |V ′| vertices backward
reachable from the empty clause the sets of time points can be computed
in time O(|V ′|3 + |V ′|2 · |C|).
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Computing Sets of Time Points for Input Clauses 2 17

G(F¬a)

{0}

G((¬a) ∨Xa)

N

a

{0}

G(X¬a)
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G((¬a) ∨Xa)

N

G(¬a)

N
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step-xx

loop-it-s
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init-in

G(F¬a)
G ((¬a)
∨ (Xa))

a

G(X¬a)
G ((¬a)
∨ (Xa))

G(¬a)

G(¬a) 2

0

0

0

0

0

1

0

0

Example for input clause (G((¬a) ∨ (X(a)))).

Accepted language: 00(01)∗00.

Parikh image of letter 1 in 00(01)∗00: N.
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Implementation, Experimental Setup 18

Implementation

– basis: TRP++ extended with extraction of UCs [Sch12a]

– make NFA ε-free: [HU79]

– compute Parikh images for unary NFA: optimized versions of

– algorithm by Gawrychowski [Gaw11]

– algorithm by Sawa [Saw13]

Experimental Setup

– Intel Core i7 M 620 @ 2 GHz

– Ubuntu 10.04

– time limit: 600 seconds

– memory limit: 6 GB

– time and memory measured and bounded with run [run]
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Benchmarks 19

Family Description a b c d Source

Category application
alaska lift Elevator specifications 71 / 71 / 71 4605 [Har05,

Wul+08]

anzu genbuf Generalized buffer 16 / 16 / 16 2676 [Blo+07]

forobots Model of a robot with proper-
ties

25 / 25 / 25 635 [BDF09]

Category crafted
schup. O1form. Exponential behavior in some

solvers
21 / 21 / 21 1606 [SD11]

schup. O2form. Exponential behavior in some
solvers

8 / 7 / 7 91 [SD11]

schuppan phltl Temporal variant of pigeonhole 4 / 4 / 4 125 [SD11]
Category random

rozier formulas Obtained by generating a syn-
tax tree

66 / 66 / 66 157 [RV10]

trp Obtained by lifting proposi-
tional CNF into fixed temporal
structure

397 / 397 / 345 1421 [HS02]

a: # solved UC w/o s.o.t.p. c: # solved UC w/ s.o.t.p. (Sawa’s alg.)
b: # solved UC w/ s.o.t.p. (Gawrychowski’s alg.) d: |largest solved|
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Occurrences of Sets of Time Points 20
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Overhead of UC Extraction with Sets of Time Points 21
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The End 22

Summary

Suggested more fine-grained notion of UCs for LTL.

Can yield interesting additional information.

Extraction of UCs with sets of time points incurs acceptable overhead.

Future Work

Use solvers based on SAT or BDDs.

Minimize sets of time points w.r.t. ⊆.

Extend to unrealizable cores.

Instead of using Parikh images solve set of equations of the form I =

I ′ ∪ . . . ∪ (I ′′+ 1) ∪ . . . where I, I ′, . . . , I ′′, . . . ⊆ N.
Author: V. Schuppan
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Thanks to

... you for your attention,

... B. Konev and M. Ludwig for making TRP++ and TSPASS available,

... A. Cimatti for bringing up the subject of temporal resolution and for
pointing out that the resolution graph can be seen as a regular lan-
guage acceptor.

Questions?

http://www.schuppan.de/viktor/qapl13/
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