# Extracting Unsatisfiable Cores for LTL via Temporal Resolution

Viktor Schuppan

TIME 2013, Pensacola, FL, USA, September 26-28, 2013

#### LTL as a Specification Language

LTL + relatives widely used specification languages; methodologies exist:

- Embedded systems: e.g., [EF06]; [Pil+06].
- Business processes: e.g., [PA06]; [Awa+12].

#### But:

Beer et al. (IBM) [Bee+01]:

[...] during the first formal verification runs of a new hardware design, typically 20 % of formulas are found to be trivially valid, and that trivial validity always points to a real problem in either the design or its specification or environment.

Bloem et al. [Blo+07] in a work on LTL synthesis:

[...] writing a complete formal specification [...] was not trivial.

Although this approach removes the need for verification [...] the specification itself still needs to be validated.

Efficient working with LTL requires effective debugging techniques.

# LTL Specification Validation with Satisfiability

Examples of satisfiability in validation checks of an LTL specification  $\phi$ :

- Satisfiability of  $\phi$  (e.g., [RV10,Awa+12]).
- Feasibility of LTL scenario  $\phi'$  in  $\phi$ : satisfiability of  $\phi \land \phi'$  (e.g., [Pil+06]).
- Implication of desired LTL property  $\phi''$  by  $\phi$ : unsatisfiability of  $\phi \land \neg \phi''$  (e.g., [Pil+06]).

An unsatisfiable core (UC) is an unsatisfiable formula  $\phi'$  that is derived from another unsatisfiable formula  $\phi$ .  $\phi'$  focuses on a reason for  $\phi$  being unsatisfiable.

UCs can help understanding results of validation checks.

Failure-inducing input minimization (e.g., [ZH02]) is established in many domains, e.g., linear programming (e.g., [CD91]), constraint satisfaction (e.g., [Bak+93]), compilers (e.g., [Wha94]), SAT (e.g., [BS01]), declarative specifications (e.g., [ShI+03]), and LTL satisfiability (e.g., [Sch12]) and realizability (e.g., [Cim+08]).



Replace some positive polarity occurrences of subformulas with 1 and some negative polarity occurrences of subformulas with 0 while preserving unsatisfiability ([Sch12,KV03]).

# Temporal Resolution (TR) as a Basis for Extracting UCs

5

Deletion-based extraction of UCs (e.g., [MS10]) is straightforward using any solver but may be expensive.

**Resolution-based extraction of UCs** 

- Common, e.g., in SAT [VG02].
- Resolution method for LTL suggested by Fisher [Fis91,FDP01] and implemented in TRP++ [HK03,HK04,trp++]; sources available.
- TRP++ competitive in experimental evaluation [SD11]; in particular also on unsatisfiable instances.
- Access to and reasoning about proof is straightforward.
- BDD-based NuSMV [Cim+02] also performed well on unsatisfiable instances; but: BDD layer as complication.
- Tableau-based solvers LWB [Heu+95] and plt1 [plt] also provide good access to proof; but: didn't do well on unsatisfiable instances.

# 1. Introduction

- 2. Temporal Resolution
- 3. Extracting UCs via Temporal Resolution
- 4. Implementation and Experimental Evaluation
- 5. Outlook: Adding Sets of Time Points

# Separated Normal Form (SNF)

TR works on a clausal normal form called Separated Normal Form (SNF) [FDP01].

Let  $p_1, \ldots, p_n, q_1, \ldots, q_{n'}, l$  with  $0 \le n, n'$  be literals such that  $p_1, \ldots, p_n$  and  $q_1, \ldots, q_{n'}$  are pairwise different.

 $(p_1 \lor \ldots \lor p_n)$  is an initial clause.

 $(\mathbf{G}((p_1 \lor \ldots \lor p_n) \lor (\mathbf{X}(q_1 \lor \ldots \lor q_{n'}))))$  is a global clause.

 $(G((p_1 \lor \ldots \lor p_n) \lor (F(l))))$  is an eventuality clause.

() or (G()), denoted  $\Box$ , stand for 0 or G(0) and are called empty clause.

Let  $c_1, \ldots, c_n$  with  $0 \le n$  be SNF clauses. Then  $\bigwedge_{1 \le i \le n} c_i$  is an LTL formula in SNF.

There exists a structure-preserving translation from an LTL formula into an equisatisfiable formula in SNF [FDP01].

Initial and step resolution are straightforward extensions of propositional resolution.

They differentiate between initial, global current, and global next literals to allow resolution between 2 clauses each of which may be initial or global.

