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LTL as a Specification Language 2

LTL + relatives widely used specification languages; methodologies exist:
– Embedded systems: e.g., [EF06]; [Pil+06].
– Business processes: e.g., [PA06]; [Awa+12].

But:
Beer et al. (IBM) [Bee+01]:

[...] during the first formal verification runs of a new hardware de-
sign, typically 20 % of formulas are found to be trivially valid, and
that trivial validity always points to a real problem in either the de-
sign or its specification or environment.

Bloem et al. [Blo+07] in a work on LTL synthesis:

[...] writing a complete formal specification [...] was not trivial.

Although this approach removes the need for verification [...] the
specification itself still needs to be validated.

Efficient working with LTL requires effective debugging techniques.
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LTL Specification Validation with Satisfiability 3

Examples of satisfiability in validation checks of an LTL specification φ:

– Satisfiability of φ (e.g., [RV10,Awa+12]).

– Feasibility of LTL scenario φ′ in φ: satisfiability of φ∧φ′ (e.g., [Pil+06]).

– Implication of desired LTL property φ′′ by φ: unsatisfiability of φ∧¬φ′′
(e.g., [Pil+06]).

An unsatisfiable core (UC) is an unsatisfiable formula φ′ that is derived
from another unsatisfiable formula φ. φ′ focuses on a reason for φ being
unsatisfiable.

UCs can help understanding results of validation checks.

Failure-inducing input minimization (e.g., [ZH02]) is established in many
domains, e.g., linear programming (e.g., [CD91]), constraint satisfaction
(e.g., [Bak+93]), compilers (e.g., [Wha94]), SAT (e.g., [BS01]), declarative
specifications (e.g., [Shl+03]), and LTL satisfiability (e.g., [Sch12]) and re-
alizability (e.g., [Cim+08]).
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UCs via Syntax Trees 4
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Replace some positive polarity occurrences of subformulas with 1 and
some negative polarity occurrences of subformulas with 0 while

preserving unsatisfiability ([Sch12,KV03]).
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Temporal Resolution (TR) as a Basis for Extracting UCs 5

Deletion-based extraction of UCs (e.g., [MS10]) is straightforward using
any solver but may be expensive.

Resolution-based extraction of UCs

– Common, e.g., in SAT [VG02].

– Resolution method for LTL suggested by Fisher [Fis91,FDP01] and im-
plemented in TRP++ [HK03,HK04,trp++]; sources available.

– TRP++ competitive in experimental evaluation [SD11]; in particular
also on unsatisfiable instances.

– Access to and reasoning about proof is straightforward.

– BDD-based NuSMV [Cim+02] also performed well on unsatisfiable in-
stances; but: BDD layer as complication.

– Tableau-based solvers LWB [Heu+95] and pltl [pltl] also provide good
access to proof; but: didn’t do well on unsatisfiable instances.
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Separated Normal Form (SNF) 7

TR works on a clausal normal form called Separated Normal Form (SNF)
[FDP01].

Let p1, . . . , pn, q1, . . . , qn′, l with 0 ≤ n, n′ be literals such that p1, . . . , pn
and q1, . . . , qn′ are pairwise different.

(p1 ∨ . . . ∨ pn) is an initial clause.

(G((p1 ∨ . . . ∨ pn) ∨ (X(q1 ∨ . . . ∨ qn′)))) is a global clause.

(G((p1 ∨ . . . ∨ pn) ∨ (F(l)))) is an eventuality clause.

() or (G()), denoted 2, stand for 0 or G(0) and are called empty clause.

Let c1, . . . , cn with 0 ≤ n be SNF clauses. Then
∧
1≤i≤n ci is an LTL

formula in SNF.

There exists a structure-preserving translation from an LTL formula into an
equisatisfiable formula in SNF [FDP01].
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Initial and Step Resolution 8

Initial and step resolution are straightforward extensions of propositional
resolution.

They differentiate between initial, global current, and global next literals to
allow resolution between 2 clauses each of which may be initial or global.

Example 1, initial and global clause:

(P ∨ l) (G((¬l) ∨ Q))

(P ∨ Q)

Example 2, 2 global clauses:

(G(P ∨ l)) (G((Q) ∨ (X((¬l) ∨ R))))

(G((Q) ∨ (X(P ∨ R))))
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Eventuality Resolution 9

Goal
(G(P ∨ Fl)) (G(Q ∨XG¬l))

(G(P ∨ Q ∨ l))

Loop Search for l

Let Q ≡ 0.

Perform loop search iterations until done.

Loop Search Iteration for l

Assume all global clauses with non-empty X part.

Assume all global clauses with empty X part, shifted 1 step into the future.

Assume (GX(Q ∨ l)).

Deduce, using step resolution between clauses with non-empty X part, R.

Distinguish 3 cases:
– R ≤ Q : done, found Q as desired.
– Q < R < 1: perform next iteration with Q ≡ R.
– R = 1: done, no Q found at this point.
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Scheduling and Flow of Information 10
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Extraction of a UC with a Resolution Graph 11

During the execution of the TR algorithm construct a resolution graph.

– Clauses are vertices.

– Applications of production rules induce edges from premises to con-
clusions.

If the empty clause has been derived

– Construct the set of clauses backward reachable from the empty clause.

– Intersect with set of starting clauses to obtain a UC in SNF.

So far, so trivial. Some optimizations follow.

Resolution graph interesting in its own right as a proof object that enables
to extract further useful information. See outlook.
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Set of Premises to Include in Resolution Graph 12

1. Several production rules have an eventuality clause as a premise. In
three cases there need not be an edge from that premise to the conclu-
sion as that eventuality clause will be included in the resolution graph
via other edges.

2. A successful loop search finds Q and proves that it is a fixed point.
Only the proof of Q being a fixed point is required in the resolution
graph — which happens in the last iteration of a successful loop search.
Previous iterations only serve to derive Q and can be discarded (no
edges from one loop search iteration to the next).
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Minimality of Set of Premises to Include in Res. Graph 13

To show that some premise of some production rule is needed to obtain a
UC, find

– a minimal UC in SNF Cuc,
– such that in the backward reachable part of its resolution graph,
– some clause in Cuc is backward reachable from the empty clause only

via an edge representing that premise in that production rule.

Example: {(a), (G((¬a) ∨ (X(a)))), (G(F(¬a)))}
or([])

always(or([not a]))

always(or([not a,next(a)]))

or([a])

always(or([sometime(not a)]))

always(or([not a,next(a)]))

always(or([next(not a)]))

always(or([not a]))

step-xx

step-xx

init-ini

BFS-loop-conclusion1g

BFS-loop-it-init-x

init-inn

BFS-loop-conclusion1e BFS-loop-it-sub
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Pruning the Resolution Graph 14

loop search

successful

loop search

unsuccessful

starting clauses

(saturation)

empty clause G()

saturation)

(more loop searches +

(more loop searches +

saturation)

main partition loop search partitions

(loop search iteration)

(loop search iteration)

(loop search iteration)

(loop search iteration)

(loop search iteration)

1. After completion of a loop
search there will be no
further edges from those
loop search partitions
to main partition. Prune
vertices not backward
reachable from the main
partition.

2. With earlier optimization
a failed loop search it-
eration has no outgo-
ing edges. Prune failed
loop search iteration right
away.
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From LTL to SNF and Back 15

Structure preserving translation (e.g., [PG86]) from LTL to SNF.

LTL (Gp) ∧ (X((¬p) ∧ (q ∨ r)))

SNF, UC in SNF

{xφ,
(G(xφ → xGp)),
(G(xφ → xX((¬p)∧(q∨r)))),
(G(xGp → p)),
(G(xGp → XxGp)),
(G(xX((¬p)∧(q∨r)) → Xx(¬p)∧(q∨r))),
(G(x(¬p)∧(q∨r) → x¬p)),
(G(x(¬p)∧(q∨r) → xq∨r)),
(G(x¬p → ¬p)),
(G(xq∨r → q ∨ r))}

UC in LTL (Gp) ∧ (X((¬p) ∧ 1))

q ∨ r does not appear on any right hand side of an implication of a clause
in the UC in SNF; it is therefore replaced with 1 in the UC in LTL.
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Minimal UCs 1 16

A UC φuc in LTL is minimal iff no positive polarity occurrence of a subfor-
mula of φuc can be replaced with 1 and no negative polarity occurrence of
a subformula of φuc can be replaced with 0 without making φuc satisfiable.

UCs obtained so far may not be minimal.

Perform deletion-based minimization (e.g., [MS10]).

May be expensive in general, but can do it on already reduced formula.

Note: minimization must be performed on LTL rather than SNF levels.