Example 1, initial and global clause:

$$\frac{(P \lor l) \quad (\mathbf{G}((\neg l) \lor Q))}{(P \lor Q)}$$

Example 2, 2 global clauses:

$$\frac{(\mathbf{G}(P \lor l)) \quad (\mathbf{G}((Q) \lor (\mathbf{X}((\neg l) \lor R))))}{(\mathbf{G}((Q) \lor (\mathbf{X}(P \lor R))))}$$



#### Eventuality Resolution

Goal

$$\frac{(\mathbf{G}(P \vee \mathbf{F}l)) \quad (\mathbf{G}(Q \vee \mathbf{X}\mathbf{G}\neg l))}{(\mathbf{G}(P \vee Q \vee l))}$$

#### Loop Search for l

Let  $Q \equiv 0$ .

Perform loop search iterations until done.

#### Loop Search Iteration for *l*

Assume all global clauses with non-empty X part.

Assume all global clauses with empty X part, shifted 1 step into the future. Assume  $(GX(Q \lor l))$ .

Deduce, using step resolution between clauses with non-empty  $\mathbf{X}$  part, R.

Distinguish 3 cases:

- $R \leq Q$ : done, found Q as desired.
- Q < R < 1: perform next iteration with  $Q \equiv R$ .
- -R = 1: done, no Q found at this point.

#### Scheduling and Flow of Information



#### Extraction of a UC with a Resolution Graph \_\_\_\_\_

During the execution of the TR algorithm construct a resolution graph.

- Clauses are vertices.
- Applications of production rules induce edges from premises to conclusions.

If the empty clause has been derived

- Construct the set of clauses backward reachable from the empty clause.
- Intersect with set of starting clauses to obtain a UC in SNF.

So far, so trivial. Some optimizations follow.

Resolution graph interesting in its own right as a proof object that enables to extract further useful information. See outlook.

#### Set of Premises to Include in Resolution Graph \_\_\_\_\_

- 1. Several production rules have an eventuality clause as a premise. In three cases there need not be an edge from that premise to the conclusion as that eventuality clause will be included in the resolution graph via other edges.
- 2. A successful loop search finds *Q* and proves that it is a fixed point. Only the proof of *Q* being a fixed point is required in the resolution graph — which happens in the last iteration of a successful loop search. Previous iterations only serve to derive *Q* and can be discarded (no edges from one loop search iteration to the next).

#### Minimality of Set of Premises to Include in Res. Graph \_

To show that some premise of some production rule is needed to obtain a UC, find

- a minimal UC in SNF  $C^{uc}$ ,
- such that in the backward reachable part of its resolution graph,
- some clause in  $C^{uc}$  is backward reachable from the empty clause only via an edge representing that premise in that production rule.
- Example: {(*a*), (G(( $\neg a$ )  $\lor$  (X(*a*)))), (G(F( $\neg a$ )))}

![](_page_12_Figure_6.jpeg)

#### **Pruning the Resolution Graph**

![](_page_13_Figure_1.jpeg)

- After completion of a loop search there will be no further edges from those loop search partitions to main partition. Prune vertices not backward reachable from the main partition.
- 2. With earlier optimization a failed loop search iteration has no outgoing edges. Prune failed loop search iteration right away.

# From LTL to SNF and Back

Structure preserving translation (e.g., [PG86]) from LTL to SNF.

LTL  $(\mathbf{G}p) \wedge (\mathbf{X}((\neg p) \wedge (q \lor r)))$ 

SNF, UC in SNF

$$\begin{aligned} &\{x_{\phi}, \\ &(\mathbf{G}(x_{\phi} \to x_{\mathbf{G}p})), \\ &(\mathbf{G}(x_{\phi} \to x_{\mathbf{X}((\neg p) \land (q \lor r))})), \\ &(\mathbf{G}(x_{\mathbf{G}p} \to p)), \\ &(\mathbf{G}(x_{\mathbf{G}p} \to \mathbf{X}x_{\mathbf{G}p})), \\ &(\mathbf{G}(x_{\mathbf{X}((\neg p) \land (q \lor r))} \to \mathbf{X}x_{(\neg p) \land (q \lor r)})), \\ &(\mathbf{G}(x_{(\neg p) \land (q \lor r)} \to x_{\neg p})), \\ &(\mathbf{G}(x_{(\neg p) \land (q \lor r)} \to x_{q \lor r})), \\ &(\mathbf{G}(x_{\neg p} \to \neg p)), \\ &(\mathbf{G}(x_{q \lor r} \to q \lor r)) \end{aligned}$$

UC in LTL

 $(\mathbf{G}p) \wedge (\mathbf{X}((\neg p) \wedge \mathbf{1}))$ 

 $q \lor r$  does not appear on any right hand side of an implication of a clause in the UC in SNF; it is therefore replaced with 1 in the UC in LTL.

A UC  $\phi^{uc}$  in LTL is minimal iff no positive polarity occurrence of a subformula of  $\phi^{uc}$  can be replaced with 1 and no negative polarity occurrence of a subformula of  $\phi^{uc}$  can be replaced with 0 without making  $\phi^{uc}$  satisfiable.

UCs obtained so far may not be minimal.

Perform deletion-based minimization (e.g., [MS10]).

May be expensive in general, but can do it on already reduced formula.

Note: minimization must be performed on LTL rather than SNF levels.

LTL (= UC in LTL)

Example for non-minimality in LTL if minimization is performed on SNF level:

```
\begin{cases} x_{\phi}, \\ (\mathbf{G}(x_{\phi} \to x_{\neg p}) \\ (\mathbf{G}(x_{\neg p} \to \neg p) \\ (\mathbf{G}(x_{\phi} \to x_{(\mathbf{G} \to q)}) \\ (\mathbf{G}(x_{\phi} \to x_{(\mathbf{G} \to q)}) \\ (\mathbf{G}(x_{\mathbf{G} \neg q}) \land (p) \\ (\mathbf{G}(x_{\mathbf{G} \neg q} \to \mathbf{X}) \\ (\mathbf{G}(x_{\mathbf{G} \neg q} \to \mathbf{X})) \\ (\mathbf{G}(x_{\mathbf{G} \neg q} \to \mathbf{X}) \\ (\mathbf{G}(x_{\mathbf{G} \neg q}) \land (p) \\ (\mathbf{G}(x_{\mathbf{G} \neg q} \to \mathbf{X})) \\ (\mathbf{G}(x
```

$$\begin{aligned} x_{\phi}, \\ (\mathbf{G}(x_{\phi} \to x_{\neg p})), \\ (\mathbf{G}(x_{\neg p} \to \neg p)), \\ (\mathbf{G}(x_{\phi} \to x_{(\mathbf{G} \neg q) \land (p\mathbf{U}q)})), \\ (\mathbf{G}(x_{(\mathbf{G} \neg q) \land (p\mathbf{U}q)} \to x_{\mathbf{G} \neg q})), \\ (\mathbf{G}(x_{\mathbf{G} \neg q} \to \mathbf{X}x_{\mathbf{G} \neg q})), \\ (\mathbf{G}(x_{\mathbf{G} \neg q} \to \mathbf{X} \neg q)), \\ (\mathbf{G}(x_{\mathbf{G} \neg q} \to x_{\neg q})), \\ (\mathbf{G}(x_{(\mathbf{G} \neg q) \land (p\mathbf{U}q)} \to x_{p\mathbf{U}q})), \\ (\mathbf{G}(x_{p\mathbf{U}q} \to (q \lor p))), \\ (\mathbf{G}(x_{p\mathbf{U}q} \to (q \lor \mathbf{X}x_{x_{p\mathbf{U}q}}))), \\ (\mathbf{G}(x_{p\mathbf{U}q} \to \mathbf{F}q)) \end{aligned}$$

 $(\neg p) \land ((\mathbf{G} \neg q) \land (p\mathbf{U}q))$ 

#### Implementation

- on top of TRP++ [HK03,HK04,trp++]
- data structures: C++ standard library [SL95,Jos12]
- graph operations: Boost Graph Library [bgl,SLL02]

#### **Experimental Setup**

- Intel Core i7 M 620 @ 2 GHz
- Ubuntu 12.04
- time limit: 600 seconds
- memory limit: 6 GB
- time and memory measured and bounded with run [run]

| Family               | Description                                                                 | а       | b       | С   | d    | Source            |  |
|----------------------|-----------------------------------------------------------------------------|---------|---------|-----|------|-------------------|--|
| Category application |                                                                             |         |         |     |      |                   |  |
| alaska_lift          | Elevator specifications                                                     | 75 /    | 72 /    | 72  | 4605 | [Har05,<br>DW+08] |  |
| anzu_genbuf          | Generalized buffer                                                          | 16 /    | 16 /    | 16  | 1924 | [Blo+07]          |  |
| forobots             | Model of a robot with proper-<br>ties                                       | 25 /    | 25 /    | 25  | 635  | [BDF09]           |  |
| Category crafted     |                                                                             |         |         |     |      |                   |  |
| schupO1form.         | Exponential behavior in some solvers                                        | 27 /    | 27 /    | 27  | 4006 | [SD11]            |  |
| schupO2form.         | Exponential behavior in some solvers                                        | 8 /     | 8 /     | 8   | 91   | [SD11]            |  |
| schuppan_phltl       | Temporal variant of pigeonhole                                              | 4 /     | 4 /     | 4   | 125  | [SD11]            |  |
| Category random      |                                                                             |         |         |     |      |                   |  |
| rozier_formulas      | Obtained by generating a syn-<br>tax tree                                   | 62 /    | 62 /    | 62  | 157  | [RV10]            |  |
| trp                  | Obtained by lifting proposi-<br>tional CNF into fixed temporal<br>structure | 397 / 3 | 397 / 3 | 330 | 1421 | [HS02]            |  |