Author: V. Schuppan

http://www.schuppan.de/viktor/


Minimal UCs 2 17

Example for non-minimality in LTL if minimization is performed on SNF
level:

LTL (= UC in LTL) (¬p) ∧ ((G¬q) ∧ (pUq))

SNF, a minimal UC in SNF

{xφ,
(G(xφ → x¬p)),
(G(x¬p → ¬p)),
(G(xφ → x(G¬q)∧(pUq))),
(G(x(G¬q)∧(pUq) → xG¬q)),
(G(xG¬q → XxG¬q)),
(G(xG¬q → x¬q)),
(G(x¬q → ¬q)),
(G(x(G¬q)∧(pUq) → xpUq)),
(G(xpUq → (q ∨ p))),
(G(xpUq → (q ∨XxxpUq))),
(G(xpUq → Fq))}
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Implementation, Experimental Setup 18

Implementation

– on top of TRP++ [HK03,HK04,trp++]

– data structures: C++ standard library [SL95,Jos12]

– graph operations: Boost Graph Library [bgl,SLL02]

Experimental Setup

– Intel Core i7 M 620 @ 2 GHz

– Ubuntu 12.04

– time limit: 600 seconds

– memory limit: 6 GB

– time and memory measured and bounded with run [run]
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Benchmarks 19

bFamily Description a b c d Source

Category application
alaska lift Elevator specifications 75 / 72 / 72 4605 [Har05,

DW+08]

anzu genbuf Generalized buffer 16 / 16 / 16 1924 [Blo+07]

forobots Model of a robot with proper-
ties

25 / 25 / 25 635 [BDF09]

Category crafted
schup. O1form. Exponential behavior in some

solvers
27 / 27 / 27 4006 [SD11]

schup. O2form. Exponential behavior in some
solvers

8 / 8 / 8 91 [SD11]

schuppan phltl Temporal variant of pigeonhole 4 / 4 / 4 125 [SD11]
Category random

rozier formulas Obtained by generating a syn-
tax tree

62 / 62 / 62 157 [RV10]

trp Obtained by lifting proposi-
tional CNF into fixed temporal
structure

397 / 397 / 330 1421 [HS02]

a: # solved without UC extraction c: # solved with extraction of minimal UCs
b: # solved with extraction of UCs d: |largest solved without UC extraction|
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Overhead of UC Extraction 20
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Overhead of Minimal UC Extraction 21
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Benefit of Optimizations 1 22
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Benefit of Optimizations 2 23
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Outlook: UCs with Sets of Time Points 1 24

Intuition: replace occurrences of subformulas at specific time points with 1

or 0 depending on polarity (rather than always as before).

Simple example:
( G
{1}

p) ∧
{0},{0}

( X
{1}

¬
{1}

p)

The p operand of the G operator “matters” only at time point 1. Other
subformulas also “matter” only at time points 0 or 1.

Complex example:
p ∧
{0},{0}

(( G
2·N

(p →
2·N,2·N

X
2·N+1

X
2·N+2

p)) ∧
{0},{0}

(F
N
(( ¬

2·N
p) ∧

2·N,2·N+1
X

2·N+2
¬

2·N+2
p)))

1st and 2nd conjunct: p must be 1 at even time points  unsat!3rd conj.: p must eventually be 0 two time points in a row
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Outlook: UCs with Sets of Time Points 2 25

Some inference rules shift some premises 1 time step into the future.

For example, when using G(p ∨ q) and XG(¬p ∨ r) to derive XG(q ∨ r),
the first premise is shifted.

Fix the empty clause to happen at time point 0. For each input clause c,
for each path on which c is backward reachable from 2, count the number
of time steps.

Note: loops in the resolution graph complicate the computation.
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The End 26

Summary

Suggested, implemented, and evaluated a method to extract UCs for LTL
from a single run of a solver.

UC extraction can be performed efficiently.

Resulting UCs are signficantly smaller than input formulas.

Optimizations help to keep resolution graph small.

Future Work

Use solvers based on SAT or BDDs.

Investigate other temporal logics.

Extend to unrealizable cores.
Author: V. Schuppan
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Thanks to

... you for your attention,

... B. Konev and M. Ludwig for making TRP++ and TSPASS available,

... A. Cimatti for bringing up the subject of temporal resolution.

Questions?

http://www.schuppan.de/viktor/time13/
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