a: # solved without UC extractionb: # solved with extraction of UCsc: # solved with extraction of minimal UCsd: |largest solved without UC extraction|

#### **Overhead of UC Extraction**

![](_page_19_Figure_1.jpeg)

no UC extraction

![](_page_20_Figure_1.jpeg)

UC extraction

#### **Benefit of Optimizations 1**

![](_page_21_Figure_1.jpeg)

Shown: peak size of resolution graph [# vertices + # edges]

X-axes: all optimizations enabled

Y-axes:

| left include premise of aug2                   |
|------------------------------------------------|
| center include premise 1 of BFS-loop-it-init-c |
| right include premise 2 of BFS-loop-it-init-c  |

#### **Benefit of Optimizations 2**

![](_page_22_Figure_1.jpeg)

Shown: peak size of resolution graph [# vertices + # edges]

X-axes: all optimizations enabled

Y-axes:

left include premise 2 of BFS-loop-conclusion2

center disable pruning of resolution graph between loop searches

right disable all optimizations

# Outlook: UCs with Sets of Time Points 1

Intuition: replace occurrences of subformulas at specific time points with 1 or 0 depending on polarity (rather than always as before).

Simple example:

$$\begin{array}{c} \mathbf{G} \\ \{1\} \end{array} \stackrel{p)}{\underset{0}{\overset{\wedge}{,\{0\}}}} \left(\begin{array}{c} \mathbf{X} \\ \{1\} \end{array} \stackrel{\neg}{\underset{1}{}} p\right)$$

The p operand of the G operator "matters" only at time point 1. Other subformulas also "matter" only at time points 0 or 1.

Complex example:

$$p \bigwedge_{\{0\},\{0\}} (( \underset{2\mathbb{N}}{\mathbf{G}} (p \xrightarrow{\rightarrow} \underset{2\mathbb{N},2\mathbb{N}}{\mathbf{X}} \underset{2\mathbb{N}+1}{\mathbf{X}} (p)) \bigwedge_{\{0\},\{0\}} (p \xrightarrow{} \underset{\mathbb{N}}{\mathbf{X}} (p \xrightarrow{} \underset{2\mathbb{N},2\mathbb{N}+1}{\mathbf{X}} (p)) \underset{2\mathbb{N},2\mathbb{N}+1}{\mathbf{X}} (p \xrightarrow{} \underset{2\mathbb{N}+2}{\mathbf{X}} (p)))$$

1st and 2nd conjunct: p must be 1 at even time points 3rd conj.: p must eventually be 0 two time points in a row

unsat!

# **Outlook: UCs with Sets of Time Points 2**

Some inference rules shift some premises 1 time step into the future.

For example, when using  $G(p \lor q)$  and  $XG(\neg p \lor r)$  to derive  $XG(q \lor r)$ , the first premise is shifted.

Fix the empty clause to happen at time point 0. For each input clause c, for each path on which c is backward reachable from  $\Box$ , count the number of time steps.

Note: loops in the resolution graph complicate the computation.

#### Summary

Suggested, implemented, and evaluated a method to extract UCs for LTL from a single run of a solver.

UC extraction can be performed efficiently.

Resulting UCs are significantly smaller than input formulas.

Optimizations help to keep resolution graph small.

**Future Work** 

Use solvers based on SAT or BDDs.

Investigate other temporal logics.

Extend to unrealizable cores.

# Thanks to

- ... you for your attention,
- ... B. Konev and M. Ludwig for making TRP++ and TSPASS available,
- ... A. Cimatti for bringing up the subject of temporal resolution.

# Questions?

http://www.schuppan.de/viktor/time13/

#### References

- Awa+12 A. Awad, R. Goré, Z. Hou, J. Thomson, and M. Weidlich. An Iterative Approach to Synthesize Business Process Templates from Compliance Rules. Inf. Syst. 37.8, 2012.
- Bak+93 R. Bakker, F. Dikker, F. Tempelman, and P. Wognum. Diagnosing and Solving Over-Determined Constraint Satisfaction Problems. IJCAI'93.
- **BDF09** A. Behdenna, C. Dixon, and M. Fisher. Deductive Verification of Simple Foraging Robotic Behaviours. International Journal of Intelligent Computing and Cybernetics, 2009.

**Bee+01** I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient Detection of Vacuity in Temporal Model Checking. Formal Methods in System Design 18.2, 2001. **bgl** http://www.boost.org/doc/libs/release/libs/graph/.

- BIo+07 R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and M. Weiglhofer. Specify, Compile, Run: Hardware from PSL. COCV'07.
- BS01 R. Bruni and A. Sassano. Restoring Satisfiability or Maintaining Unsatisfiability by finding small Unsatisfiable Subformulae. SAT'01.
- CD91 J. Chinneck and E. Dravnieks. Locating Minimal Infeasible Constraint Sets in Linear Programs. ORSA Journal on Computing 3.2, 1991.
- Cim+02 A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Model Checking. CAV'02.
- Cim+08 A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev. Diagnostic Information for Realizability. VMCAI'08.
- DW+08 M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. Antichains: Alternative Algorithms for LTL Satisfibility and Model-Checking. TACAS'08.
- EF06 C. Eisner and D. Fisman. A Practical Introduction to PSL. Springer, 2006.
- FDP01 M. Fisher, C. Dixon, and M. Peim. Clausal Temporal Resolution. ACM Trans. Comput. Log. 2.1, 2001.
- Fis91 M. Fisher. A Resolution Method for Temporal Logic. IJCAI'91.
- HK03 U. Hustadt and B. Konev. TRP++ 2.0: A Temporal Resolution Prover. CADE'03.
- HK04 U. Hustadt and B. Konev. TRP++: A Temporal Resolution Prover. Collegium Logicum, Vol. 8, 2004.
- Har05 A. Harding. Symbolic Strategy Synthesis For Games With LTL Winning Conditions. PhD thesis. University of Birmingham, 2005.
- HS02 U. Hustadt and R. A. Schmidt. Scientific Benchmarking with Temporal Logic Decision Procedures. KR'02.
- Jos12 N. Josuttis. The C++ Standard Library: A Tutorial and Reference. Second Edition. Addison Wesley, 2012.
- MS10 J. Marques Silva. Minimal Unsatisfiability: Models, Al-gorithms and Applications (Invited Paper). ISMVL'10.
- PA06 M. Pesic and W. van der Aalst. A Declarative Approach for Flexible Business Processes Management. Business Process Management Workshops. 2006.
- PG86 D. Plaisted and S. Greenbaum. A Structure-Preserving Clause Form Translation. J. Symb. Comput. 2.3, 1986.
- Pil+06 I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, and A. Cimatti. Formal Analysis of Hardware Requirements. DAC'06.
- pltl http://users.cecs.anu.edu.au/rpg/PLTLProvers/
- run A. Biere and T. Jussila. Benchmark Tool Run. URL: http://fmv.jku.at/run/
- RV10 K. Rozier and M. Vardi. LTL Satisfiability Checking. STTT, 12(2), 2010.
- Sch12 V. Schuppan. Towards a Notion of Unsatisfiable and Unrealizable Cores for LTL. Sci. Comput. Program. 77.7-8, 2012.
- SD11 V. Schuppan and L. Darmawan. Evaluating LTL Satisfiability Solvers. ATVA'11.
- Shl+03 I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, and M. Taghdiri. Debugging Overconstrained Declarative Models Using Unsatisfiable Cores. ASE'03.
- SL95 A. Stepanov and M. Lee. The Standard Template Library. Tech. rep. 95-11 (R.1), HP Laboratories, Nov. 1995.
- SLL02 J. Siek, L. Lee, and A. Lumsdaine. The Boost Graph Library User Guide and Reference Manual. Pearson/Prentice Hall, 2002.
- trp++ http://www.csc.liv.ac.uk/ konev/software/trp++/.
- Wha94 D. Whalley. Automatic Isolation of Compiler Errors. ACM Trans. Program. Lang. Syst. 16.5, 1994.
- VG02 A. Van Gelder. Extracting (Easily) Checkable Proofs from a Satisfiability Solver that Employs both Preorder and Postorder Resolution. AMAI'02.
- **ZH02** A. Zeller and R. Hildebrandt. Simplifying and Isolating Failure-Inducing Input. IEEE Trans. Software Eng. 28.2, 2002.